首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, Saccharomyces cerevisiae was engineered for simultaneous saccharification and fermentation of cellulose by the overexpression of the endoglucanase D (EngD) from Clostridium cellulovorans and the β-glucosidase (Bgl1) from Saccharomycopsis fibuligera . To promote secretion of the two enzymes, the genes were fused to the secretion signal of the S. cerevisiae α mating factor gene. The recombinant developed yeast could produce ethanol through simultaneous production of sufficient extracellular endoglucanase and β-glucosidase. When direct ethanol fermentation from 20 g L−1β-glucan as a substrate was performed with our recombinant strains, the ethanol concentration reached 9.15 g L−1 after 50 h of fermentation. The conversion ratio of ethanol from β-glucan was 80.3% of the theoretical ethanol concentration produced from 20 g L−1β-glucan. In conclusion, we have demonstrated the construction of a yeast strain capable of conversion of a cellulosic substrate to ethanol, representing significant progress towards the realization of processing of cellulosic biomass in a consolidated bioprocessing configuration.  相似文献   

2.
The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pK(a) value of galacturonic acid (3.51), the addition of 10 g · liter(-1) galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter(-1) galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks.  相似文献   

3.
The inhibitory effects of furfural and acetic acid on the fermentation of xylose and glucose to ethanol in YEPDX medium by a recombinant Saccharomyces cerevisiae strain (LNH‐ST 424A) were investigated. Initial furfural concentrations below 5 g/L caused negligible inhibition to glucose and xylose consumption rates in batch fermentations with high inoculum (4.5–6.0 g/L). At higher initial furfural concentrations (10–15 g/L) the inhibition became significant with xylose consumption rates especially affected. Interactive inhibition between acetic acid and pH were observed and quantified, and the results suggested the importance of conditioning the pH of hydrolysates for optimal fermentation performance. Poplar biomass pretreated by various CAFI processes (dilute acid, AFEX, ARP, SO2‐catalyzed steam explosion, and controlled‐pH) under respective optimal conditions was enzymatically hydrolyzed, and the mixed sugar streams in the hydrolysates were fermented. The 5‐hydroxymethyl furfural (HMF) and furfural concentrations were low in all hydrolysates and did not pose negative effects on fermentation. Maximum ethanol productivity showed that 0–6.2 g/L initial acetic acid does not substantially affect the ethanol fermentation with proper pH adjustment, confirming the results from rich media fermentations with reagent grade sugars. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
Intracellular adenosine-5'-triphosphate (ATP) levels were measured in a metabolically engineered Zymomonas mobilis over the course of batch fermentations of glucose and xylose mixtures. Fermentations were conducted over a range of pH (5-6) in the presence of varying initial amounts of acetic acid (0-8 g/L) using a 10% (w/v) total sugar concentration (glucose only, xylose only, or 5% glucose/5% xylose mixture). Over the design space investigated, ethanol process yields varied between 56.6% and 92.3% +/- 1.3% of theoretical, depending upon the test conditions. The large variation in process yields reflects the strong effect pH plays in modulating the inhibitory effect of acetic acid on fermentation performance. A corresponding effect was observed on maximum cellular specific growth rates, with the rates varying between a low of 0.15 h(-1) observed at pH 5 in the presence of 8 g/L acetic acid to a high of 0.32 +/- 0.02 h(-1) obtained at pH 5 or 6 when no acetic acid was initially present. While substantial differences were observed in intracellular specific ATP concentration profiles depending upon fermentation conditions, maximum intracellular ATP accumulation levels varied within a relatively narrow range (1.5-3.8 mg ATP/g dry cell mass). Xylose fermentations produced and accumulated ATP at much slower rates than mixed sugar fermentations (5% glucose, 5% xylose), and the ATP production and accumulation rates in the mixed sugar fermentations were slightly slower than in glucose fermentations. Results demonstrate that higher levels of acetic acid delay the onset and influence the extent of intracellular ATP accumulation. ATP production and accumulation rates were most sensitive to acetic acid at lower values of pH.  相似文献   

5.
Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E were carried out in a complex medium containing a NaOH-treated wood hydrolysate for the production of succinic acid. The wood hydrolysate based medium was treated with NaOH before sterilization to reduce the formation of inhibitory compounds. M. succiniciproducens MBEL55E utilized xylose as well as glucose in the wood hydrolysate based medium as a carbon source for the succinic acid production. In batch cultures, the final succinic acid concentration of 11.73 g l−1 was obtained from the pre-treated wood hydrolysate based medium, resulting in a succinic acid yield of 56% and a succinic acid productivity of 1.17 g l−1 h−1, while the corresponding continuous cultures gave the succinic acid yield and productivity of 55% and 3.19 g l−1 h−1, respectively. These results suggest that succinic acid can be produced economically and efficiently by the fermentation of M. succiniciproducens MBEL55E from an inexpensive biomass-based wood hydrolysate.  相似文献   

6.
Stoichiometric constraints within ecological interactions and their ecosystem consequences may depend on characteristics of the abiotic environment such as background nutrient levels. We assessed whether consumer identity, via differing body stoichiometry, could regulate periphyton stoichiometry across nutrient regimes in open systems. In 60 flow-through artificial streams, we factorially crossed dissolved inorganic nitrogen levels (elevated = 294  μ g L−1, ambient = 26  μ g L−1) with dissolved inorganic phosphorus levels (DIP: elevated = 15  μ g L−1, ambient = 3  μ g L−1) and consumer type [crayfish (body N : P = 18), snails (body N : P = 28) or a control]. At ambient DIP, periphyton in the crayfish treatment had a lower %P and a lower C : P than periphyton in the snail treatment suggesting that consumer identity, probably mediated by differing P-excretion, regulated periphyton P content. At high DIP, consumer identity no longer affected periphyton elemental composition. Therefore, the stoichiometry of consumer-driven nutrient recycling and consumer identity may be less important to ecosystem functioning in environments with elevated nutrient levels.  相似文献   

7.
We tested two predictions required to support the hypothesis that anthropogenic acidic episodes might explain the poor biological response of upland British streams otherwise recovering from acidification: (i) that invertebrate assemblages should differ between episodic and well-buffered streams and (ii) these effects should differentiate between sites with episodes caused by anthropogenic acidification as opposed to base-cation dilution or sea-salt deposition. Chronic and episodically acidic streams were widespread, and episodes reflected acid titration more than dilution. Nonmarine sulphate (16–18% vs. 5–9%), and nitrate (4–6% vs. 1–2%) contributed more to anion loading during episodes in Wales than Scotland, and Welsh streams also had a larger proportion of total stream sulphate from nonmarine sources (64–66% vs. 35–46%). Sea-salts were rarely a major cause of episodic ANC or pH reduction during the events sampled. By contrast, streams with episodes driven by strong anthropogenic acids had lower pH (5.0±0.6) and more dissolved aluminium (288±271 μg L−1) during events than where episodes were caused by dilution (pH 5.4±0.6; 116±110 μg Al L−1) or where streams remained circumneutral (pH 6.7±1.0; 50±45 μg Al L−1). Both biological predictions were supported: invertebrate assemblages differed among sites with different episode chemistry while several acid-sensitive species were absent only where episodes reflected anthropogenic acidification. We conclude that strong acid anions – dominantly nonmarine sulphate – still cause significant episodic acidification in acid-sensitive areas of Britain and may be a sufficient explanation for slow biological recovery in many locations.  相似文献   

8.
9.
Summary 1. We measured the breakdown rate of tussock grass in 12 New Zealand streams in catchments that provided a gradient of agricultural development. We also examined the microbial and invertebrate communities associated with decomposing tussock litter.
2. Pristine streams in the study had low concentrations of dissolved inorganic nitrogen (<10  μ g L−1) and dissolved reactive phosphate (<3  μ g L−1), whereas streams in the most developed catchments had high concentrations of nitrate (>2500  μ g L−1) and phosphate (35  μ g L−1), as well as greater amounts of suspended sediment and fine sediment covering the streambed.
3. Breakdown rate and microbial respiration were significantly related across the sites, and both were positively related to concentrations of nitrate and phosphate. Fungal biomass, measured as ergosterol, was positively related to microbial respiration and was also higher at sites with higher concentrations of nutrients. Total and shredding invertebrates were most abundant at the sites with high nutrient concentrations, but abundance of shredding invertebrates was not significantly related to breakdown rate. Amphipods were the most common shredding invertebrate at most sites, but probably did not contribute greatly to high rates of breakdown in streams in agricultural catchments.
4. With the exception of one site, nutrients from agricultural development appeared to have larger positive effects on litter breakdown than negative effects from sedimentation. Litter breakdown can serve as a functional measure of ecosystem health in streams, but caution should be exercised when a stress, such as land use, can have both positive (nutrients) and negative (sedimentation) effects.  相似文献   

10.
The kinetics in fed-batch cultures of acetone butanol fermentation by Clostridium acetobutylicum is compared on glucose, xylose, and mixtures of both sugars. The final conversion yield of sugars into solvents always increases with the sugar feeding rate. At low feeding rates, the sugar concentration in the medium becomes limiting, which results in a slower cellular growth, a slower metabolic transition from an acid to a solvent fermentation and, thus, a higher accumulation of acids. It is only at sufficiently high feeding rates that fed-batch fermentations yield kinetic results comparable to those of batch fermentations. With mixtures of glucose and xylose, because of a maintained low glucose level, both sugars are taken up at the same rate during a first fermentation period. An earlier accumulation of xylose when the fermentation becomes inhibited suggest that xylose utilization is inhibited when the catabolic flux of glucose alone can satisfy the metabolic activity of the cell. Kinetic results with batch and fed-batch fermentations indicate several important features of the regulation of C. acetobutylicum metabolism: an early inhibition by the produced acids; an initiation of solvent formation between 4 and 6 g/L acetic and butyric acid depending on the metabolic activity of the cell; a metabolic transition from acids to solvents production at a rate closely related to the rate of sugar uptake; during solvent production, a reassimilation of acids above a minimal rate of sugar consumption of 0.2 h(-1); a final inhibition of the fermentation at a total butanol and acids concentration of ca. 20 g/L.  相似文献   

11.
The mineralization of the herbicide linuron at concentrations of μg and mg L−1 was studied in liquid batch experiments with Variovorax sp. strain SRS16. The strain was highly efficient at mineralizing a range of linuron concentrations (0.002–10 mg L−1) with 20–60% of the added 14C-ring-labeled linuron metabolized to 14CO2 within hours to days depending on the initial linuron concentration and incubation period. At mg L−1 linuron concentrations the mineralization activity by SRS16 was inducible and a shift to constitutive mineralization activity was apparent with a reduction in the linuron concentration to μg L−1 levels. This study revealed that strain SRS16 is a promising candidate for bioaugmentation of water or soil resources contaminated with low linuron concentrations.  相似文献   

12.
Flavonoids, the potent antioxidant and anti-inflammatory plant compounds, require deglycosylation for absorption across the intestine. Intestinal bacteria are indispensable for the hydrolysis of flavonoid diglycosides. We isolated, for the first time, three anaerobic Lactobacillus -like strains designated as MF-01, MF-02 and MF-03 from the cecum of chicken capable of converting flavonoid diglycosides into bioactive aglycones. All the isolated strains were found to be active in the conversion of quercetin-3-rhamnoglucoside (rutin) and hesperetin-7-rhamnoglucoside (hesperidin) into their aglyconic forms. No metabolites were detected after the fermentation tests with naringenin-7-rhamnoglucoside (naringin). The degradation rates of flavonoids and influence of different carbon sources, following incubation with isolated strains, were also monitored. Overall maltose resulted in rapid degradation of flavonoids. However, when organic acids (lactate, acetate, butyrate or propionate) were added to the basal medium as carbon source, flavonoid degradation was completely inhibited. Using consortium of three isolated strains, fructooligosaccharide (10 g L−1) supplementation was found to be imperative for preserving aglycone hesperitin while organic acids supplementation (10 g L−1) to the fermentation medium resulted in rapid degradation of hesperitin indicating that the metabolic fate of flavonoids may be related to the gut metabolic behavior. Butyrate and propionate also suppressed rutin deglycosylation by the consortium.  相似文献   

13.
1. Sediment and nutrient loading in freshwater systems are leading causes of aquatic habitat degradation globally. We investigated the impacts of fine-sediment and nutrient additions on the growth and survival of western toad ( Bufo boreas ) tadpoles and emergent metamorphs in mesocosm and exclosure experiments.
2. Mesocosm tanks received weekly pulses of fine sediments to create initial concentrations of 0, 130 and 260 mg L−1 of suspended sediment and either bi-weekly additions of nutrients (N = 160 μg L−1, P = 10 μg L−1) or no additions in a factorial design. Within mesocosms, tadpole exclosures allowed for quantification of tadpole grazing pressure on periphyton biomass, chlorophyll- a and sediment deposition.
3. Tadpoles receiving sediment additions experienced slower growth rates and reduced survival to metamorphosis, although no effects of treatment were detected on size at metamorphosis or time to metamorphosis. Nutrient additions also lowered survival, but had no impact on other measured parameters of tadpole fitness. Dissections and gut content analysis revealed that tadpoles ingested sediment in large quantities altering the proportion of the organic content of ingested food.
4. Together these results suggest that although sediment was readily consumed by tadpoles, its presence in the larval environment had an overall negative effect on tadpole growth and survival, although not as severe as predicted.  相似文献   

14.
15.
A fed-batch culture system was used to study xylitol production by Candida guilliermondii FTI 20037 in a synthetic and a sugar cane bagasse hydrolysate medium. The values achieved for xylitol yield and volumetric productivity were, respectively, 0 · 84 g g−1 and 0 · 64 g l−1 h−1 using the synthetic medium and 0 · 78 g g−1 and 0 · 62 g l−1 h−1 using the hydrolysate medium.  相似文献   

16.
This study reports for the first time the presence of Anabaenopsis arnoldi blooms in Saudi freshwaters. This species has been investigated with high cell densities (3.8 × 103–264 × 103 cells mL−1) during June–November 2007 in Tendaha Lake, one of the major freshwater sources in Saudi Arabia. High temperature and conductivity, and a high concentration of phosphate, and low nitrate concentrations may have contributed to the formation of these blooms. The blooms were found to produce microcystins (MCYSTs) at concentrations up to 364 μg g−1 dry weight as detected by an enzyme-linked immunosorbent assay. MCYSTs were also detected in the raw and treated water of the lake at concentrations (1.6–8.3 and 0.33–1.6 μg L−1, respectively) exceeding the World Health Organization guideline level of 1 μg L−1 for these toxins. HPLC analysis revealed that the extracts of A. arnoldi blooms contained MCYST-RR, -YR and two unidentified MCYSTs, but a pure culture of A. arnoldi isolated from Tendaha Lake during the present study produced MCYST-RR and –YR only. This is the first study to report MCYST production by A. arnoldi . Therefore, this cyanobacterium should be taken into consideration during monitoring of toxic cyanobacterial blooms in drinking and recreational water sources in the world, particularly arid and semi-arid countries including Saudi Arabia.  相似文献   

17.
Aims:  To determine the effects of carbohydrates on Bacillus cereus ATCC14579T anaerobic metabolism and enterotoxin production in amino acids rich medium.
Methods and Results:  Bacillus cereus anaerobic growth on different carbohydrates (glucose, fructose, sucrose or glucose–fructose mixture) was examined in synthetic mMOD medium under continuous cultures (μ = 0·2 h−1). Fermentation end-products, flux partitioning at each key branch points of the mixed acid pathway and consumption or production of amino acids were determined. On both fructose and sucrose, ATP production was favoured via acetate production from acetyl-CoA. In addition, amino acids present in the growth medium showed significant variations with high consumption of serine and net production of glutamate and alanine on some or all sugars. Enterotoxins Hbl and Nhe production was high during growth on fructose (or mixtures involving a fructose moiety).
Conclusions:  Fructose was identified as a key sugar influencing anaerobic metabolism and toxin production of B. cereus .
Significance and Impact of the Study:  The physiological differences associated with the fermentation of the various carbohydrates clearly modify toxinogenesis indicating that the risk of foodborne pathogens is to some extent dependent upon the prevailing nutritional environment.  相似文献   

18.
木糖的高效发酵是制约纤维素燃料乙醇生产的技术瓶颈之一,高性能发酵菌种的开发是本领域研究的重点。以木糖发酵的典型菌株休哈塔假丝酵母为材料,研究氮源配比、葡萄糖和木糖初始浓度、葡萄糖添加及典型抑制物等因素对其木糖利用和乙醇发酵性能的影响规律。结果表明,硫酸铵更适宜于木糖和葡萄糖发酵产乙醇。在摇瓶振荡发酵条件下,该酵母可发酵164.0 g/L葡萄糖生成61.9 g/L乙醇,糖利用率和乙醇得率分别为99.8%和74.0%;受酵母细胞膜上转运体系的限制,对木糖的最高发酵浓度为120.0 g/L,可生成45.7 g/L乙醇,糖利用率和乙醇得率分别达到94.8%和87.0%。休哈塔假丝酵母发酵木糖的主要产物为乙醇,仅生成微量的木糖醇;添加葡萄糖可促进木糖的利用;休哈塔假丝酵母在葡萄糖发酵时的乙酸和甲酸的耐受浓度分别为8.32和2.55 g/L,木糖发酵时的乙酸和甲酸的耐受浓度分别为6.28和1.15 g/L。  相似文献   

19.
During the fermentation of lignocellulosic hydrolyzates to ethanol by native pentose-fermenting yeasts such as Scheffersomyces (Pichia) stipitis NRRL Y-7124 (CBS 5773) and Pachysolen tannophilus NRRL Y-2460, the switch from glucose to xylose uptake results in a diauxic lag unless process strategies to prevent this are applied. When yeast were grown on glucose and resuspended in mixed sugars, the length of this lag was observed to be a function of the glucose concentration consumed (and consequently, the ethanol concentration accumulated) prior to the switch from glucose to xylose fermentation. At glucose concentrations of 95 g/L, the switch to xylose utilization was severely stalled such that efficient xylose fermentation could not occur. Further investigation focused on the impact of ethanol on cellular xylose transport and the induction and maintenance of xylose reductase and xylitol dehydrogenase activities when large cell populations of S. stipitis NRRL Y-7124 were pre-grown on glucose or xylose and then presented mixtures of glucose and xylose for fermentation. Ethanol concentrations around 50 g/L fully repressed enzyme induction although xylose transport into the cells was observed to be occurring. Increasing degrees of repression were documented between 15 and 45 g/L ethanol. Repitched cell populations grown on xylose resulted in faster fermentation rates, particularly on xylose but also on glucose, and eliminated diauxic lag and stalling during mixed sugar conversion by P. tannophilus or S. stipitis, despite ethanol accumulations in the 60 or 70 g/L range, respectively. The process strategy of priming cells on xylose was key to the successful utilization of high mixed sugar concentrations because specific enzymes for xylose utilization could be induced before ethanol concentration accumulated to an inhibitory level.  相似文献   

20.
1. Taxonomic composition and abundance of heterotrophic flagellates (HF) were studied in 55 lakes with different trophy in northern Germany using a live-counting technique.
2. Mean abundances and biomasses of HF ranged from 169 cells L−1 and 22 μg L−1 in mesotrophic lakes to 2439 cells mL–1 and 475 μg L−1 in hypertrophic lakes, respectively. Highest values were generally observed in spring, but mesotrophic lakes showed maximum values in early summer.
3. The taxonomic composition of HF was not significantly influenced by lake trophy and season. The major fraction of HF consisted of chrysomonads and Protista incertae sedis; other important groups were choanoflagellates and bicosoecids. The size distribution of HF changed with lake trophy and season, with a higher proportion of large HF (> 10 μm) in hypertrophic lakes and in spring, respectively.
4. Correlation analyses revealed a strong negative impact of cladocerans on total HF biomass and especially on large HF. Ciliates and large bacteria (> 10 μm) were strongly positively correlated with HF biomass; small bacteria (< 2 μm) showed a weak positive correlation.
5. Analyses at the level of species and genera revealed distinct distribution patterns of some taxa. Paraphysomonas , Aulacomonas and Quadricilia as large-bodied HF showed highest abundance in hypertrophic lakes and in spring. Attached taxa (e.g. Monosiga , Salpingoeca amphoridium ) were highly abundant in late summer and autumn, whereas Spumella and Kathablepharis occurred frequently in most samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号