首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitroxide Tempol, a stable free radical, has recently been shown to protect mammalian cells against several forms of oxidative stress including radiation-induced cytotoxicity. To extend this observation, six additional water-soluble nitroxides with different structural features were evaluated for potential radioprotective properties using Chinese hamster V79 cells and clonogenic assays. Nitroxides (10 mM) were added 10 min prior to radiation exposure and full radiation dose-response curves were determined. In addition to Tempol, five of the six nitroxides afforded in vitro radioprotection. The best protectors were found to be the positively charged nitroxides, Tempamine and 3-aminomethyl-PROXYL, with protection factors of 2.3 and 2.4, respectively, compared with Tempol, which had a protection factor of 1.3. 3-Carboxy-PROXYL, a negatively charged nitroxide, provided minimal protection. DNA binding characteristics as studied by nonequilibrium dialysis of DNA with each of the nitroxides demonstrated that Tempamine and 3-amino-methyl-PROXYL bound more strongly to DNA than did Tempol. Since DNA is assumed to be the target of radiation-induced cytotoxicity, differences in protection may be explained by variabilities in affinity of the protector for the target. This study establishes nitroxides as a general class of new nonthiol radioprotectors and suggests other parameters that may be exploited to find even better nitroxide-induced radioprotection.  相似文献   

2.
Stable nitroxide radicals have been previously shown to function as superoxide dismutase (SOD)2 mimics and to protect mammalian cells against superoxide and hydrogen peroxide-mediated oxidative stress. These unique characteristics suggested that nitroxides, such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), might protect mammalian cells against ionizing radiation. Treating Chinese hamster cells under aerobic conditions with 5, 10, 50, and 100 mM Tempol 10 min prior to X-rays resulted in radiation protection factors of 1.25, 1.30, 2.1, and 2.5, respectively. However, the reduced form of Tempol afforded no protection. Tempol treatment under hypoxic conditions did not provide radioprotection. Aerobic X-ray protection by Tempol could not be attributed to the induction of intracellular hypoxia, increase in intracellular glutathione, or induction of intracellular SOD mRNA. Tempol thus represents a new class of non-thiol-containing radiation protectors, which may be useful in elucidating the mechanism(s) of radiation-induced cellular damage and may have broad applications in protecting against oxidative stress.  相似文献   

3.
Since endogenous glutathione (GSH), the main non-protein intracellular thiol compound, is known to provide protection against reactive radical species, its depletion by diethylmaleate (DEM) was used to assess the role of free radical formation mediated by doxorubicin in DNA damage, cytotoxicity and mutagenicity of the anthracycline. Subtoxic concentrations of DEM that produced up to 75% depletion of GSH did not increase doxorubicin cytotoxicity in a variety of cell lines, including Chinese hamster ovary (CHO) and lung (V-79) cells, LoVo human carcinoma cells and P388 murine leukemia cells. Similarly, the number of doxorubicin-induced DNA single strand breaks in CHO cells and the mutation frequency in V-79 cells were not affected by GSH depletion. The results obtained suggest that mechanisms other than free radical formation are responsible for DNA damage, cytotoxicity and mutagenicity of anthracyclines.  相似文献   

4.
When cells are trypsinized before irradiation a potentiation of X-ray damage may occur. This is known as the 'trypsin effect'. Potentiation of X-ray damage on cell killing was seen in V79 Chinese hamster cells but was marginal in Chinese hamster ovary (CHO K1) cells and not evident in murine Ehrlich ascites tumour (EAT) cells. Trypsinization did however increase the number of X-ray-induced chromosomal abnormalities in all 3 lines. To investigate the possibility that trypsin acts by digestion of proteins in chromatin, further experiments were performed to monitor DNA damage and repair. Induction of DNA breaks by X-rays was unaffected by trypsin but trypsinized EAT (suspension) cells repaired single-strand breaks (ssb) less rapidly than controls indicating an inhibitory effect of trypsin on ssb repair. However double-strand break (dsb) repair was unaffected by trypsin. It was also found that the EDTA solution in which the trypsin was dissolved also contributes to the inhibition of dsb repair. The results show that trypsinization can enhance X-ray-induced cell killing, chromosomal damage and DNA repair, the effect varying between cell lines.  相似文献   

5.
The effect of three radiomodifying agents, cysteamine, hyperthermia, and hypoxia, on the induction of the major classes of X-ray-induced DNA lesions, was studied using mouse L cells and Chinese hamster V79 cells. The use of filter elution techniques allowed most of these studies to be conducted at X-ray doses within the survival-curve range. Cysteamine was found to protect against DNA single-strand breakage (ssb), DNA base damage, and DNA-protein crosslinkage. Hyperthermia had no effect on the level of DNA ssb or DNA base damage, but in L cells (but not in V79 cells) it increased the level of DNA-protein crosslinkage relative to DNA ssb. Hypoxia protected against DNA ssb, had no significant effect on the level of DNA base damage, and enhanced the level of DNA-protein crosslinkage relative to DNA ssb. These results support the previous suggestion that the X-ray-induced lethal lesion is DNA double-strand breakage. Implications of these findings for the mechanisms of formation of X-ray-induced DNA lesions are also discussed.  相似文献   

6.
The aim of this study was to investigate the mechanism(s) of X-ray-mediated cell damage in comparison to mechanism(s) of organic hydroperoxide cytotoxicity and to find the main targets for the two different kinds of cell inactivation. Damage of Chinese hamster fibroblasts induced by tert-butyl hydroperoxide (t-BHP) or X-irradiation was measured by the colony-formation assay and the average single colony volume. DNA double-strand breaks (dsb) were determined by constant-field gel electrophoresis. The contents of peroxides, of SH-groups and the size of inactivated cells were tested for oxidative modifications.Oxidative damage of fibroblasts induced by t-BHP or by X-rays inhibits cell proliferation. Simultaneously, irradiation causes an increase of DNA dsb with the dose, while incubation with t-BHP yields only a very few DNA dsb. Neither chemically induced oxidation nor irradiation significantly changed the amount of membrane lipid peroxides. Oxidation with t-BHP but not irradiation leads to a loss of the membrane SH-groups and to an increase of cell diameter.The similar decrease of cell proliferation can be caused by DNA dsb without detectable membrane damage (X-radiation) as by membrane damage with nearly no DNA dsb (chemically induced oxidative stress).  相似文献   

7.
The exposure of log-phase Chinese hamster V79 cells to 2-chlorodeoxyadenosine (CdA) for 3 h after X irradiation enhanced the lethal effects of X-rays in a concentration-dependent manner. The enhancement of the killing efficiency of X-rays by CdA was mainly observed in the reduction of quasi-threshold doses (Dq) of the dose-response curves. When the ability of CdA to inhibit the repair of X-ray-induced double- and single-strand breaks (dsb and ssb) of DNA was investigated by neutral- and alkaline-filter elution techniques, respectively, it was observed that 90% of dsb were rejoined in the absence of CdA within 30 min after X irradiation and 15-40% of dsb rejoining was suppressed by co-incubation of the cells with 5-10 microM of CdA for 3 h after X irradiation, whereas almost 100% of ssb were rejoined within 15 min regardless of the presence or absence of CdA. From these results it was concluded that CdA interfered exclusively with the repair of DNA dsb in X-irradiated Chinese hamster V79 cells and thereby increased the lethality of X-rays.  相似文献   

8.
The effects of chromatin compaction on X-radiation-induced cell killing and the induction and repair of DNA damage were studied in Chinese hamster ovary cells deprived of isoleucine for 24 h (Ile- cells) and compared to untreated controls. The results show that chromatin is decondensed in Ile- cells; i.e., in Ile- cells the nuclear area occupied by heterochromatin decreased 30-fold over control cells, both the rate and limit of micrococcal nuclease digestion were greater for Ile- cells, and 14.2% more propidium iodide was intercalated into the Ile- cell chromatin. The X-ray-induced cytotoxicity did not change in Ile- cells versus the control cells (D0 = 0.99 Gy) nor did the X-ray-induced DNA damage. However, the repair of DNA damage produced by 10 Gy proceeded with different kinetics in Ile- cells when compared to the controls. The initial rate of DNA damage repair was slower in Ile- cells by a factor of 2 compared to controls (the time required to rejoin 50% of the lesions was 6 versus 3 min, respectively). However, after 2 h of repair no DNA damage was detected in either group. Therefore, we conclude that this decondensation of chromatin, per se, does not directly modify the induction or ultimate repair of DNA damage by X radiation or cell clonogenicity and thus does not appear to be a primary factor in cell survival.  相似文献   

9.
Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines.  相似文献   

10.
The expression of the transient depression in the rate of DNA synthesis normally observed after exposure of randomly-dividing Chinese hamster V-79 or Chinese hamster CHO cells to ionizing radiation can be postponed or diminished by a post-irradiation treatment with 1.0 to 1.0 mM adenine or 1.5 mM caffeine. Caffeine may exert its effect by creating additional sites for replication in irradiated cells. Cells treated with caffeine or adenine for 2 or 4 hours after exposure to 3000 rad of 300 kVp X-rays exhibit depressed synthesis only after the removal of caffeine or adenine. These alterations in the timing of the X-ray-induced depression of the rate of DNA synthesis have no effect on X-ray-induced cell killing. Although a 4 hour post-irradiation treatment of randomly-dividing Chinese hamster V-79 cells with 1.0 or 2.0 mM caffeine potentiates X-ray-induced cell killing, this reduction in survival is due primarily to effects on cells in S-phase.  相似文献   

11.
Carcinogenesis is believed to be induced through the oxidative damage of DNA, and antioxidants are expected to suppress it. So, the polyphenolic antioxidants in daily foods were investigated to see whether they protect against genetic damage by active oxygen. In the evaluation, we used a bioassay and a chemical determination, a Salmonella mutagenicity test for mutation by a N-hydroxyl radical from one of the dietary carcinogens 3-amino-1-methyl-5H-pyrido[4,3-b]indole and the formation of 8-hydroxyl (8-OHdG) from 2'-deoxyguanosine (2'-dG) in a Fenton OH-radical generating system. Thirty-one antioxidants including flavonoids were compared in terms of radical-trapping activity with bacterial DNA and 2'-dG. Antioxidants inhibited the mutation but the IC50 values were in the mM order. Against 8-OHdG formation, only alpha-tocopherol had a suppressive effect with an IC50 of 1.5 microM. Thus, except alpha-tocopherol, the dietary antioxidants did not scavenge the biological radicals faster than bacterial DNA and intact 2'-dG, indicating that they failed to prevent oxidative gene damage and probably carcinogenesis.  相似文献   

12.
The neutral filter elution technique has been used to examine the relationship between X-ray-induced DNA double-strand breakage (dsb) and lethal lesions. The ratios of the different lesions produced by X-irradiation were varied by irradiation in the presence of different radiomodifiers, and in each case the same linear relationship between lethal lesions and induced DNA dsb was found. This relationship also held for cells given a hyperthermic treatment before irradiation. It is concluded that DNA dsb is probably the lethal lesion induced by ionizing radiation.  相似文献   

13.
L F Povirk  I H Goldberg 《Biochemistry》1980,19(21):4773-4780
The methanol-extracted, nonprotein chromophore of neocarzinostatin (NCS), which has DNA-degrading activity comparable to that of the native antibiotic, was found to have a strong affinity for DNA. Binding of chromophore was shown by (1) quenching by DNA of the 440-nm fluorescence and shifting of the emission peak to 420 nm, (2) protection by DNA against spontaneous loss of activity in aqueous solution, and (3) inhibition by DNA of the spontaneous generation of 490-nm fluorescence. Good quantitative correlation was found between these three methods in measuring chromophore binding. There was nearly a 1:1 correspondence between loss of chromophore activity and generation of 490-nm fluorescence, suggesting spontaneous degradation of active chromophore to a highly fluorescent product. Chromophore showed a preference for DNA high in adenine + thymine content in both fluorescence quenching and protection studies. NCS apoprotein, which is known to bind and protect active chromophore, quenched the 440-nm fluorescence, shifted the emission peak to 420 nm, and inhibited the generation of 490-nm fluorescence. Chromophore had a higher affinity for apoprotein than for DNA. Pretreatment of chromophore with 2-mercaptoethanol increased the 440-nm fluorescence seven-fold and eliminated the tendency to generate 490-nm fluorescence. The 440-nm fluorescence of this inactive material was also quenched by DNA and shifted to 420 nm, indicating an affinity for DNA comparable to that of untreated chromophore. However, its affinity for apoprotein was much lower than that of untreated chromophore. Both 2-mercapto-ethanol-treated and untreated chromophore unwound supercoiled pMB9 DNA, suggesting intercalation by both molecules. Since no physical evidence for interaction of native neocarzinostatin with DNA has been found, it is likely that dissociation of the chromophore from the protein and association with DNA are important steps in degradation of DNA by neocarzinostatin.  相似文献   

14.
L Recio  A W Hsie 《Mutation research》1987,178(2):257-269
Biologically reactive metabolites of benzo[a]pyrene (BP) and benzo[a]-pyrene 7,8-diol (BP-diol), formed by the mixed-function oxidase (MFO) system, are substrates for conjugation and detoxication by glutathione (GSH) when catalyzed by glutathione S-transferases (GSHT). We have investigated the detoxication of BP- and BP-diol-induced cytotoxicity and mutagenicity with GSH by supplementing the S9 mix used in the Chinese hamster ovary cells/hypoxanthine-guanine phosphoribosyltransferase (CHO/HGPRT) assay with GSH (6.5 mM) or GSH plus GSHT. The addition of GSH to the S9 mix resulted in a reduction of BP- and BP-diol induced cytotoxicity. GSH plus GSHT eliminated BP-induced cytotoxicity and reduced the mutagenicity of BP. GSH inhibited the mutagenicity at low (essentially non-lethal) concentrations of BP-diol, but did not do so at toxic concentrations. GSH plus GSHT inhibited the cytotoxicity and mutagenicity of BP-diol at concentrations not affected by GSH alone. These studies indicate that biochemical mechanisms of detoxication can affect the biological activity of a carcinogen, such as BP or BP-diol as profoundly as bioactivation by the MFO system.  相似文献   

15.
This study was designed to determine if radiation-mediated activation of the apoptotic pathways would be influenced by antioxidants and if a correlation would be found between radioprotection and changes in transduction pathways. Human lymphoblastoid TK6 cells, known to undergo apoptosis as a result of radiation, were irradiated (6 Gy) with and without antioxidants, and then whole-cell lysates were collected. Parallel studies were conducted to assess the survival (clonogenic assay) and apoptotic index. The impacts of two nitroxide antioxidants, tempol and CAT-1, differing in cell permeability, as well as the sulfhydryl antioxidant N-acetyl-L-cysteine (L-NAC), were estimated. Changes in apoptotic pathway proteins and p53 were assessed by Western blotting. Fraction of apoptotic cells was determined by flow cytometry. Tempol (10 mM), which readily enters cells, partially radioprotected TK6 cells against clonogenic killing, but had no effect on radiation-induced apoptotic parameters such as cleaved caspase 3 or cleaved PARP. Tempol alone did not induce cytotoxicity, yet did increase cleaved PARP levels. The radiation-induced increase in p53 protein was partly inhibited by tempol, but was unaffected by CAT-1 and L-NAC. Both CAT-1 (10 mM), which does not enter cells, and L-NAC (10 mM) had no radioprotective effect on cell survival. Although L-NAC did not protect against radiation-induced cytotoxicity, it completely inhibited radiation-induced increase in cleaved caspase 3 and cleaved PARP. Collectively, the results question the validity of using selected apoptosis pathway members as sole indicators of cytotoxicity.  相似文献   

16.
While the exact mechanism of H2O2-induced cytotoxicity is unknown, there is considerable evidence implicating DNA as a primary target. A recent study showed that a cell-impermeable nitroxide protected mammalian cells from H2O2-induced cell killing and suggested that the protection was mediated through cell membrane-bound or extracellular factors. To further define the protective properties of nitroxides, Chinese hamster V79 cells were exposed to H2O2 with or without cell-permeable and impermeable nitroxides and selected metal chelators. EPR spectroscopy and paramagnetic line broadening agents were used to distinguish between intra- and extracellular nitroxide distribution. To study the effectiveness of nitroxide protection, in the absence of a cell membrane, H2O2-mediated damage to supercoiled plasmid DNA was evaluated. Both deferrioxamine and Tempol cross the cell membrane, and inhibited H2O2-mediated cell killing, whereas the cell-impermeable DTPA and nitroxide, CAT-1, failed to protect. Similar protective effects of the chelators and nitroxides were observed when L-histidine, which enhances intracellular injury, was added to H2O2. In contrast, when damage to plasmid DNA was induced (in the absence of a cell membrane), both nitroxides were protective. Collectively, these results do not support a role for membrane-bound or extracellular factors in mediating H2O2 cytotoxicity in mammalian cells.  相似文献   

17.
The responses of diploid, tetraploid and near-hexaploid V79 cells to X-irradiation or DNA-associated 125I-decay were compared. When cell killing, following X-irradiation, was plotted against the induced level of DNA double-strand breakage (dsb) per unit length of DNA, there was no significant difference between the relationships for each cell line. This suggested that the number of X-ray-induced DNA dsb per cell required to produce a lethal lesion was proportional to ploidy. Consistent with the X-ray results, tetraploid cells required 121 +/- 4 and diploid cells 60 +/- 1 125I-decays to produce a lethal lesion. However, the hexaploid cells deviated from this relationship and required 137 +/- 5 decays. The relationship between relative elution and 125I decays/cell reflected cellular DNA content. It is concluded that current models of radiation action are unable to explain these findings satisfactorily.  相似文献   

18.
We have examined the effect of caffeine on the concomitant processes of the repair of potentially lethal damage (PLD) and the synthesis of X-ray-induced proteins in the human malignant melanoma cell line, Ul-Mel. Caffeine administered at a dose of 5mM after X radiation not only inhibited PLD repair but also markedly reduced the level of XIP269, a major X-ray-induced protein whose expression has been shown to correlate with the capacity to repair PLD. The expression of the vast majority of other cellular proteins, including seven other X-ray-induced proteins, remained unchanged following caffeine treatment. A possible role for XIP269 in cell cycle delay following DNA damage by X irradiation is discussed.  相似文献   

19.
Nuclear monolayers, prepared by treatment of mammalian cells with non-ionic detergents, showed increased sensitivity to X-ray-induced DNA double-strand breakage (dsb), as compared with intact cells, due to a decrease in the low-dose 'shoulder'. The DNA dsb dose-response shoulder could be restored by irradiating nuclei in the presence of sulphydryl compounds. However, the ineffectiveness of glutathione, when used at near cellular levels, in restoring the shoulder, suggested a possible role for protein sulphydryls in the radiation response of intact cells.  相似文献   

20.
Production of single-strand breaks (ssb) and double-strand breaks (dsb) of PM2 phage DNA by several structurally related bleomycin (BLM) analogues was studied by gel electrophoresis. BLM A2 and BLM B2 produced a comparable extent of dsb. In various experiments, BLM A2 and BLM B2, at 22-41 ng/mL, degraded 50% of the form I DNA into 33-38% form II and 12-17% form III DNA. BLM B1' produced ssb and dsb at a ratio similar to that of BLM A2, but both at a rate less than half that of BLM A2. Phleomycin (PLM) D1 induced an equivalent amount of ssb but only one-eighth of dsb induced by BLM B2. The relatively lower extent dsb production for PLM D1 was observed either in borate buffer (pH 9.5) or in Tris-HCl buffer (pH 7.5) and in the presence or absence of exogenous Fe(II). Deamido-BLM A2 produced ssb to an extent approximately half that of BLM A2 and dsb to less than one-eighth that of BLM A2. The following conclusions were drawn. (1) BLM analogues produced ssb and dsb to different extents and ratios. (2) The ratio of dsb to ssb varied depending on the analogue, indicating a lack of a direct correlation between ssb and dsb. (3) The extent of ssb and dsb was affected by modifications on both the C- and N-terminal half-molecules of BLM: modification of either the N-terminal amide or the bithiazole greatly reduced dsb, whereas changes in structure or charge in the C-terminal amine affected ssb and dsb to a similar extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号