首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that mechanical distortion or stretch of alveolar type II (ATII) cells induces both surfactant release and the induction of apoptosis. We hypothesize that nitric oxide (NO) secreted from alveolar macrophages (AMs) prevents cyclic stretch-induced apoptosis. We show that S-nitroso-N-acetyl-D, L-penicillamine (SNAP), a chemical donor of NO, protects cells against nuclear condensation and DNA fragmentation induced by stretch (30% at 60 cycles/min) as well as by sorbitol. SNAP depleted of NO had no protective effect, and the NO scavenger 2-phenyl-4,4,5, 5-tetramethylimidazoline-1-oxyl 3-oxide blocked the antiapoptotic effect of SNAP. We also show that AMs isolated from rat lung lavage fluid actively synthesize and secrete NO. Using a novel technique in which AMs were cocultured with ATII cells while adhered to floating membrane rafts, we found that NO released from AMs was effective in protecting ATII cells from undergoing apoptosis. We therefore propose that NO secreted by AMs may function as part of a physiological antiapoptotic mechanism that prevents ATII cells from undergoing stretch-induced cell death in the lung.  相似文献   

2.
After acute lung injury, repair of the alveolar epithelium occurs on a substrate undergoing cyclic mechanical deformation. While previous studies showed that mechanical stretch increased alveolar epithelial cell necrosis and apoptosis, the impact of cell death during repair was not determined. We examined epithelial repair during cyclic stretch (CS) in a scratch-wound model of primary rat alveolar type II (ATII) cells and found that CS altered the balance between proliferation and cell death. We measured cell migration, size, and density; intercellular gap formation; cell number, proliferation, and apoptosis; cytoskeletal organization; and focal adhesions in response to scratch wounding followed by CS for up to 24 h. Under static conditions, wounds were closed by 24 h, but repair was inhibited by CS. Wounding stimulated cell motility and proliferation, actin and vinculin redistribution, and focal adhesion formation at the wound edge, while CS impeded cell spreading, initiated apoptosis, stimulated cytoskeletal reorganization, and attenuated focal adhesion formation. CS also caused significant intercellular gap formation compared with static cells. Our results suggest that CS alters several mechanisms of epithelial repair and that an imbalance occurs between cell death and proliferation that must be overcome to restore the epithelial barrier.  相似文献   

3.
The purpose of this study is to clarify the involvement of protein kinase C in pulmonary surfactant secretion from adult rat alveolar type II cells in primary culture. Surfactant secretion in vitro is stimulated by at least two classes of compounds. One class, (e.g. terbutaline) increases intracellular cyclic AMP, whereas the other class (e.g. 12-O-tetradecanoylphorbol 13-acetate (TPA] does not. TPA has been shown to activate protein kinase C in other cell systems. In our studies, 1-oleoyl-2-acetyl-sn-glycerol (OAG), which is a direct activator of protein kinase C, stimulated [3H] phosphatidylcholine secretion by alveolar type II cells in a dose- and time-dependent manner. Tetracaine, which is an inhibitor of protein kinase C, inhibited the TPA-induced secretion of [3H]phosphatidylcholine from alveolar type II cells in a dose-dependent manner. However, tetracaine had no effect on terbutaline-induced secretion. The effects of terbutaline and OAG upon surfactant secretion were significantly more than additive, but those of TPA and OAG were less than additive. The specific activity of protein kinase C was 6-fold higher than cyclic AMP-dependent protein kinase found in type II cells when both kinases were assayed using lysine-rich histone as a common phosphate acceptor. Ninety-four per cent of protein kinase C activity was recovered in the cytosolic fraction of unstimulated type II cells, and 40% of activity in cytosolic fraction was translocated to particulate fraction upon treatment with TPA. As observed in other tissues, protein kinase C of alveolar type II cells was highly activated by 1,2-dioleoyl-sn-glycerol or TPA in the presence of Ca2+ and phosphatidylserine. These results suggest that pulmonary surfactant secretion in vitro is stimulated by both protein kinase C and cyclic AMP-dependent protein kinase.  相似文献   

4.
Kumar VH  Christian C  Kresch MJ 《Life sciences》2000,66(17):1639-1646
Beta-adrenergic agents enhance secretion of phosphatidylcholine (PC) by adult and fetal type II cells. We have previously shown that terbutaline stimulates secretion of PC by fetal type II cells, but the response wanes after 30 minutes. We studied the effects of salmeterol, a highly selective, long-acting beta2-adrenergic agonist that does not cause receptor desensitization, on PC secretion by adult type II alveolar cells in primary culture. Release of lactate-dehydrogenase was < 4% and did not vary with the concentration of salmeterol. Salmeterol stimulated PC secretion in a concentration-dependent manner. The maximum effective-concentration tested was 50 nM and the EC50 was 11.40 +/- 1.14 nM. Propranolol inhibited the effect of salmeterol on release of PC, confirming that the effects of salmeterol are mediated by beta-receptors. OT50, the time for onset of action, was 32.0 +/- 1.6 minutes. RT50, the time to achieve 50% recovery from maximal stimulation was, 393.0 +/- 20.2 minutes. We conclude that salmeterol stimulates PC secretion by type II cells through activation of beta-adrenergic receptors and has a longer duration of action (>6 hours) compared to other beta2-agonists. Salmeterol may be a useful drug with which to study the role of receptor desensitization in the developmental changes in PC secretion.  相似文献   

5.
We developed a heterologous system to study the effect of mechanical deformation on alveolar epithelial cells. First, isolated primary rat alveolar type II (ATII) cells were plated onto silastic substrata coated with fibronectin and maintained in culture under conditions where they become alveolar type I-like (ATI) cells. This was followed by a second set of ATII cells labeled with the nontransferable, vital fluorescent stain 5-chloromethylfluorescein diacetate to distinguish them from ATI cells. By morphometric analysis, equibiaxial deformation (stretch) of the silastic substratum induced comparable changes in cell surface area for both ATII and ATI cells. Surfactant lipid secretion was measured using cells metabolically labeled with [(3)H]choline. In response to 21% tonic stretch for 15 min, ATII cells seeded with ATI cells secreted nearly threefold more surfactant lipid compared with ATII cells seeded alone. ATI cells did not secrete lipid in response to stretch. The enhanced lipid secretion by ATII plus ATI cocultures was inhibited by treatment with apyrase and adenosine deaminase, suggesting that ATP release by ATI cells enhanced surfactant lipid secretion at 21% stretch. This was confirmed using a luciferase assay where, in response to 21% stretch, ATI cells released fourfold more ATP than ATII cells. Because ATI cells release significantly more ATP at a lower level of stretch than ATII cells, this supports the hypothesis that ATI cells are mechanosensors in the lung and that paracrine stimulation of ATII cells by extracellular ATP released from ATI cells plays a role in regulating surfactant secretion.  相似文献   

6.
Mechanical ventilation plays a central role in the pathogenesis of bronchopulmonary dysplasia. However, the mechanisms by which excessive stretch of fetal or neonatal type II epithelial cells contributes to lung injury are not well defined. In these investigations, isolated embryonic day 19 fetal rat type II epithelial cells were cultured on substrates coated with fibronectin and exposed to 5% or 20% cyclic stretch to simulate mechanical forces during lung development or lung injury, respectively. Twenty percent stretch of fetal type II epithelial cells increased necrosis, apoptosis, and proliferation compared with control, unstretched samples. By ELISA and real-time PCR (qRT-PCR), 20% stretch increased secretion of IL-8 into the media and IL-8 gene expression and inhibited IL-10 release. Interestingly, administration of recombinant IL-10 before 20% stretch did not affect cell lysis but significantly reduced apoptosis and IL-8 release compared with stretched samples without IL-10. Collectively, our studies suggest that IL-10 may play an important role in protection of fetal type II epithelial cells from injury secondary to stretch.  相似文献   

7.
Secretion of [3H]phosphatidylcholine ([3H]PC) from isolated rat pulmonary type II epithelial cells was inhibited by the surfactant-associated protein of Mr = 35,000 (SAP-35) purified from canine lung surfactant. SAP-35 inhibited [3H]PC secretion in a dose-dependent manner and significantly inhibited basal, phorbol ester, beta-adrenergic, and P2-purinergic agonist-induced [3H]PC secretion. SAP-35 significantly inhibited [3H]PC secretion from 1 to 3 h after treatment. The IC50 for inhibition of [3H]PC secretion by canine SAP-35 was 1-5 X 10(-6) g/ml and was similar for inhibition of both basal and secretagogue-stimulated release. Heat denaturation of SAP-35, addition of monoclonal anti-SAP-35 antibody, reduction and alkylation of SAP-35, or association of SAP-35 with phospholipid vesicles reversed the inhibitory effect on secretagogue-induced secretion. Inhibitory effects of SAP-35 were observed 3 h after cells were washed with buffer that did not contain SAP-35. Although SAP-35 enhanced reassociation of surfactant phospholipid with isolated type II cells, its inhibitory effect on secretion of [3H]PC did not result from stimulation of reuptake of secreted [3H]PC by type II cells. The inhibition of phospholipid secretion by SAP-35 was also not due to inhibition of PC or disaturated PC synthesis by SAP-35. SAP-35, the major phospholipid-associated protein in pulmonary surfactant, is a potent inhibitor of surfactant secretion from type II cells in vitro and may play an important role in homeostasis of surfactant in the alveolar space.  相似文献   

8.
Mechanical stimuli regulate cell function in much the same way as chemical signals do. This has been studied in various cell types, particularly those with defined mechanical roles. The alveolar type II cell (ATII) cell, which is part of the alveolar epithelium of the lung, is responsible for the synthesis and secretion of pulmonary surfactant. It is now widely believed that stretch of ATII cells, which occurs during breathing, is the predominant physiological trigger for surfactant release. To study this, investigators have used an increasingly sophisticated array of in vitro and in vivo models. Using various stretch devices and models of lung ventilation and expansion, it has been shown that stretch regulates multiple activities in ATII cells. In addition to surfactant secretion, stretch triggers the differentiation of ATII to alveolar type I cells, as well as ATII cell apoptosis. In doing so, stretch modulates the proportion of these cells in the lung epithelium during both development and maturation of the lung and following lung injury. From such studies, it appears that mechanical distortion plays an integral part in maintaining the overall structure and function of the lung.  相似文献   

9.
We have examined the effect of hydrocortisone and cyclic AMP on the maintenance of lipid synthesis in primary cultures of adult rat alveolar type II cells. These hormones were tested in the presence of either 1% or 5% charcoal-stripped rat serum (CS-rat serum). The effect of substratum on responsiveness to these hormones was evaluated by comparing cells cultured for 4 days on tissue culture plastic, on floating type I collagen gels, on rat lung fibroblast feeder layers on floating collagen gels (floating feeder layers), and on Engelbreth-Holm-Swarm (EHS) tumor basement membrane gels. Type II cells cultured on floating feeder layers in medium containing 1% CS-rat serum and 10(-5) M hydrocortisone plus 0.5 mM dibutyryl cyclic AMP exhibited significantly increased incorporation of [14C]acetate into total lipids (238% of control). The hormone combination also increased the relative percentage of acetate incorporated into phosphatidylglycerol (PG; 7.3% versus 1.9%) and saturated phosphatidylcholine (PC; 43.6% versus 37.6%). The percentage of acetate incorporated into neutral lipids was significantly decreased by the addition of hormones (28.6% versus 70.0%). The addition of hydrocortisone and cyclic AMP to medium containing 5% CS-rat serum resulted in an increase in the relative incorporation of acetate into saturated PC (51.2% versus 46.4%), but had no effect on the relative incorporation of acetate into PG or on the incorporation of acetate into total lipids. Type II cells cultured on EHS gels in medium containing 1% CS-rat serum plus hydrocortisone and cyclic AMP showed increased acetate incorporation into total lipids (204% of control) and a relative decrease in the percentage of acetate incorporated into neutral lipids (16.9% versus 47.0%). The hormone combination also increased the relative incorporation of acetate into PG (4.4% versus 2.5%) and saturated PC (49.9% versus 42.1%). Hydrocortisone and cyclic AMP added to medium containing 5% CS-rat serum concentration increased the relative incorporation of acetate into saturated PC by type II cells on EHS gels, but these additions had no effect on acetate incorporation into PG. No responses to these soluble factors were seen when type II cells were cultured on floating type I collagen gels without feeder layers or on tissue culture plastic. These data indicate that there are positive interactions between substratum, soluble factors and serum in the maintenance of differentiated function of adult rat alveolar type II cells in vitro.  相似文献   

10.
Arachidonic acid has been shown to stimulate lung surfactant secretion from alveolar epithelial type II cells. To identify the (phospho)lipases responsible for generating arachidonic acid during lung surfactant secretion, the effects of various (phospho)lipase inhibitors on phosphatidylcholine (PC) secretion from rat alveolar type II cells were investigated. N-(p-amylcinnamoyl)anthranilic acid (ACA), a general inhibitor of phsopholipase A2 (PLA2), inhibited ATP-stimulated PC secretion in a dose-dependent manner. ACA also blocked PC secretion from type II cells stimulated by other secretagogues including phorbol 12-myristate 13-acetate, Ca2+ ionophore A23187 and terbutaline, indicating that PLA2 acts at a late step distal to the generation of second messengers. To determine which PLA2 isoform(s) is involved in lung surfactant secretion, selective inhibitors to different types of PLA2 were used to inhibit PLA2 activity in type II cells. The cytosolic PLA2 (cPLA2) inhibitor, arachidonyl trifluoromethyl ketone, was found to inhibit ATP-stimulated PC secretion, whereas the secretory PLA2 inhibitors, oleoyloxyethylphosphocholine, aristolochic acid, or p-bromophenacyl bromide, and the Ca2+-independent PLA2 inhibitors, palmitoyl trifluoromethyl ketone, or haloenol lactone suicide substrate, had no effect. In addition to PLA2, arachidonic acid is released from diacylglycerol (DAG) by DAG and monoacylglycerol lipases. The DAG lipase inhibitor, RHC-80267 also blocked ATP-stimulated PC secretion. The results suggest that both pathways for generating arachidonic acid via cPLA2 and DAG lipase may participate in lung surfactant secretion.  相似文献   

11.
Functional maturation of pulmonary alveolar epithelial cells is crucial for extrauterine survival. Mechanical distension and mesenchymal-epithelial interactions play important roles in this process. We hypothesized that mechanical stretch simulating fetal breathing movements is an important regulator of pulmonary epithelial cell differentiation. Using a Flexercell Strain Unit, we analyzed effects of stretch on primary cultures of type II cells and cocultures of epithelial and mesenchymal cells isolated from fetal rat lungs during late development. Cyclic stretch of isolated type II cells increased surfactant protein (SP) C mRNA expression by 150 +/- 30% over controls (P < 0.02) on gestational day 18 and by 130 +/- 30% on day 19 (P < 0.03). Stretch of cocultures with fibroblasts increased SP-C expression on days 18 and 19 by 170 +/- 40 and 270 +/- 40%, respectively, compared with unstretched cocultures. On day 19, stretch of isolated type II cells increased SP-B mRNA expression by 50% (P < 0.003). Unlike SP-C, addition of fibroblasts did not produce significant additional effects on SP-B mRNA levels. Under these conditions, we observed only modest increases in cellular immunoreactive SP-B, but secreted saturated phosphatidylcholine rose by 40% (P < 0.002). These results indicate that cyclic stretch promotes developmentally timed differentiation of fetal type II cells, as a direct effect on epithelial cell function and via mesenchymal-epithelial interactions. Expression of the SP-C gene appears to be highly responsive to mechanical stimulation.  相似文献   

12.
Epithelial injury is a central event in the pathogenesis of many inflammatory and fibrotic lung diseases like acute respiratory distress syndrome, pulmonary fibrosis, and iatrogenic lung injury. Mechanical stress is an often underappreciated contributor to lung epithelial injury. Following injury, differentiated epithelia can assume a myofibroblast phenotype in a process termed epithelial to mesenchymal transition (EMT), which contributes to aberrant wound healing and fibrosis. We demonstrate that cyclic mechanical stretch induces EMT in alveolar type II epithelial cells, associated with increased expression of low molecular mass hyaluronan (sHA). We show that sHA is sufficient for induction of EMT in statically cultured alveolar type II epithelial cells and necessary for EMT during cell stretch. Furthermore, stretch-induced EMT requires the innate immune adaptor molecule MyD88. We examined the Wnt/β-catenin pathway, which is known to mediate EMT. The Wnt target gene Wnt-inducible signaling protein 1 (wisp-1) is significantly up-regulated in stretched cells in hyaluronan- and MyD88-dependent fashion, and blockade of WISP-1 prevents EMT in stretched cells. In conclusion, we show for the first time that innate immunity transduces mechanical stress responses through the matrix component hyaluronan, and activation of the Wnt/β-catenin pathway.  相似文献   

13.
The alveolar type II cells have many important metabolic and biosynthetic functions including the synthesis and secretion of the lipid-protein complex, surfactant. Alveolar type II cells are also considered to be the progenitor cell type of the alveolar epithelium by their ability to both proliferate and to differentiate into alveolar type I cells. Recently, increasing evidence has suggested a role for programmed cell death, or apoptosis, in the maintenance of the alveolar epithelium under normal and pathological conditions. Apoptosis is a form of cell death serving physiologic and homeostatic functions, and is important in the development and progression of various disease states. Alveolar type II cells undergo apoptosis during normal lung development and maturation, and as a consequence of acute lung injury. This review offers an overview of apoptotic signalling pathways in alveolar type II cells and describes the biological and physiological functions of alveolar type II cell apoptosis in the normal and diseased lung. A better understanding of the signalling transduction pathways leading to alveolar type II cell apoptosis may provide new approaches to the treatment of acute lung injury and other pulmonary disorders.  相似文献   

14.
Na(+)-K(+)-ATPase pumps (Na(+) pumps) in the alveolar epithelium create a transepithelial Na(+) gradient crucial to keeping fluid from the pulmonary air space. We hypothesized that alveolar epithelial stretch stimulates Na(+) pump trafficking to the basolateral membrane (BLM) and, thereby, increases overall Na(+) pump activity. Alveolar type II cells were isolated from Sprague-Dawley rats and seeded onto elastic membranes coated with fibronectin or 5-day-conditioned extracellular matrix. After 2 days in culture, cells were uniformly stretched for 1 h in a custom-made device. Na(+) pump activity was subsequently assessed by ouabain-inhibitable uptake of (86)Rb(+), a K(+) tracer, and BLM Na(+) pump abundance was measured. In support of our hypothesis, cells increased Na(+) pump activity in a "dose-dependent" manner when stretched to 12, 25, or 37% change in surface area (DeltaSA), and cells stretched to 25% DeltaSA more than doubled Na(+) pump abundance in the BLM. Cells on 5-day matrix tolerated higher strain than cells on fibronectin before the onset of Na(+) pump upregulation. Treatment with Gd(3+), a stretch-activated channel blocker, amiloride, a Na(+) channel blocker, or both reduced but did not abolish stretch-induced effects. Sustained tonic stretch, unlike cyclic stretch, elicited no significant Na(+) pump response.  相似文献   

15.
Secretion of pulmonary surfactant by alveolar epithelial type II cells is vital for the reduction of interfacial surface tension, thus preventing lung collapse. To study secretion dynamics, rat alveolar epithelial type II cells were cultured on elastic membranes and cyclically stretched. The amounts of phosphatidylcholine, the primary lipid component of surfactant, inside and outside the cells, were measured using radiolabeled choline. During and immediately after stretch, cells secreted less surfactant than unstretched cells; however, stretched cells secreted significantly more surfactant than unstretched cells after an extended lag period. We developed a model based on the hypothesis that stretching leads to jamming of surfactant traffic escaping the cell, similar to vehicular traffic jams. In the model, stretch increases surfactant transport from the interior to the exterior of the cell. This transport is mediated by a surface layer with a finite capacity due to the limited number of fusion pores through which secretion occurs. When the amount of surfactant in the surface layer approaches this capacity, interference among lamellar bodies carrying surfactant reduces the rate of secretion, effectively creating a jam. When the stretch stops, the jam takes an extended time to clear, and subsequently the amount of secreted surfactant increases. We solved the model analytically and show that its dynamics are consistent with experimental observations, implying that surfactant secretion is a fundamentally nonlinear process with memory representing collective behavior at the level of single cells. Our results thus highlight the importance of a jamming dynamics in stretch-induced cellular secretory processes.  相似文献   

16.
Proteolytic processing of surfactant protein C (SP-C) proprotein in multivesicular bodies of alveolar type II cells results in a 35-residue mature peptide, consisting of a transmembrane domain and a 10-residue extramembrane domain. SP-C mature peptide is stored in lamellar bodies (a lysosomal-like organelle) and secreted with surfactant phospholipids into the alveolar space. This study was designed to identify the peptide domain of SP-C required for sorting and secretion of this integral membrane peptide. Deletion analyses in transiently transfected PC12 cells and isolated mouse type II cells suggested the extramembrane domain of mature SP-C was cytosolic and sufficient for sorting to the regulated secretory pathway. Intratracheal injection of adenovirus encoding SP-C mature peptide resulted in secretion into the alveolar space of wild type mice but not SP-C (-/-) mice. SP-C secretion in null mice was restored by the addition of the N-terminal propeptide. The cytosolic domain, consisting of the N- terminal propeptide and extramembrane domain of mature SP-C peptide, supported secretion of the transmembrane domain of platelet-derived growth factor receptor. Collectively, these studies indicate that the N-terminal propeptide of SP-C is required for intracellular sorting and secretion of SP-C.  相似文献   

17.
An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury.  相似文献   

18.
Diesel exhaust particles (DEPs) have been shown in vivo as well as in vitro to affect the respiratory function and in particular the immune response to infection and allergens. In the current study, we investigated the effect of DEPs on the production of phosphatidylcholine (PC), a major constituent of surfactant, by rat alveolar type II (ATII) primary cells in vitro. Our results demonstrate that incubation of ATII cells with DEPs lead to a time- and dose-dependent increase in labeled PC release. This effect was mimicked by nitric oxide (NO) donors and cGMP and was abolished by inhibitors of NO synthase (NOS). In addition, a NOS inhibitor inhibits by itself the basal secretion of PC. We next examined the effects of DEPs on NOS gene expression and showed that DEPs increase NO production and upregulate both protein content and mRNA levels of the inducible NOS (NOS II). Together our data demonstrate that DEPs alter the production of surfactant by ATII cells through a NO-dependent signaling pathway.  相似文献   

19.
The pathogenesis of reexpansion pulmonary edema is not yet fully understood. We therefore studied its mechanism in a rat model in which the left lung was collapsed by bronchial occlusion for 1 h and then reexpanded and ventilated for an additional 3 h. We then evaluated the production of reactive oxygen species in the lungs using fluorescent imaging and cerium deposition electron microscopic techniques and the incidence of apoptosis using the TdT-mediated dUTP-digoxigenin nick end labeling (TUNEL) method. We found that pulmonary reexpansion induced production of reactive oxygen species and then apoptosis, mainly in endothelial and alveolar type II epithelial cells. Endothelial cells and alveolar type I and II epithelial cells in the reexpanded lung were positive for TUNEL and cleaved caspase-3. DNA fragmentation was also observed in the reexpanded lung. In addition, wet-dry ratios obtained with reexpanded lungs were significantly higher than those obtained with control lungs, indicating increased fluid content. All of these effects were attenuated by pretreating rats with a specific xanthine oxidase inhibitor, sodium (-)-8-(3-methoxy-4-phenylsulfinylphenyl) pyrazolo[1,5-a]-1,3,5-triazine-4(1H)-one. It thus appears that pulmonary reexpansion activates xanthine oxidase in both endothelial and alveolar type II epithelial cells and that the reactive oxygen species produced by the enzyme induce apoptosis among the endothelial and alveolar type I and II epithelial cells that make up the pulmonary water-air barrier, leading to reexpansion pulmonary edema.  相似文献   

20.
Cyclic stretch of alveolar epithelial cells (AEC) can alter normal lung barrier function. Fibroblast growth factor-10 (FGF-10), an alveolar type II cell mitogen that is critical for lung development, may have a role in promoting AEC repair. We studied whether cyclic stretch induces AEC DNA damage and whether FGF-10 would be protective. Cyclic stretch (30 min of 30% strain amplitude and 30 cycles/min) caused AEC DNA strand break formation, as assessed by alkaline unwinding technique and DNA nucleosomal fragmentation. Pretreatment of AEC with FGF-10 (10 ng/ml) blocked stretch-induced DNA strand break formation and DNA fragmentation. FGF-10 activated AEC mitogen-activated protein kinase (MAPK), and MAPK inhibitors prevented FGF-10-induced AEC MAPK activation and abolished the protective effects of FGF-10 against stretch-induced DNA damage. In addition, a Grb2-SOS inhibitor (SH(3)b-p peptide), a RAS inhibitor (farnesyl transferase inhibitor 277), and a RAF-1 inhibitor (forskolin) each prevented FGF-10-induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in AEC. Moreover, N17-A549 cells that express a RAS dominant/negative protein prevented the FGF-10-induced ERK1/2 phosphorylation and RAS activation in AEC. We conclude that cyclic stretch causes AEC DNA damage and that FGF-10 attenuates these effects by mechanisms involving MAPK activation via the Grb2-SOS/Ras/RAF-1/ERK1/2 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号