首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 918 毫秒
1.
Marker events to define the stratotype for the base of the Lutetian Stage are poorly defined. To elucidate such markers and characterize palaeoenvironmental turnovers, we conducted an integrated study of the Ypresian–Lutetian (Y–L; early-middle Eocene) transition at the continuous Agost section (southeastern Spain). This 115-m-thick section, which consists of hemipelagic marls intercalated with hemipelagic limestones and turbidity sandstones, spans from planktic foraminiferal Zones P9 to P12 (E7 to E10) and calcareous nannofossil Zones CP11 to CP14a (NP13 to NP16). We report quantitative analyses of planktic and benthic foraminifera and characterization of trace fossil assemblages that are integrated with mineralogical analyses.Relative to benthic forms, planktic foraminifera constitute more than 80% of the foraminiferal assemblage. We found that the most abundant planktic species belong to the genera Acarinina, Morozovella, Subbotina, and Pseudohastigerina. Benthic foraminiferal assemblages are strongly dominated by calcareous taxa, with bolivinids being the most abundant group. Trace fossils showed the succession Nereites–Zoophycos–Cruziana ichnofacies throughout the Agost section. In addition to changes in palaeobathymetry, we deduced that quantity and quality of organic matter flux influenced by turbidity currents are the main factors controlling benthic assemblages. We distinguished several mineralogical boundaries at the Agost section, each associated with lithological facies changes suggesting a change in provenance rather than changes in weathering conditions. We made three observations that indicate an increase in sea water temperatures or a possible hyperthermal event related to the first occurrence (FO) of hantkeninids (i.e., the P9/P10 boundary): 1) a distinct peak in abundance of the benthic foraminifera Aragonia aragonensis; 2) the low-diversity of benthic foraminiferal assemblages; and 3) the occurrence of the planktic foraminifera Clavigerinella eocenica and Clavigerinella jarvisi. Benthic foraminiferal and trace fossil assemblages also suggest an associated relative fall of sea level from upper-middle bathyal to sublittoral depths. These characteristic indicators point to this boundary as a promising feature for defining the Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage. However, complementary magnetobiostratigraphic studies carried out at the Agost section point to the FO of calcareous nannofossil Blackites inflatus (base of CP12b), which occurred 3–5 Myr before the P9/P10 boundary, as the most suitable primary marker event. Whatever the marker event chosen, all the successive events recognized at the Agost section allow a complete characterization of the Y–L transition, and thus this section may be a suitable candidate to locate the GSSP for the Ypresian/Lutetian boundary.  相似文献   

2.
《Marine Micropaleontology》2007,63(4):211-234
Two detailed records (NSF and 05NSC, Sidi Nasseur, Tunisia) across the Danian/Selandian (D/S) boundary were investigated for their micropaleontological content. Calcareous nannofossils and planktic foraminifera provided a biostratigraphic framework. The interval spans part of planktic foraminiferal Zone P2, Subzone P3a and part of Subzone P3b. This corresponds to calcareous nannoplankton Zone NP4. Using a more detailed nannofossil zonation the studied section spans part of Zone NTp6, Zone NTp7a and part of NTp7b. Quantitative ostracod and qualitative benthic foraminiferal data were used to characterize environmental changes across the D/S boundary. The two subsections have yielded a total of 50 ostracod taxa. The ostracod assemblage of the entire section belongs to the Southern Tethyan Type showing subtle but distinct changes up section. Based on statistical analysis of the quantitative ostracod data, faunal changes at a glauconitic maker bed (P3a/P3b boundary) were demonstrated. The local Reticulina proteros assemblage, with the typical species R. proteros, Oertliella vesiculosa and Cytheroptheron lekefense, is gradually replaced by the Protobuntonia nakkadii assemblage, with the typical species Cristaeleberis arabii, Xestoleberis tunisiensis, Cytheropteron sp. and P. nakkadii, across the glauconitic bed. The benthic foraminifera also demonstrated distinct changes at this marker bed. The changes in ostracods and foraminifera are related to changes in paleoproductivity and an overall relative sea-level fall.The lithological and faunal changes at the P3a/P3b zone boundary within the Sidi Nasseur sections seem to correspond to the D/S boundary in the type region in Danmark and are characterized by a significant hiatus, yielding this section not suitable as a GSSP candidate for this boundary.  相似文献   

3.
A marine Cretaceous succession (Barremian–Albian) of a cored borehole (BGS 81/40), located in the Central North Sea Basin, has been examined with respect to its planktic and benthic foraminiferal content, as well as for calcareous nannofossils. The distribution patterns of foraminifera and calcareous nannofossils allow for a two fold division of the investigated interval. (1) The Barremian–earliest Aptian interval, which reflects a marine, temporary restricted setting. This is indicated by sporadic occurrences of planktic foraminifera with very rare planispiral forms suggesting short-term connections of the Boreal and Tethyan Realms. The benthic foraminiferal assemblages indicate aerobic, sometimes dysaerobic bottom-water conditions. High abundances of nannoconids in the Barremian suggest enhanced stratification and/or warm, oligotrophic surface water. (2) The late Aptian–early Albian interval, which was characterised by an open-oceanic environment with cool and aerobic surface water conditions. Planktic foraminifera are more abundant and diverse than in the lower interval. Trochospiral hedbergellids dominate the foraminiferal assemblages. The episodic occurrences of planispiral, clavate and trochospiral-flattened planktic morphotypes indicate the existence of a seaway between the Boreal and the Tethyan Realms. Aerobic to dysaerobic bottom-water conditions are suggested by the composition of the benthic foraminiferal assemblages. High abundances of cool-water taxa within the calcareous nannofossil assemblages indicate a cooling trend across the latest Aptian and earliest Albian.  相似文献   

4.
《Marine Micropaleontology》2009,73(3-4):111-128
A detailed study of the calcareous nannofossil assemblages of latest Danian to early Selandian age from Wadi Qena (the Qreiya-1, Qreiya-2, and Araas sections) in the central Eastern Desert and the Gebel Duwi section at the Red Sea Coast has been carried out to understand the local phytoplankton paleocommunities. For the first time in Egypt four calcareous nannofossil zones (NTp6, NTp7, NTp8, NTp9) and five subzones (NTp7A, NTp7B, NTp8A, NTp8B and NTp8C) were distinguished subdividing the standard NP4 and NP5 zones. The calcareous nannofossil zones were correlated with nannofossil zonations from the Tethyan region (e.g. Tunisia and the Zumaia section, the GSSP for the Danian/Selandian boundary). The calcareous nannofossil assemblages are moderately to well preserved. The event beds are characterized by a dark-brown shaley-marl bed rich in organic carbon and coprolites. Three main assemblages are distinguished: a pre-event assemblage, a transitional assemblage and a post-event assemblage. The paleoenvironments vary from cool eutrophic water below and above the event to warm oligotrophic conditions during the event. The result of this study concludes that the “Latest Danian Event” (LDE) may represent an early Paleocene hyperthermal.  相似文献   

5.
The oxygen- and carbon-isotope compositions of planktic and benthic foraminifera and calcareous nannofossils from Middle Oligocene-Early Miocene Equatorial Atlantic sediments (DSDP Site 354) indicate two important paleoceanographic changes, in the Late Oligocene (foraminiferal Zone P.21) and in the Early Miocene (foraminiferal Zone N.5). The first change, reflected by a δ18O increase of 1.45‰ inGlobigerina venezuelana, affected only intermediate pelagic and not surface, deep or bottom waters. The second change affected surface and intermediate waters, whereas deep and bottom waters showed only minor fluctuations. In the case of the former the isotope effect of the moderate ice accumulation on the Antarctic continent is amplified in the Equatorial Atlantic by changes in the circulation pattern. The latter paleoceanographic change, reflected by a significant increase in18O in both planktic and benthic forms (about 1.0‰ and 0.5‰, respectively), may have been caused by ice volume increase and temperature decrease. Both oxygen- and carbon-isotope compositions indicate a marked depth-habitat stratification for planktic foraminifera and calcareous nannofossils. Three different dwelling groups are recognized: shallowGlobigerinoides, Globoquadrina dehiscens, Globorotalia mayeri and nannofossils; intermediateGlobigerina venezuelana; and deepCatapsydrax dissimilis. The comparison of foraminifera and calcareous nannofossils suggests that the isotopic compositions of nannofossils are generally controlled by the same parameters which control the isotopic composition of shallow-dwelling foraminifera, but the former are more enriched in18O.  相似文献   

6.
《Palaeoworld》2022,31(4):688-703
The first high-resolution integrated biostratigraphic study for Santonian/Campanian sediments of the Tabin section in the Kurdistan Region, northeast Iraq is provided. The study, based on 28 closely spaced samples, combines data from planktic foraminifers (25 species), calcareous nannofossils (32 species) and two ammonite genera in the Kometan Formation, marking the Santonian/Campanian boundary (S/C boundary) in the Kurdistan Region. In the absence of the crinoid Marsupites testudinarius, the proposed boundary marker, secondary markers such as calcareous nannofossils, planktic foraminifers and ammonites, have been used to establish a multi-stratigraphic biozonation for the late Santonian–early Campanian duration. Based on the occurrences of calcareous nannofossils, three biozones are identified — Lucianorhabdus cayeuxii (late Santonian), Calculites obscurus (latest Santonian–earliest Campanian), and Broinsonia parca parca (early Campanian). Seven calcareous nannofossil bioevents and three planktic foraminiferal bioevents are also identified. The Santonian/Campanian boundary is marked by: (a) the LO (Last Occurrence) of the planktic foraminifera D. asymetrica, (b) the FOs (First Occurrence) of the calcareous nannofossil species B. parca parca and B. parca constricta, (c) the extinction of several planktic foraminiferal species of Dicarinella and Marginotruncana, (d) the abundance and diversification of the planktic foraminifera genera, Globotruncana and Globotruncanita at the beginning of the Campanian, and (e) the disappearance of the ammonite genus Texanites, 0.5 m below (i.e., at 19 m) the disappearance of all Dicarinella and Marginotruncana species in the study section. Similar to several other Tethyan sections, the FO of B. parca parca is above the LOs of D. concavata and D. asymetrica; the LO of D. asymetrica is used here to mark the S/C boundary  相似文献   

7.
The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle–Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between 78 and 71 m composite depth extending from the Early Miocene to the latest Miocene–Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene–Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene–Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.  相似文献   

8.
《Marine Micropaleontology》2010,74(3-4):241-258
Dissolution experiments were carried out on a foraminiferal assemblage from the Paleocene–Eocene Thermal Maximum (PETM) at Dababiya, Egypt, in order to: 1) reveal the effects of differential dissolution on the composition of the foraminiferal assemblage and 2) develop objective criteria for the evaluation of dissolution in foraminiferal assemblages used in early Paleogene paleoenvironmental reconstructions, particularly with respect to neritic Midway-type assemblages from the Paleocene/Eocene transition. Our results confirm two general observations on modern foraminifera: 1) planktic foraminifera are much more vulnerable to dissolution than benthic foraminifera, leading to depressed P/B ratios and 2) dissolution susceptibility differs between size fractions, with the smaller specimens dissolving more rapidly than the bigger ones, leading to a larger average size of the remaining assemblage. Within a size fraction, wall structure and thickness are considered to be the main factors controlling differential dissolution susceptibility. We propose a ranking scheme for taxa with respect to dissolution resistance. Among the benthic taxa, Lenticulina is most resistant, followed by the agglutinated Gaudryina cf. ellisorae and Alabamina midwayensis. Biserial and triserial hyaline taxa and the porcelaneous Spiroloculina sp. are most susceptible to dissolution, whereas rotaliines, such as Cibicidoides and Anomalinoides have an intermediate susceptibility. This implies that mild dissolution of a Midway-type benthic assemblage leads to a relative enrichment in Lenticulina, Gaudryina and rotaliines. Amongst planktic foraminifera, the muricate taxa Acarinina and Morozovella are most resistant, followed by the cancellate Subbotina. The smooth and generally small Globanomalina and Zeauvigerina are least resistant to dissolution. Our data enable to objectively evaluate various degrees of dissolution in benthic and planktic foraminiferal assemblages retrieved from the lower Paleogene Tethyan outcrops. In this way taphonomic artifacts can be readily distinguished from paleoenvironmental signals affecting the primary composition of the assemblages. More generally, we propose that the combined use of foraminiferal numbers, P/B ratio and relative abundances of non-calcareous agglutinated taxa and Lenticulina may provide a powerful proxy for assessing dissolution in hemipelagic assemblages from Cenozoic and upper Cretaceous continental margins. In order to achieve more robust pre-Quaternary paleoenvironmental reconstructions based on quantitative foraminiferal data, application of dissolution proxies, like proposed here, or in slightly modified form, should become a more widely used micropaleontologic procedure. Particularly continental margin studies dealing with major biotic events (e.g. PETM) or employing P/B ratios for sea-level reconstructions should benefit from such an approach.  相似文献   

9.
The Ilerdian is a well-established Tethyan marine stage, which corresponds to an important phase in the evolution of larger foraminifera not represented in the type-area of the classical Northwest-European stages. This biostratigraphic restudy of its parastratotype in the Campo Section (northeastern Spain) based on planktic foraminifera, calcareous nannofossils, dinoflagellate cysts and the distribution of the stable isotopes ∂13C and ∂18O is an attempt to correlate the Paleocene/Eocene boundary based on a characteristic carbon isotope excursion (CIE) marking the onset of the Initial Eocene Thermal Maximum (IETM) and the Ilerdian stage. The base of this ∂13C excursion has been chosen as the criterion for the recent proposal of the Global Stratotype Section and Point (GSSP) of the base of the Eocene (= base of the Ypresian) in the Dababiya Section (Egypt) to which an age of 54.9 Ma has been attributed. This level is also characterized by a marked extinction among the deep-water benthic foraminifera (Benthic Foraminifera Extinction Event, BFEE), a flood of representatives of the planktic foraminiferal genus Acarinina and the acme of dinoflagellate cysts of the genus Apectodinium. In the Campo Section, detailed biozonations (planktic foraminifera, calcareous nannofossils, dinoflagellate cysts) are recognized in the Lower and Middle Ilerdian. The correlation with the Ypresian stratotype is based on dinoflagellate cysts and calcareous nannofossils. The base of the Ilerdian is poor in planktic microfossils and its precise correlation with the redefined Paleocene/Eocene boundary remains uncertain.  相似文献   

10.
High-resolution biostratigraphic and quantitative studies of subtropical Pacific planktonic foraminiferal assemblages (Ocean Drilling Program, Leg 198 Shatsky Rise, Sites 1209 and 1210) are performed to analyse the faunal changes associated with the Paleocene–Eocene Thermal Maximum (PETM) at about 55.5 Ma. At Shatsky Rise, the onset of the PETM is marked by the abrupt onset of a negative carbon isotope excursion close to the contact between carbonate-rich ooze and overlying clay-rich ooze and corresponds to a level of poor foraminiferal preservation as a result of carbonate dissolution. Lithology, planktonic foraminiferal distribution and abundances, calcareous plankton and benthic events, and the negative carbon isotope excursion allow precise correlation of the two Shatsky Rise records. Results from quantitative analyses show that Morozovella dominates the assemblages and that its maximum relative abundance is coincident with the lowest δ13C values, whereas subbotinids are absent in the interval of maximum abundance of Morozovella. The excursion taxa (Acarinina africana, Acarinina sibaiyaensis, and Morozovella allisonensis) first appear at the base of the event. Comparison between the absolute abundances of whole specimens and fragments of genera demonstrate that the increase in absolute abundance of Morozovella and the decrease of Subbotina are not an artifact of selective dissolution. Moreover, the shell fragmentation data reveal Subbotina to be the more dissolution-susceptible taxon. The upward decrease in abundance of Morozovella species and the concomitant increase in test size of Morozovella velascoensis are not controlled by dissolution. These changes could be attributed to the species' response to low nutrient supply in the surface waters and to concomitant changes in the physical and chemical properties of the seawater, including increased surface stratification and salinity.Comparison of the planktonic foraminiferal changes at Shatsky Rise to those from other PETM records (Sites 865 and 690) highlights significant similarities, such as the decline of Subbotina at the onset of the event, and discrepancies, including the difference in abundance of the excursion taxa. The observed planktonic foraminifera species response suggests a warm–oligotrophic scenario with a high degree of complexity in the ocean structure.  相似文献   

11.
We studied planktic and small benthic foraminifera from the Fuente Caldera section, southern Spain, across the Eocene–Oligocene transition. Benthic foraminifera indicate lower bathyal depths for the late Eocene and earliest Oligocene. Detailed high-resolution sampling and biostratigraphical data allowed us to date precisely layers with evidence for meteorite impact (Ni-rich spinel), which occur in the lower part of the planktic foraminiferal Globigerapsis index Biozone and in the middle part of the small benthic foraminiferal Cibicidoides truncanus (BB4) Biozone (middle Priabonian, late Eocene). Major turnovers of foraminifera occur at the Eocene/Oligocene boundary, only. The impact did not occur at a time of planktic or benthic foraminiferal extinction events, and the late Eocene meteorite impacts did thus not cause extinction of foraminifera. The most plausible cause of the Eocene/Oligocene boundary extinctions is the significant cooling, which generated glaciation in Antarctica and eliminated most of the warm and surface-dwelling foraminifera.  相似文献   

12.
Callovian–Oxfordian calcareous nannofossils are documented from four sections distributed along a proximal–distal (slope to central basin) transect in the French Subalpine Basin (south-eastern France). The sections were dated and correlated using integrated ammonite, dinoflagellate and nannofossil biostratigraphies. The nannofossil assemblages are constantly dominated by Watznaueria britannica. However, significant spatial changes in nannofossil assemblage composition are recorded. Nannofossil assemblages recovered in slope and slope-to-basin transition sections are characterized by high abundances, lowest diversities, highest percentages of smallest-sized morphotypes of W. britannica, subordinated W. britannica/manivitiae (a morphotype described in this study), and are indicative of turbulent, unstable and/or eutrophic conditions. Towards the central part of the basin, as the nutrient content and turbulence declined and paleoenvironmental stability increased, the nannofossil assemblages become more diverse and characterized by lower relative abundances of W. britannica but higher contribution of larger morphotypes and higher relative abundances of W. barnesiae/fossacincta, Biscutum dubium and Zeugrhabdotus erectus. These latter small coccoliths, markers of high surface-waters fertility for the Cretaceous, were probably not competitive with respect to smaller-sized W. britannica in unstable and eutrophic surface waters for the Jurassic. An increase in the surface water productivity is recorded both in proximal and distal sections at the Callovian–Oxfordian transition, and is demonstrated both by an increase in nannofossil total abundances and in the relative abundances of taxa adapted to high-trophic levels. Thermal minimum in surface waters, as indicated by an increase in the percentages of the cool-water nannofossil taxa, is associated to increased productivity. Further studies will be necessary to demonstrate whether surface-water productivity changes, already recorded in the eastern Paris Basin, were global.  相似文献   

13.
Calcareous nannofossils from the Brendola section permit recognition of the NP 19–20 zone. The calcareous nannofossil assemblages of this area indicate an inner shelf marine environment and the scarcity of discoasters and sphenoliths during late Priabonian time in this area is attributed to the very shallow nature of the association and not to the temperature dependence of this group. Systematic details concerningOrthozygus aureus and its relations withHolodiscolithus macroporus, Clathrolithus minutus andZygolithus fiscus are given.  相似文献   

14.
Cretaceous and early Paleocene benthic foraminifera were studied from one section along the western Gaj River, southern Balochistan, Pakistan, to reconstruct the paleoenvironment of the Tethys Sea during the Indian-Asian contact. We recognize three lithostratigraphic units in ascending order: the Mughal Kot Formation, the Pab Sandstone, and the Jamburo Group. Both the Maastrichtian Mughal Kot Formation, which consists of shale with grey marly limestone, and the Maastrichtian Pab Sandstone, which consists of quartzose sandstone, indicate an open ocean environment as they have diversified planktic and benthic foraminiferal assemblages. The Maastrichtian-Paleocene Jamburo Group, consisting of dark grey, calcareous shale and marlstone with some sulfide grains, is characterized by low diversities of benthic assemblages. The change to the lower diversities may be associated with the development of poor circulation of deeper water that was caused by narrowing of the Tethys Sea.The Trochammina spp. Assemblage from the Jamburo Group, which can be correlated with flysch-type agglutinated foraminiferal assemblages, has a low benthic species diversity, indicating an unfavorable condition for calcareous foraminifera because of the development of oxygen-depleted water. The absolute abundance of agglutinated specimens shows a remarkable change from low numbers in the Maastrichtian to high ones in the Paleocene. The benthic foraminiferal evidence supports the hypothesis that the collision of the Asian and Indian plates occurred near the end of the Cretaceous.  相似文献   

15.
Quantitative analyses of Pliensbachian calcareous nannofossils have been carried out on a proximal-distal transect in the Lusitanian Basin (Portugal). The studied sections Vale Venteiro near Tomar and Peniche represent proximal and distal environments with respect to the emerged land of the Iberian Meseta (to the East). The upper portion of the Vale das Fontes Fm (Davoei and Margaritatus ammonite Zones) is studied in both sections and correlated by means of ammonite and nannofossil integrated biostratigraphy. A careful analysis of the preservation state of nannofossils is performed. Preservation state is moderate to good in the two settings; changes in nannofossil assemblages are therefore considered as primary. Samples were analysed for nannofossil absolute and relative abundances, species diversity and wt%CaCO3. The analysis of calcareous nannofossils (absolute abundance, percentage, average abundance) shows changes in the community structure in space (i.e., from proximal to distal), and vertically within the water column. This pattern suggests a partitioning of habitats within the photic zone, and with respect to emerged lands. Proximal environments within the Lusitanian Basin were probably more eutrophic, because of the proximity of emerged lands to the East (Iberian Meseta). This was the source area for nutrients delivered into the basin by river transport. Distal environments were likely characterized by a greater water depth and by a deeper light penetration leading to a relatively more expanded photic zone. The assemblages recorded in the proximal setting exhibit high mean relative abundance of placolith-bearing coccolithophorids (Lotharingius spp., Biscutum spp. and Similiscutum spp.) and of Schizosphaerella spp., while distal assemblages are dominated by Crepidolithus crassus and Schizospharella spp. Crepidolithus crassus is interpreted as a deep-dweller coccolithophorid, inhabiting preferentially distal and deeper settings in the Lusitanian Basin. Placolith-bearing coccolithophorids were more abundant in proximal settings with respect to emerged lands, under relatively elevated trophic conditions. The probable calcareous dinocyst Schizospharella spp. proliferated in surface waters of both proximal and distal environments.  相似文献   

16.
Abundant and diverse calcareous nannofossil assemblages were found in organic-rich carbonate sequences which accumulated in a Campanian-Maastrichtian upwelling belt along the southeastern Tethys. The sequences studied represent the inner (shallower) and the outer (deeper) parts of the upwelling belt. The paleoenvironmental significance of selected nannofossil taxa and their utility in productivity reconstruction was established by comparing their distribution to foraminifera and dinocyst-based productivity profiles.Based on the calcareous nannofossil assemblages, a high-productivity group and a low-productivity group of species were determined. The distribution of these groups agrees well with the dinocyst- and foraminifera-based productivity curves and, hence, can be used to record paleoproductivity changes.The ratio between the high-productivity and low-productivity nannofossil groups, the Nannofossil Index of Productivity (NIP), is proposed here as a productivity proxy that can be utilized in reconstructing basinal productivity development.A quantitative analysis of the nannofossil assemblages indicates that their abundance and diversity increase towards the open sea, in the outer and less productive part of the upwelling belt. In the inner and more productive part of the upwelling belt, the nannofossils assemblages become less abundant and less diverse relative to those of the open marine environment.Micula decussata and Watznaueria barnesae are common to abundant in most samples. M. decussata becomes more abundant in poorly-preserved samples. On the other hand, the distribution of W. barnesae matches better with intermediate productivity levels.  相似文献   

17.
Fine laminated diatomaceous beds in outcrops of the Finikia unit (Estavromenos and Athanatoi sections) in the northern part of the Heraklion district in Crete, have yielded a total of 55 marine diatom and 24 silicoflagellate taxa. The diatom assemblages, characterized by species of low latitudes, belong to the upper part of the Nitzschia jouseae biozone (early-late Pliocene). The silicoflagellate associations belong to the local Dictyocha fibula ausonia and Dictyocha hellenica subzones. These subzones correspond to the subzones CN11b (Discoaster asymmetricus) and CN12a (D. tamalis) of calcareous nannofossils respectively, as well as to the Globorotalia puncticulata/G. bononiensis biozones of planktic foraminifera. The sparse silicoflagellate association from fine sandy marls of the Panassos section in the central part of the Heraklion district (Aghia Varvara unit, upper Tortonian-Messinian) is assigned to the local biozone Distephanus speculum minutus. The latter corresponds approximately to the biozone C9 (Discoaster quinqueramus) of calcareous nannofossils and to the Globorotalia conomiozea zone of planktic foraminifera. No discoidal diatoms could be found in the samples from Panassos-section. The presence of silicoflagellates but simultaneous absence of diatoms is probably due to greater opal dissolution within the fine sandy marls of the Panassos section.  相似文献   

18.
Deep-sea drilling at high latitudes of the Southern Hemispheres has provided almost the only available data to evaluate the biogeographic development of the planktonic biota in the Southern Ocean during the Cenozoic (65 m.y. to Present Day). Paleontological investigations on Deep Sea Drilling Project (DSDP) materials have shown that the development of Cenozoic planktonic biogeography of the Southern Ocean is intimately linked with the evolution of the Southern Ocean water masses themselves. During the Cenozoic, this has included the development of the Circum-Antarctic Current system as obstructing land masses moved apart, the refrigeration and later extensive glaciation of the continent, and the development of the Antarctic Convergence (Polar Front) with related oceanic upwelling.Almost all evolution of calcareous planktonic microfossils has occurred outside of the Antarctic—Subantarctic region followed by limited migration into these water masses. Virtually no endemism occurs amongst calcareous microfossil groups at these latitudes. In contrast, conspicuous and widespread evolution has occurred within the siliceous microfossil groups especially during the Neogene. Low diversity and differences in stratigraphic ranges of Antarctic calcareous microfossils makes them only broadly useful for correlation. Relatively higher diversities within the Subantarctic provide a firmer basis for more detailed correlation, although the ranges of fossils are often different than at lower latitudes because of different paleoceanographic and paleoclimatic controls. Within the Antarctic water mass south of the Antarctic Convergence, siliceous microfossilsbiostratigraphy, oxygen isotopic stratigraphy and magnetostratigraphy, provide the only firm basis for correlation with low-latitude sequences.Eocene (55-38 Ma) sediments contain abundant calcareous microfossils even closely adjacent to the continent. Antarctic calcareous planktonic microfossils of this age exhibit relative high diversity, although this is lower than assemblages of equivalent age at middle and low latitudes. Within the Subantarctic region, Eocene planktonic foraminifera exhibit strong affinities with those in the temperate regions. Biogeographic differences exist between various sectors of the Southern Ocean related to biogeographic isolation preceding the development of the Circum-Antarctic Current. Subantarctic calcareous nannofossil assemblages of Paleocene and Eocene age exhibit higher diversity than Oligocene and Neogene assemblages. Siliceous microfossils are poorly represented or at best poorly known.One of the most dramatic changes in Southern Ocean planktonic biogeography occurred near the Eocene/Oligocene boundary (38 Ma). Since then, Antarctic planktonic foraminiferal assemblages have exhibited distinct polar characteristics, marked in particular by low diversity, and this event thus reflects the initiation of the Antarctic faunal and floral provinces. Profound paleoceanographic changes at this time, which triggered the biogeographic crisis, appear to be related to the initiation of widespread Antarctic sea-ice formation, and rapid cooling of deep and intermediate waters, in turn associated with increased Antarctic glaciation. During the Oligocene, planktonic microfossil diversity was low in all groups throughout the world's oceans. In Antarctic waters, the early Oligocene foraminiferal fauna is monospecific (Subbotina angiporoides), while in the later Oligocene two species (S. angiporoides and Catapsydrax dissimilis) were recorded. Calcareous nannofossil assemblages are of low diversity compared with the Eocene. Subantarctic foraminiferal faunas of Oligocene age display much higher diversity than those in the Antarctic, but early and middle Oligoceae faunas still exhibit the lowest diversities for the entire Cenozoic. Siliceous assemblages remain relatively inconspicuous in most regions of the Southern Ocean.The Paleogene-Neogene transition (22 Ma) is marked by a major change in the global planktonic biogeography, i.e. modern patterns developed in which permanent, steep faunal and floral diversity gradients existed between tropical and polar regions; a gradient which has persisted even during the most severe glacial episodes. Oligocene assemblages of low diversity and almost cosmopolitan distribution were replaced by distinctive belts of planktonic assemblages arranged latitudinally from the tropics to the poles. The establishment of the steep planktonic diversity gradients and latitudinal provinces near the beginning of the Neogene almost certainly were linked to the development of the Circum-Antarctic Current in the late Oligocene which effectively separated high- and low-latitude planktonic assemblages. These fundamental global circulation and biogeographic patterns have persisted through the Neogene.During the Neogene (22 Ma to Present Day), Antarctic calcareous microfossil assemblages exhibit persistent low diversity and high dominance, while Subantarctic assemblages are of much greater diversity. The beginning of the Neogene (= beginning of Miocene) heralded the development of the high-latitude siliceous microfossil assemblages towards their present-day dominant role. Siliceous biogenec productivity began to increase. These changes were linked to the initial development and later intensification of circulation associated with the Antarctic Convergence and Antarctic Divergence. The Antarctic Convergence sharply separates dominantly siliceous assemblages to the south from calcareous assemblages to the north. Radiolarian assemblages became more endemic. Relatively warm early and middle Miocene conditions are reflected by slightly higher diversity of planktonic foraminifera and by the presence, in the northern Subantarctic, of conspicuous discoasters in early Miocene sediments. In Antarctic waters, calcareous nannofossils become unimportant as biogenic elements after the middle Miocene.The latest Miocene ( 5 m.y. ago) was marked by northward movement of the Antarctic Convergence, corresponding expansion of the Antarctic water mass, and low diversity of calcareous assemblages. Pliocene planktonic foraminifera seem to be largely monospecific in Antarctic and southern Subantarctic sequences. During the Quaternary, Antarctic waters reached a maximum northward expansion and exhibit highest siliceous biogenic productivity for the Cenozoic. In the Subantarctic, Quaternary foraminiferal diversities are much higher than in Pliocene sequences. Although calcareous nannofossil diversity may be high, only a few species are abundant. Large northward shifts of Antarctic and Subantarctic water masses have occurred during the Quaternary although no southward penetrations have occurred much beyond that of the present day. Several radiolarian and foraminiferal species disappeared or appeared at or close to a number of paleomagnetic reversals during the last 4 m.y. These faunal events, which provide valuable datums, do not seem to be associated with major climatic changes.  相似文献   

19.
The early late Cretaceous (Cenomanian–early Turonian) is thought to have been one of the warmest periods of the Phanerozoic. This period was characterised by tropical sea surface temperatures of up to 36 °C and a pole-to-equator-gradient of less than 10 °C. The subsequent Turonian–Maastrichtian was characterised by a continuous climatic cooling, peaking in the Maastrichtian. This climatic cooling and the resulting palaeoceanographic changes had an impact on planktic primary producer communities including calcareous nannofossils. In order to gain a better understanding of these Cenomanian–Maastrichtian palaeoceanographic changes, calcareous nannofossils have been studied from the proto North Atlantic (Goban Spur, DSDP Sites 549, 551). In order to see potential differences between open oceanic and shelf dwelling nannofossils, the data from Goban Spur have been compared to findings from the European shelf (northern Germany).A total of 77 samples from Goban Spur were studied for calcareous nannofossils revealing abundant (mean 6.2 billion specimens/g sediment) and highly diverse (mean 63 species/sample) nannofossil assemblages. The dominant taxa are Watznaueria spp. (mean 30.7%), Prediscosphaera spp. (mean 18.3%), Zeugrhabdotus spp. (mean 8.3%), Retecapsa spp. (mean 7.2%) and Biscutum spp. (mean 6.6%). The Cenomanian assemblages of both Goban Spur (open ocean) and Wunstorf (shelf) are characterised by elevated abundances of high fertility taxa like Biscutum spp., Zeugrhabdotus spp. and Tranolithus orionatus. Early Turonian to Maastrichtian calcareous nannofossil assemblages of Goban Spur are, however, quite different to those described from European sections. Oceanic taxa like Watznaueria spp., Retecapsa spp. and Cribrosphearella ehrenbergii dominate in Goban Spur whereas the fertility indicators Biscutum spp. and T. orionatus are more abundant in the European shelf assemblages. This shift from a homogeneous distribution of calcareous nannofossils in the Cenomanian towards a heterogeneous one in the Turonian–Maastrichtian implies a change of the ocean circulation. The “eddy ocean” system of the Cenomanian was replaced by an oceanic circulation similar to the modern one in the Turonian–Maastrichtian, caused by the cooling. The increased pole-to-equator-gradients resulted in an oceanic circulation similar to the modern one.  相似文献   

20.
This paper presents a detailed calcareous nannofossil biostratigraphy of the entire Lutetian of the Agost section (Betic Cordillera, SE Spain). This investigation integrates and improves on previous study performed through the Ypresian/Lutetian boundary by the authors on this succession. The new revision of the integrated bio‐magnetobiochronology of the Early/Middle Eocene interval revealed highly diversified calcareous nannofossil assemblages, characterizing more than 8 Myr of climatic variability. The studied interval spans from Zone CP11 to Subzone CP14a and from the upper part of Zone NP13 to the base of Zone NP16 of calcareous nannofossil standard zonations. The revision of the calcareous nannofossil content enabled the identification of numerous secondary events which greatly improved the stratigraphic resolution of this time interval. An important re‐organization of the nannoflora was observed during the Y/L transition, when Reticulofenestra and Dictyococcites (Noelaerhabdaceae) became the most important genera in terms of abundance and dispersal, dominating the Middle Eocene nannofossil assemblages and replacing Toweius and Discoaster taxa characteristic of the lower Eocene. Pentaliths and Blackites experience a great expansion and diversification, whereas Discoaster and Chiasmolithus which are well diversified but never abundant during the Lutetian show a slow turnover. A reassessment of the major bio‐events observed in the Noelaerhabdaceae family as well as revision and correlation of these events with the classical Italian sections (Contessa and Bottaccione) are presented. The new results show that biostratigraphic problems related to the Middle Eocene chronology are not limited to the correlation between calcareous nannofossils and planktonic foraminiferans at the Y/L transition but extend to calcareous nannofossil events commonly used for correlating the Bartonian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号