首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The choline-containing phosphoglycolipid, MfGL-II, is the major polar lipid of Mycoplasma fermentans PG18. Anti-MfGL-II antisera raised in rabbits using the purified MfGL-II as an immunogen were employed in immunogold electron microscopic and immunofluorescence studies showing that MfGL-II is uniformly distributed and exposed on the cell surface of M. fermentans cells. The specificity of the antibodies was determined by immunostaining of lipid extracts separated by thin layer chromatography. The antibodies recognize lipids specific to M. fermentans but did not cross-react with lipid extracts of M. penetrans, M. capricolum, M. gallisepticum or Acholeplasma laidlawii. As phosphocholine almost completely abolished antibody interaction with MfGL-II in an ELISA assay it is suggested that the anti-MfGL-II repertoire is composed primarily of anti-phosphocholine antibodies. The anti-MfGL-II antisera inhibit the attachment of M. fermentans to Molt-3 lymphocytes suggesting that MfGL-II plays a major role in M. fermentans-host cell interaction.  相似文献   

2.
Field-collected nodules of Comptonia peregrina (L.) Coult. and Myrica gale L. (Myricaceae), infected by the nitrogen-fixing actinomycete Frankia sp., were of two types: those that lacked sporangia entirely, designated spore(-), and those that showed extensive sporangial development, designated spore(+). In spore(+) nodules of C. peregrina, sporangia began to develop after the differentiation of endophytic vesicles and the concomitant onset of nitrogenase activity. At the onset of sporangial differentiation, infected host cells appeared healthy. However, endophytic vesicles and host cell cytoplasm and nuclei began to senesce rapidly as sporangia developed. Staining of sectioned material with the fluorescent stain Calcofluor White suggested that vesicles, hyphae and young sporangia were enclosed within a host-derived encapsulation layer, but mature sporangia were no longer encapsulated. In both C. peregrina and M. gale, vesicles were more short-lived in spore(+) than in spore(-) nodules. Field-collected spore(+) M. gale nodules exhibited a pronounced seasonality of sporangial formation. Sporangia began to differentiate in June, after the formation of vesicles and became more prominent in late summer. Inter- and intraspecific cross-inoculations suggest that the ability to form sporangia in the symbiotic state is controlled by endophytic strain type rather than host genotype or host/endophyte combination. The host may, however, influence the number and seasonal appearance of sporangia formed.  相似文献   

3.
Effect of Mycoplasmas on Apoptosis of 32D Cells Is Species-Dependent   总被引:1,自引:0,他引:1  
We previously showed that mycoplasmal infection effectively prevented apoptosis of infected cells, whereas other researchers have indicated that mycoplasmal infection promoted apoptosis. To understand the mechanism underlying this discrepancy, five different species of mycoplasmas were investigated for their effects on apoptosis of interleukin (IL)-3–dependent 32D cells. Results revealed that Mycoplasma fermentans and M. penetrans effectively supported continuous growth of 32D cells after IL-3 withdrawal. M. fermentans was more potent than M. penetrans. This effect was achieved by way of preventing apoptosis and stimulating cell proliferation. On the contrary, M. hominis and M. salivarium accelerated apoptosis of 32D cells. M. genitalium had no significant effect on apoptosis. The RNase protection assay indicated that the proapoptotic and antiapoptotic mycoplasmas altered the expression of major apoptosis regulatory genes differently. The difference in apoptosis regulatory gene expression induced by different species of mycoplasmas might be accountable for their effects on host cell apoptosis.  相似文献   

4.
《Process Biochemistry》2014,49(3):395-401
The effect of ten typical organic acids and five aldehydes present in lignocellulosic hydrolysates on the cell membrane integrity of oleaginous yeast Trichosporon fermentans was evaluated by flow cytometry. Overall, organic acids affected the cell membrane integrity of T. fermentans more significantly than that of aldehydes albeit aldehydes are more toxic to T. fermentans. The PI (Propidium Iodide) uptake rate of T. fermentans’ cells gradually decreased as fermentation going on, indicating that T. fermentans could overcome the inhibition of organic acids or aldehydes by adaption. Interestingly, in some cases, the effect of organic acids or aldehydes on the cell membrane integrity of T. fermentans was well related to their hydrophobicity. However, for the outliers, no obvious similar phenomena were observed. Thus, the attack on hydrophobic sites of cell membrane was not the only determinant for the damage of organic acids or aldehydes on cell membrane integrity of T. fermentans.  相似文献   

5.
Many intracellular pathogens co‐opt actin in host cells, but little is known about these interactions in vivo. We study the in vivo trafficking and exit of the microsporidian Nematocida parisii, which is an intracellular pathogen that infects intestinal cells of the nematode Caenorhabditis elegans. We recently demonstrated that N. parisii uses directional exocytosis to escape out of intestinal cells into the intestinal tract. Here, we show that an intestinal‐specific isoform of C. elegans actin called ACT‐5 forms coats around membrane compartments that contain single exocytosing spores, and that these coats appear to form after fusion with the apical membrane. We performed a genetic screen for host factors required for actin coat formation and identified small GTPases important for this process. Through analysis of animals defective in these factors, we found that actin coats are not required for pathogen exit although they may boost exocytic output. Later during infection, we find that ACT‐5 also forms coats around membrane‐bound vesicles that contain multiple spores. These vesicles are likely formed by clathrin‐dependent compensatory endocytosis to retrieve membrane material that has been trafficked to the apical membrane as part of the exocytosis process. These findings provide insight into microsporidia interaction with host cells, and provide novel in vivo examples of the manner in which intracellular pathogens co‐opt host actin during their life cycle.  相似文献   

6.
Membrane vesicles from Escherichia coli wild type and an otherwise isogenic dnaA mutant were used to immunize rabbits. In addition, a membrane protein fraction, containing the material found deficient in dnaA mutants, was purified by preparative polyacrylamide gel electrophoresis in sodium dodecylsulfate, and used for immunization. The antisera produced were analyzed by immunoelectrophoresis and immunofluorescence microscopy. The antisera obtained by immunization with membrane vesicles from either wild type or dnaA mutant membrane preparations were qualitatively similar in the precipitin bands seen after immunoelectrophoresis. The antisera obtained by immunization with the purified protein fraction contained a subset of the antibodies seen when whole vesicles were used for immunization. In a semiquantitative precipitin assay, the antisera prepared against whole membrane vesicles or the isolated protein fraction both caused the precipitation of more protein from sodium dodecylsulfate-solubilized membranes of wild type than of dnaA mutants. No difference was seen by immunoelectrophoresis between the protein composition of wild type or dnaA membrane preparations. Thus, the dnaA mutant appears to differ from the wild type in the quantitative composition of its membrane proteins, whereas no qualitative differences were detected.Fluorescein-conjugated antiserum preparations were employed to assess the reactivity of intact cells, spheroplasts and membrane vesicles with the antisera studied above. Wild type cells of E. coli have a barrier to reaction with the antisera; this barrier is removed when the cells are converted to spheroplasts or to membrane vesicle. Similarly, a highly permeable mutant of E. coli permits reaction of the antisera with unaltered cells. Antisera to both whole membrane vesicles and to the isolated protein fraction react identically with the cellular and subcellular preparations. Thus, antisera prepared from membrane proteins isolated after sodium dodecylsulfate-polyacrylamide gel electrophoresis can still recognize some antigens present in membrane vesicle preparations.  相似文献   

7.
To understand the effects of the interaction between Mycoplasma and cells on the host cellular function, it is important to elucidate the influences of infection of cells with Mycoplasma on nuclear enzymes such as DNA Topoisomerase type I (Topo I). Human Topo I participates in DNA transaction processes and is the target of anti-cancer drugs, the camptothecins (CPTs). Here we investigated the mechanism by which infection of human tumor cells with Mycoplasma fermentans affects the activity and expression of cellular Topo I, and the anti-cancer efficacy of CPT. Human cancer cells were infected or treated with live or sonicated M. fermentans and the activity and expression of Topo I was determined. M. fermentans significantly reduced (by 80%) Topo I activity in the infected/treated tumor cells without affecting the level of Topo I protein. We demonstrate that this reduction in enzyme activity resulted from ADP-ribosylation of the Topo I protein by Poly-ADP-ribose polymerase (PARP-1). In addition, pERK was activated as a result of the induction of the MAPK signal transduction pathway by M. fermentans. Since PARP-1 was shown to be activated by pERK, we concluded that M. fermentans modified the cellular Topo I activity by activation of PARP-I via the induction of the MAPK signal transduction pathway. Moreover, the infection of tumor cells with M. fermentans diminished the inhibitory effect of CPT. The results of this study suggest that modification of Topo I activity by M. fermentans may alter cellular gene expression and the response of tumor cells to Topo I inhibitors, influencing the anti-cancer capacity of Topo I antagonists.  相似文献   

8.
Suspension cultured oat (Avena sativa L. cv. Garry) cells, which secrete polysaccharides into the medium, were used as starting material for analyses of Golgi-derived vesicle membranes and plasma membranes isolated during cell fractionation. Vesicles collected by a procedure employing ultrafiltration followed by ultracentrifugation into a sucrose step gradient exhibited an equilibrium density of 1.27 g cm?3 when run on continuous sucrose gradients, a feature which is most likely attributable to the high concentration of enclosed polysaccharides. Brief sonication lowered the density of these vesicles to about 1.15 g cm?3, as judged from the coincidence of the protein peak and the marker enzymes for Golgi [Triton-stimulated UDPase, cold-storage IDPase (EC 3.6.1.6)] and plasma membrane [vanadate-inhibited K+, Mg2+-ATPase (EC 3.6.1.3)]. Sonication of these vesicles also greatly diminished the amount of detectable polysaccharide observed in a colorimetric assay for sugars. Fractionation of a plasma membrane-enriched preparation from these cells on continuous sucrose gradients showed the major protein peak and the peak activity for the plasma membrane marker at 1.17 g cm?3, however, there was also significant overlap with a mitochondrial [cytochrome c oxidase (EC 1.9.3.1)] peak at 1.18 g cm?3, Smaller peaks of the Golgi markers were seen at 1.14 g cm?3. Analyses of marker enzymes for ER and mitochondria (EC 1.6.99.3) showed little contamination of the membranes of presumptive secretory vesicles from these sources, and the lack of significant vanadate-insensitive ATPase activity in the density range from 1.13–1.18 g cm?3 in either fractionation scheme suggests that these membranes do not include material from the tonoplast. The coincidence of markers for Golgi and plasma membrane with from the tonoplast. The coincidence of markers for Golgi and plasma membrane with the membranes of sonicated, dense vesicles, at a density slightly lower than that of plasma membranes prepared from the same cells, supports the possibility that membranes en route to the plasma membrane are incompletely differentiated.  相似文献   

9.
Brush border membrane vesicles, BBMV, from eel intestinal cells or kidney proximal tubule cells were prepared in a low osmolarity cellobiose buffer. The osmotic water permeability coefficient P f for eel vesicles was not affected by pCMBS and was measured at 1.6 × 10−3 cm sec−1 at 23°C, a value lower than 3.6 × 10−3 cm sec−1 exhibited by the kidney vesicles and similar to published values for lipid bilayers. An activation energy E a of 14.7 Kcal mol−1 for water transport was obtained for eel intestine, contrasting with 4.8 Kcal mol−1 determined for rabbit kidney proximal tubule vesicles using the same method of analysis. The high value of E a , as well as the low P f for the eel intestine is compatible with the absence of water channels in these membrane vesicles and is consistent with the view that water permeates by dissolution and diffusion in the membrane. Further, the initial transient observed in the osmotic response of kidney vesicles, which is presumed to reflect the inhibition of water channels by membrane stress, could not be observed in the eel intestinal vesicles. The P f dependence on the tonicity of the osmotic shock, described for kidney vesicles and related to the dissipation of pressure and stress at low tonicity shocks, was not seen with eel vesicles. These results indicate that the membranes from two volume transporter epithelia have different mechanisms of water permeation. Presumably the functional water channels observed in kidney vesicles are not present in eel intestine vesicles. The elastic modulus of the membrane was estimated by analysis of swelling kinetics of eel vesicles following hypotonic shock. The value obtained, 0.79 × 10−3 N cm−1, compares favorably with the corresponding value, 0.87 × 10−3 N cm−1, estimated from measurements at osmotic equilibrium. Received: 28 January 1999/Revised: 15 June 1999  相似文献   

10.
Transport of cyclic AMP acrossEscherichia coli membrane was studied using membrane vesicles. Uptake of cyclic AMP was measured using normally oriented vesicles, whereas uptake in everted vesicles was taken as a measure of the efflux of cyclic AMP. Ultra-violet irradiation of the cells led to an inhibition of both uptake and efflux of cyclic AMP across the membrane. The presence of cyclic AMP in the growth medium prior to ultra-violet irradiation caused an enhancement of the uptake and efflux. The uptake and efflux of cyclic AMP were less in vesicles from glucose grown cells as compared to the uptake and efflux by the vesicles prepared from glycerol grown cells. Similarly both uptake and efflux of cyclic AMP were more in vesicles prepared from cells grown on glycerol or glucose in the presence of cyclic AMP than in vesicles from cells grown in absence of cyclic AMP. It is suggested that the number of cyclic AMP carrier molecules were reduced in cells under catabolite repression by glucose as well as by ultra-violet irradiation  相似文献   

11.
  • 1.1. In a continuing investigation of phycocyanin-membrane surface interaction, fluorescence quenching experiments were performed with a mixture of two populations of fluorescence probe-encapsulated phospholipid bilayer vesicles in the presence and absence of phycocyanin.
  • 2.2. These membrane vesicles were prepared with 1,2-dimyristoyl phosphatidylcholine (DMPC), cholesterol and a probe molecule.
  • 3.3. A fluorophore was encapsulated in one population of membrane vesicles, while a quencher was encapsulated in another population of membrane vesicles.
  • 4.4. The result was compared with those of experiments in the presence of other biomolecules, including albumin, cytochrome c, hemoglobin, myoglobin or RNA.
  • 5.5. Interestingly, a one-third reduction of the fluorescence intensity was observed in the mixture of these two populations of membrane vesicles in phycocyanin's presence.
  • 6.6. In contrast, the other biomolecules caused no significant reduction in the fluorescence intensity.
  • 7.7. These findings were evidence of a phycocyanin-induced membrane perturbation.
  • 8.8. This was further demonstrated by a phycocyanin-induced change in the thermotropic behavior of DMPC vesicles, as measured by differential scanning microcalorimetry.
  • 9.9. Such a unique property of phycocyanin is believed to be associated with its known membrane surface-interacting character.
  • 10.10. A possible phycocyanin-modulated membrane-membrane interaction was discussed.
  相似文献   

12.
Anti-nucleolin antibodies have been detected in patients with systemic connective tissue diseases (SCTD) including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). In vivo bound autoantibodies to nucleoli of epidermal keratinocytes have been demonstrated in skin from patients with SCTD. In this study, monoclonal antibody to nucleolin (D-3) was used to determine the distribution of nucleolin in different culture cells including HEp-2, HepG2, HRCC, Molt-4 and Wil2 cells. Nucleolin was found to be present on the surface of HEp-2 and HepG2 cells, but not on the surface of HRCC and lymphoblastoid (Molt-4 and Wil2) cells; in contrast, nucleolin was detected in the nucleoli of all permeabilized cells examined. In immunoprecipitation, using extracts from 32P-labeled HEp-2 cells as antigenic source, cell membrane as well as nuclear nucleolins were found to be phosphorylated with a molecular weight of 105 kDa. Viable HEp-2 and HepG2 cells were cocultured with IgG fraction of D-3 in a CO2 incubator for 1 to 24 h, and then permeabilized with acetone followed by immunofluorescence staining with FITC-labeled goat anti-mouse IgG antibodies. Nucleolar staining was observed in cells after 10 h or longer of coculture. These data indicated that D-3 antibody reacted with cell membrane nucleolin and subsequently gain access into cells in a process related to pinocytosis.  相似文献   

13.
The δ-endotoxin produced by Bacillus thuringiensis ssp. entomocidus induced the release of encapsulated [14C]sucrose from reverse-phase vesicles composed of phosphatidylcholine and cholesterol. No such release was detected when the phospholipid component of the vesicles was either phosphatidylethanolamine, phosphatidylglycerol, or sphingomyelin. The toxin-induced release was competitively inhibited by negatively charged organic ions while positively charged organic ions, apart from choline chloride, had no such effect. The existence of a polar head group in the phospholipid as well as intermolecular hydrogen bonding at the membrane surface, was found to be of major importance in the toxin-liposome interaction.  相似文献   

14.
The transport of various metabolically important substances along the endocytic and secretory pathways involves budding as well as fusion of vesicles with various intracellular compartments and plasma membrane. The membrane-membrane fusion events between various sub-compartments of the cell are believed to be mainly mediated by so-called “fusion proteins”. This study shows that beside the proteins, lipid components of membrane may play an equally important role in fusion and budding processes. Inside out (ISO) as well as right side out (RSO) erythrocyte vesicles were evaluated for their fusogenic potential using conventional membrane fusion assay methods. Both fluorescence dequenching as well as content mixing assays revealed fusogenic potential of the erythrocyte vesicles. Among two types of vesicles, ISO were found to be more fusogenic as compared to the RSO vesicles. Interestingly, ISO retained nearly half of their fusogenic properties after removal of the proteins, suggesting the remarkable role of lipids in the fusion process. In another set of experiments, fusogenic properties of the liposomes (subtilosome), prepared from phospholipids isolated from Bacillus subtilis (a lower microbe) were compared with those of erythrocyte vesicles. We have also demonstrated that various types of vesicles upon interaction with macrophages deliver encapsulated materials to the cytosol of the cells. Membrane-membrane fusion was also followed by the study, in which a protein synthesis inhibitor ricin A (that does not cross plasma membrane), when encapsulated in the erythrocyte vesicles or subtilosomes was demonstrated to gain access to the cytosol.  相似文献   

15.
Purified enzymes and cell-free homogenates encapsulated by liquid-surfactant membrane have been shown to retain their catalytic activity (see previously published literature). This paper describes the preparation and properties of liquid-surfactant membrane-encapsulated whole cells of Micrococcus denitrificansATCC 21909. Batch and continuous studies with this model system have demonstrated that encapsulated viable cells reduce nitrates and retain their catalytic activity over anextended period of time. In batch operation, the reactivity of the encapsulated whole cells has been investigated under a variety of experimental conditions. The system is capable of reducing NO3? or NO2?. Data obtained indicate that encapsulated live cells have a broad pH and temperature optimum range. The encapsulated cells remain viable and do not “escape” into the external aqueous phase, even after five days of constant stirring with nitrate-containing simulated wastewater. Pulsed substrate addition experiments have demonstrated that the encapsulated cells also effectively reduce NO2? with no significant reduction in activity, even after 5.5 days of incubation at 30°C. The membrane selectivity for ion transfer has been achieved by incorporating oil-soluble ion exchangers in the membrane. Because of the protection of the liquid membranes, the catalytic reduction of NO2? by the encapsulated whole cells is not inhibited by 1 × 10?4 M mercuric chloride, which is otherwise extremely toxic to the cells, when present in the external aqueous phase. Continuous reduction of 20 ppm of NO2? by liquid membrane-encapsulated whole cells has been demonstrated in a constantly stirred reactor over a test period of about one week. In this paper we will discuss the reduction of NO3?and NO2? by the liquid membrane-encapsulated whole cells of M. denitrificansATCC 21909 mainly in batch runs undera variety of experimental conditions, such as cell and substrate concentrations, product and inhibitor permeation, pH and temperature, effect of oil-soluble ion exchangers on the substrate diffusion, etc.  相似文献   

16.
Invasion of host cells is a key early event during bacterial infection, but the underlying pathogen–host interactions are yet to be fully visualized in three‐dimensional detail. We have captured snapshots of the early stages of bacterial‐mediated endocytosis in situ by exploiting the small size of chlamydial elementary bodies (EBs) for whole‐cell cryo‐electron tomography. Chlamydiae are obligate intracellular bacteria that infect eukaryotic cells and cause sexually transmitted infections and trachoma, the leading cause of preventable blindness. We demonstrate that Chlamydia trachomatis LGV2 EBs are intrinsically polarized. One pole is characterized by a tubular inner membrane invagination, while the other exhibits asymmetric periplasmic expansion to accommodate an array of type III secretion systems (T3SSs). Strikingly, EBs orient with their T3SS‐containing pole facing target cells, enabling the T3SSs to directly contact the cellular plasma membrane. This contact induces enveloping macropinosomes, actin‐rich filopodia and phagocytic cups to zipper tightly around the internalizing bacteria. Once encapsulated into tight early vacuoles, EB polarity and the T3SSs are lost. Our findings reveal previously undescribed structural transitions in both pathogen and host during the initial steps of chlamydial invasion.  相似文献   

17.
Two quantum dots (QDs), a green emitter, CdSe and a red emitter, CdSe with ZnS shell are encapsulated into novel liposomes in two different formulations including cationic liposomes. Quantum dots have proven themselves as powerful inorganic fluorescent probes, especially for long‐term, multiplexed imaging and detection. Upon delivery into a cell, in endocytic vesicles such as endosomes, their fluorescence is quenched. We have investigated the potential toxic effects, photophysical properties and cell internalization of QDs in new formulation of liposomes as an in vitro vesicle model. Entrapment of QDs into liposomes is brought about with a decrease in their intrinsic fluorescence and toxicities and an increase in their photostability and lifetime. The biomimetic lipid bilayer of liposomes provides high biocompatibility, thereby enhancing the effectiveness of fluorescent nanoparticles for biological recognition in vitro and in vivo. The prepared lipodots could effectively prevent QDs from photo‐oxidation during storage and when exposed to ultraviolet (UV) light. Moreover, the flow cytometry of HEK 293 T cells showed that the cell internalization of encapsulated QDs in (DSPC/CHO/DOPE/DOAB) liposome is enhanced 10 times compared with non‐encapsulated QD (bare QDs).  相似文献   

18.
Previously, we have reported the occurrence of novel phosphocholine-containing glycoglycerolipids (GGPLs: GGPL-I and GGPL-III) in human helper T-cell culture (MT-4 cell line) (Matsuda et al, Glycoconjugate J. 10: 340). However, the GGPLs disappeared from the MT-4 cells after treatment with an antimycoplasma agent. This disappearance suggested the involvement of microorganisms in the GGPL expression. In this paper, we show that the novel lipids are components of Mycoplasma fermentans itself. The supernatant fluid of the antimycoplasma agent-untreated MT-4 cell culture produced mycoplasma-like colonies on PPLO agar plates, and PCR and immunological methods revealed the presence of M. fermentans. GGPLs were expressed again in the treated MT-4 cells after infection with the isolated M. fermentans. The isolated M. fermentans had glycoglycerolipids corresponding to GGPL-I and GGPL-III. Thin-layer chromatography-mass spectrometry and immunological analyses showed that these glycoglycerolipids which were derived from the isolated M. fermentans were identical with GGPL-I and GGPL-III previously obtained. This is the first report that shows mycoplasma has phosphocholine-containing glycoglycerolipids.  相似文献   

19.
Mycoplasma fermentans is currently being examined as an agent potentially associated with human disease. Several strains of M. fermentans were isolated from patients with respiratory tract disease and AIDS. Two of these clinical strains, M64 and SK6, were triple-filter-cloned and designated as the parental clones in this study. Genomic DNA of randomly picked subclones in four and five subsequent generations passed from the parental M64 and SK6 clones were analyzed by using a radiolabeled M. fermentans-specific insertion sequence (IS)-like element as the probe. The hybridization patterns of DNA restriction fragments revealed high frequencies of chromosomal changes accompanied with excision or new insertion of the IS-like element in M. fermentans chromosome. The findings indicate M. fermentans has an effective mechanism(s) to produce a rapid gene rearrangement that may be mediated by one or more copies of the IS-like element. Received: 8 October 1997 / Accepted: 8 December 1997  相似文献   

20.
Isoquercitrin is a flavonoid isolated from Aster yomena, which has been used as a traditional medicinal herb. In the present study, we investigated the antifungal activity and the underlying mechanism of isoquercitrin. Isoquercitrin had a potent effect in the susceptibility test against pathogenic fungi and almost no hemolysis. Propidium iodide and potassium release assays were conducted in Candida albicans, and these studies confirmed that isoquercitrin induced membrane damage, thereby, increasing permeability. Membrane potential was analyzed using 3,3′-dipropylthiacarbocyanine iodide [DiSC3(5)], and the transition of membrane potential was indicated by an increased fluorescence intensity. To further analyze these results using model membranes, giant unilamellar vesicles and large unilamellar vesicles that encapsulated calcein were prepared and the detection of calcein leakage from liposomes indicated that membrane was disturbed. We further verified membrane disturbance by observing the disordered status of the lipid bilayer with 1,6-diphenyl-1,3,5-hexatriene fluorescence. Moreover, changes in size and granularity of the cell were revealed in flow cytometric analysis. All these results suggested the membrane disturbance and the degree of disturbance was estimated to be within a range of 2.3 nm to 3.3 nm by fluorescein isothiocyanate–dextran analysis. Taken together, isoquercitrin exerts its fungicidal effect by disturbing the membrane of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号