首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protocorm-like bodies (PLBs) and callus were induced in epiphytic hybrid Cymbidium Twilight Moon ‘Day Light’, where induction capacity was strongly explant dependent. Following the use of various explant sources (PLB, leaf tip or base, root tip or base, cell and tissue ‘suspension’), highest PLB formation and callus induction occurred when we used whole PLBs, PLB segments or PLB transverse thin cell layers (tTCLs) or longitudinal TCLs (lTCLs). Plantlet growth and photosynthetic state from whole or bisected PLBs, as well as from tTCLs were not significantly different, after analysis of chlorophyll content. However plantlets generated from lTCLs showed lower values for growth and photosynthetic parameters. All resultant plants were shown to be cytogenetically identical using RAPD and mtDNA analysis despite cytological variation and endopolyploidy occuring between different plant parts. Acclimatization and survival rate was shown to be 100% in the generated plants.  相似文献   

2.
An in vitro culture procedure was established to induce protocorm-like bodies (PLBs) from leaf segments of the Phalaenopsis bellina (Rchb.f.) Christenson directly from epidermal cells without intervening callus on ½ strength modified Murashige and Skoog (MS) (in Physiol Plant 15:473–497, 1962) medium supplemented with 1-Naphthaleneacetic acid (NAA; 0, 0.1, 1 mg/l) and Thidiazuron (TDZ; 0, 0.1, 1, 3 mg/l). The best response was established at 3 mg/l TDZ which induced 78% of leaf segments to form a mean number of 14 PLBs per explant after 16 weeks of culture. No PLBs were found when leaf segments were cultured on ½ strength modified MS media supplemented with 0.1 and 1 mg/l NAA. The best induction percentage for auxin: cytokinin combination was at the combination of NAA and TDZ at 1.0 and 3.0 mg/l which gave 72% induction with 9 PLBs per explant. Semi-solid ½ strength MS and liquid Vacin and Went (VW) (in Bot Gaz 110:605–613, 1949) medium were used in order to find the highest survival and number of PLBs proliferation after 3 months in culture. Half strength MS showed an average of 9 PLBs in comparison with VW with an average of 5.3 PLBs per explants. Histological observations revealed that the regenerated PLBs were generally formed from the epidermal layers of the posterior regions of the leaf segments. Scanning electron micrograph of PLBs showed the origin of newly formed PLB from the peripheral region of leaf segments.  相似文献   

3.
An efficient method of mass propagation of Dendrobium chrysotoxum Lindl. was developed using a shoot-tip culture system. Both direct and callus-mediated formation of protocorm-like bodies (PLBs) occurred from the basal cut surface of explants. Frequency of callusing was best in the presence of 2 μM thidiazuron (TDZ) or N6-benzylaminopurine (BAP). The callus exhibited complete hormone autonomy for growth and differentiation of PLBs and was maintained for 18 months without any exogenous growth regulators, an aspect important for minimising somaclonal variation. However, the rate of callus growth and PLB formation varied with application of cytokinin and auxin. In addition, the callus exhibited a differential sensitivity to the exogenous cytokinins. While BAP promoted callus growth and PLB differentiation, TDZ was inhibitory to callus mediated PLB formation and caused extensive necrosis of callus. Although α-naphthaleneacetic acid (NAA) had no significant effect on the induction of callus, subsequent growth was best in its presence. Using a 3-month subculture period, a 69-fold increase in callus weight was achieved with 0.5 μM NAA, while as many as 133 PLBs could be obtained per 100 mg callus in the presence of 1 μM NAA. For direct PLB formation, the optimum cytokinin dosage was dependent upon the type of cytokinin used. While TDZ was most effective at a concentration of 1 μM (15 PLBs per explant), for similar PLB yield the application of 8 μM BAP was essential.  相似文献   

4.
A competent protocol for accelerated plant regeneration system via direct induction of protocorm-like bodies (PLBs) from leaf of orchid hybrid Aranda Wan Chark Kuan ??Blue???×?Vanda coerulea Grifft. ex. Lindl. was developed for the first time to establish a basis for mass production. Using tissue culture technique, the conditions for PLB induction from leaf explants and conversion of PLBs into plantlets were investigated. Leaves were transferred to MS medium containing different types and concentrations of cytokinins (namely, N6-benzyladenine, 6-furfurylaminopurine, N-phenyl-N ??-(1,2,3-thidiazol-5-yl)urea/TDZ and zeatin) for PLB induction. By means of exploring the effects of cytokinins, it was determined that the optimum PLB induction occurred on MS media supplemented with 1.5?mg?l?1 TDZ; whereby accordingly, PLB induction (with a frequency of 94.8?%) was observed as early as 8?days of culture and an average of 25 PLBs was obtained from 1?cm2 leaf segment after 40?days of culture. Variable pressure scanning electron microscopy indicated the different developmental stages of PLBs in detail. Light/stereo microscopic observation showed the maturation of PLBs and gradual formation of shoot and leaf primordia. More than 96?% conversion (with well-developed shoots and roots) was achieved within the next 30?days of culture, when well developed PLBs were transferred in MS medium supplemented with 1?mg?l?1 BA, 0.5?mg?l?1 IBA plus 60?mg?l?1 adenine sulphate. After 60?days of transfer in plastic pots filled with sand and perlite (2:1; v/v) and with charcoal and coconut fibre (1:1; v/v), subsequently, 90?% well-acclimatized plantlets were recovered.  相似文献   

5.
The present study describes the direct regeneration of protocorm-like bodies (PLBs) in leaf explants of the tropical species Oncidium flexuosum. The explants were inoculated in a solid, modified Murashige and Skoog (MS) medium with different concentrations of the growth regulator thidiazuron (TDZ) and with or without 2,4-dichlorophenoxyacetic acid (2,4-D) and naphthalene acetic acid (NAA), and kept away from light or in a 16-h photoperiod. The presence of auxins, 2,4-D, and NAA inhibited the formation of PLBs. The highest frequency of explants that regenerated PLBs (80%) was obtained when they were maintained in a culture medium containing 1.5 μM TDZ under dark conditions. In the same culture medium but under a 16-h photoperiod, 95% of the leaf explants presented necrosis. Therefore, darkness was crucial for the regeneration of PLBs in O. flexuosum leaf explants, which is in disagreement with the literature. PLBs developed from the division of epidermal and subepidermal cells mainly on the adaxial side of the apex region of the explant. Plants with well-developed leaves and roots grew after the PLBs were transferred to growth regulator-free medium under a 16-h photoperiod.  相似文献   

6.
Stem nodal segments of a sympodial orchid, Zygopetalum mackayi, were used as explants to induce protocorm-like body (PLB) formation on a hormone-free 1/2 Murashige and Skoog (1962) modified medium (1/2MS-0) or 1/2MS supplemented with 0.045–4.54 μM 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea [TDZ] in light. After 1 mo of culture, pale to dark green, compact and irregular nodulars of PLBs formed from the explants. For PLB induction, TDZ had no significant effect on the percentage of PLB formation but promoted mean numbers of PLBs per responding explant at 0.045–4.54 μM. For plant conversion, PLBs were transferred onto the same basal medium devoid of TDZ. After 2–3 mo of culture, these PLBs successfully formed shoots and then roots with normal morphology. For PLB proliferation, TDZ has no significant effects on the fresh weight of PLB aggregates, but there is significantly retarded shoot development at 0.45–4.54 μM after 1 mo of culture. When transferring these PLB aggregates onto hormone-free medium for plant conversion, PLBs derived from TDZ-containing medium showed a decrease of shoot length (0.86–2.08 cm in shoot length) compared to those derived from 1/2MS-0 (2.74 cm in shoot length) after 1 mo of culture. Gibberellin A3 [GA3] at 0.29–8.66 μM significantly retarded PLB proliferation, but at 0.03 and 0.29 μM resulted in longer shoot length than the control treatment. Histological studies reveal that shoot development originated from the outer region of PLB aggregates. The young shoots initially connected to each other at their basal tissues with the parental PLBs. Plants were successfully obtained from PLBs and then gradually became more loosely connected with each other as well as with the parental aggregates. Several dozen plants were acclimatized in the greenhouse and showed normal morphology.  相似文献   

7.
Technique for rapid mass propagation of Geodorum densiflorum (Lam)Schltr. has been developed by using thin sections of stems of in vitro regenerated plantlets as explant source. Thin sections of stems (1.0-1.5 mm) when cultured in modified liquid and semisolid Knudson C (KnC) medium produced 1.8 and 1.2 protocorm like bodies (PLBs) per explant respectively. Peptone (2 g l-1) was effective in promoting the survival percentage of the explants but had no effect on PLB production. BAP and NAA when used individually enhanced the rate of PLB production. But a significant and manifold increase in PLB production was noted when BAP (3 mg l-1) and NAA (0.5 mg l-1) in combination were added to peptone supplemented liquid and semisolid KnC medium. PLBs thus obtained were subcultured in semisolid KnC medium and obtained well developed plantlets within 10-12 weeks.  相似文献   

8.
Cryopreservation can be a stable, long-term method of germplasm conservation, but successful application can be challenging for tropical material. To optimize survival and re-growth from cryopreserved tissues derived from protocorm-like bodies (PLBs) of hybrid Cymbidium Twilight Moon ‘Day Light’, the effects of explant type (intact PLBs, half-PLBs, or PLB longitudinal thin cell layers) and various explant treatments were studied. Encapsulation in alginate beads was essential, and intact PLBs were best for cryopreservation, based on survival and ability to form neo-PLBs and/or percentage re-growth. Osmotic hydration of intact PLBs in 2% sucrose for 24 h increased neo-PLB formation and re-growth, with the best responses seen when PLBs were excised from alginate beads prior to re-growth after cryopreservation. Both non-transgenic and transgenic PLBs were amenable to cryopreservation for up to 1 year using these methods. This optimized protocol will improve the viability of hybrid Cymbidium germplasm after long-term cryopreservation.  相似文献   

9.
Tian C  Chen Y  Zhao X  Zhao L 《Plant cell reports》2008,27(5):823-831
A new protocol for plant regeneration via protocorm-like bodies (PLBs) induced from rhizoids that developed from leaf explants of Rosa spp. (R. canina L., R. multiflora var. cathayensis Rehd. et Wils., and R. multiflora f. carnea Thory.) has been established. Rhizoids were induced from calli of leaf explants incubated under dark conditions on Murashige and Skoog (MS) medium containing 1.5 mg/l 2, 4-D. PLBs developed from the tip of rhizoids cultured under light conditions on (1/2) MS medium containing 20 mg/l TDZ. About 90, 17 and 93% of rhizoid formation were achieved for the above-mentioned Rosa spp., respectively using this protocol. The frequency of PLB clusters formation and the number of PLB clusters per explant reached 50% and 5.1 for R. canina, 46.7% and 0.8 for R. multifolra var. cathayensis, 46.7% and 4.2 for R. multiflora f. carnea, respectively. PLB clusters regenerated on MS medium supplemented with 2 mg/l 6-BA, 0.1 mg/l IBA, and 0.1 mg/l GA(3). The best result of regenerated plantlets per leaf explant achieved via PLBs for the three Rosa spp. mentioned above was 3.6, 0.1, and 1.2, respectively. Environmental scanning electron microscope and histological studies revealed that rhizoids were structurally different from roots grown in vitro, and PLBs developed from proembryos.  相似文献   

10.
Summary A simple and efficient micropropagation method was established for direct protocorm-like body (PLB) formation and plant regeneration from flower stalk internodes of a sympodial orchid, Epidendrum radicans. Small transparent tissues formed on surfaces and cut ends of flower stalk internodes on a modified half-strength Murashige and Skoog basal medium with or without thidiazuron (TDZ) after 1–2 wk of culture. In the light, the transparent tissues enlarged and turned into organized calluses on most of the explants. However, PLBs formed only on a medium supplemened with 0.45 μM TDZ within 2 mo. of culture. Sucrose, NH4NO3, and KNO3 were used in media to test their effects on PLB proliferation and shooting. The best response on number of PLBs per tube was 23.6 at 40 gl−1 sucrose, 825 mgl−1 NH4NO3, and 950 mgl−1 KNO3, and the highest number of PLBs with shoots was found at 10 gl−1 sucrose, 825 mgl−1 NH4NO3, and 950 mgl−1 KNO3. Homogenized PLB tissues produced by blending were used to test the effects of four cytokinins [TDZ, N6-benzyladenine (BA), zeatin-riboside, and kinetin] on PLB proliferation and shoot formation. The best responses on number of PLBs per tube, proliferation rate, and number of PLBs with shoots per tube were obtained at 4.44 μM BA, 0.28 μM zeatin-riboside, and 1.39 μM kinetin, respectively. Normal plantlets converted from PLBs on the same TDZ-containing medium after 1 mo. of culture. The optimized procedure required about 12–13 wk from the initiation of PLBs to plantlet formation. The regenerated plants grew well with an almost 100% survival rate when acclimatized in a greenhouse.  相似文献   

11.
Protocorm-like bodies (PLBs) were induced directly at high frequency from wounded surface of Anthurium andreanum cv. CanCan shoot tip-ends, used as explants. In order to obtain PLB directly, the influence of different types and concentrations of cytokinins were evaluated. Amid the cytokinins, N6-(?2-isopentenyl)-adenine (2-iP) at a concentration of 15?μM was most effective in inducing PLB whereby ~98 (97.8)?% of explants induced PLB with an average of 120 PLBs per shoot tip within 50?days of culture. Stereomicroscopic observation meticulously revealed the sequential changes from initiation to maturation of PLB gradually forming shoot apical meristem, shoot primordia and leaf primordia. Mature PLBs showed significant shoot proliferation (98.4?%) in media containing 10?μM 6-furfurylaminopurine forming 17 shoots per PLB within 30?days. The inclusion of activated charcoal (AC) in media containing auxin had promotive effect on rooting whereby 5?μM indole-3-butyric acid plus 500?μM AC resulted in highest number and length of roots. Successfully acclimatized plants, subjected to random amplified polymorphic DNA assessment for genetic fidelity, did not show any variation. Thus, this complete study has successfully outlined a rapid, high frequency direct induction of PLB of Anthurium from shoot tips inclusive of shoot proliferation, rooting and acclimatization.  相似文献   

12.
A protocol for in vitro propagation from pseudobulb sections of Lycaste armomatica (Graham ex Hook) Lindl., an ornamental and fragrant orchid, was developed. The effect of four cytokinins: kinetin (K), meta-topolin (mT), N 6-benzyladenine (BA), and thidiazuron (TDZ), in equimolar concentrations, was investigated. Shoot formation from apical and basal pseudobulb sections was obtained in all treatments. A few medial sections cultured in media supplemented with BA formed protocorm-like bodies. Shoot formation was greater from the basal section than the apical, and mainly occurred in explants cultured in media containing TDZ. The highest average numbers of shoots per explant were achieved from basal sections cultured in media supplemented with TDZ at 4.4, 8.87 and 2.2 μM, forming on average 9.9, 8.6 and 7.3 shoots per explant, respectively. Since the medial pseudobulb section was the worst explant for propagation of L. aromatica, we recommend that pseudobulbs be divided into two sections; the basal half should be cultured in MS medium supplemented with TDZ at 4.4 μM and the apical half with TDZ at 2.2 μM. Subculturing individual shoots in MS medium without plant growth regulators allows further development and rooting. A survival rate of more than 90% under greenhouse conditions was achieved. This research represents a direct contribution to the conservation and sustainable use of this valuable natural resource.  相似文献   

13.
Protocorm-like body (PLB) and subsequent shoot development in hybrid Cymbidium Twilight Moon ‘Day Light’ can be established in vitro via 3 pathways: PLBs, PLB thin cell layers (TCLs), or embryogenic callus (EC). Traditionally Cymbidium hybrids are mass-produced commercially through the neo-formation of secondary PLBs (2° PLB) from initial or primary PLBs (1° PLB) or PLB segments, or from PLB TCLs, resulting in a moderate number of 2° PLBs (average 4.46 2° PLBs/1° bisected PLB, or 1.12 2° PLBs/ PLB TCL). This study shows that EC can be induced from 1° PLBs or PLB TCLs. Thereafter, resulting 2° PLBs (average 22.1 2° PLBs/EC cluster derived from 1° PLB) form directly from the EC on the same medium or following the transfer of EC onto PGR-free medium. By flow cytometry and PCR-RAPD analysis, the cytogenetic stability of 1° PLBs, of resulting 2° PLBs and EC, and plants derived therefrom was demonstrated.  相似文献   

14.
Summary Tennessee coneflower [Echinacea tennesseensis (Beadle) Small] was regenerated from flower stalks, leaf sections from flowering plants, and hypocotyls and cotyledons from seedlings. Murashige and Skoog medium (MS) supplemented with naphthaleneacetic acid (NAA) at 0.54 μM and thidiazuron (TDZ) at 22.7 μM yielded the most shoots per leaf explant. NAA and 6-benzylaminopurine concentrations for optimal shoot regeneration from leaf, flower stalk, cotyledon and hypocotyl explants in MS media were 0.54 and 24.6μM, respectively. All explant types generated shoots; however, those derived from leaves and flower stalks produced the highest number of shoots per explant and highest percentage of explants with shoots. Explants cultured on media containing high levels of NAA (5.4–27 μM) formed calluses but no adventitious shoot. Leaf explants responded to a wider range of NAA concentrations than the other explant types but shoots generated from flower stalks grew the fastest. While all cytokinins tested increased the number of shoots per explant, the number of shoots in media containing TDZ was increased by nearly threefold. Regenerated shoots from all explant types cultured on MS medium supplemented with 0.25 μM indole-3-butyric acid initiated roots within 4 wk; NAA was not effective for root induction. All vernalized plantlets developed into plants that were morphologically identical to the source material.  相似文献   

15.

The induction and regeneration of protocorm-like bodies (PLBs) is a morphogenetic pathway widely used for orchid micropropagation. As endopolyploidy, i.e., the coexistence of cells with different ploidy levels, is a common feature in orchid tissues, a natural question arises when using somatic tissues as explants for orchid micropropagation: does endopolyploidy in explants affect the cytogenetic stability of regenerated plantlets? To answer this question, Epidendrum fulgens was used as a model plant, and flow cytometry was used to analyze endopolyploidy in pollinia, petals, labella, leaf bases, leaf tips, root tips, and protocorm bases and apices, which were subsequently used as explants for PLB induction and plant regeneration. Ploidy screenings showed contrasting ploidy patterns in samples, endopolyploidy being detected in all tissues, with C-values ranging from 1 to 16C. Protocorm bases and root tips presented the highest proportion of endopolyploidy, while petals and protocorm apices showed the lowest proportion. Flower parts exhibited high oxidation for PLB induction and pollinia failed to produce PLB or callus. The highest induction rate occurred at 10 µM TDZ, with 92%, 22%, and 0.92% for protocorm bases, leaves, and root tips, respectively. Plantlets were more easily regenerated from PLBs induced from protocorm bases than from leaves and roots. Doubled ploidy levels were registered in a proportion of 11% and 33% for PLB-regenerated plantlets obtained from protocorm bases and leaf bases, respectively, which was not directly associated with the proportion of endopolyploid cells or cycle value of explants.

  相似文献   

16.
以文心兰切花品种'南茜'无菌苗为材料,取其茎尖通过组织培养诱导形成原球茎和幼苗,观察并分析了原球茎各形态发生阶段的特征及其可溶性糖和蛋白质含量、抗氧化酶(POD、CAT和SOD)活性以及相关同功酶(POD、EST和SOD)的变化.结果显示:(1)文心兰原球茎形态发生可分为外植体期、外植体膨大期、愈伤组织期、原球茎形成期、原球茎成熟期、叶鞘伸展期、顶端腋芽发育期及幼苗期8个阶段.(2)可溶性糖和蛋白质含量均在叶鞘伸展期出现最大峰值;POD活性在外植体膨大期、CAT和SOD活性在愈伤组织期分别出现最大峰值.SOD同工酶的2条酶带在愈伤组织期到幼苗期交替出现;EST同工酶在原球茎形成期有2条特异酶带.研究表明,可溶性糖和蛋白质的含量以及POD、CAT、SOD活性的特异变化与文心兰茎尖脱分化及原球茎再分化的实现密切相关,不同类型的同工酶在原球茎同一发生阶段表现出较大差异,EST同工酶的2条特异酶带可作为原球茎形成的标志.  相似文献   

17.
Two efficient morphogenetic pathways for micropropagation of Bletilla striata (Thunb.) Reichb. f. have been established through the callus-mediated and direct formation of protocorm-like bodies (PLBs) from protocorms and shoot tips. Green calli were induced from the basal surface of protocorms and the cut-end of shoot tips on Vacin and Went (VW) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or α-naphthalene acetic acid (NAA) after 3–5 weeks, with the highest frequency of explants forming callus (48.0 %) from protocorms at 1.0 mg l?1 2,4-D. The calli obtained from all plant growth regulator (PGR) treatments could proliferate and differentiate PLBs on the PGR-free medium. NAA and 2,4-D significantly enhanced the growth of callus. The fastest growth rate of callus was achieved at the combination of 1.0 mg l?1 2,4-D and 1.0 mg l?1 TDZ with 46.2-fold within 3 months. The regeneration of PLBs from callus was significantly improved by 6-benzyladenine (BA), and a mean number of 48.4 PLBs was produced from 100 mg calli at 1.0 mg l?1 BA within 3 months. BA and thidiazuron (TDZ) promoted the direct formation of PLBs from explants. The highest frequency of direct PLBs formation (76.0 %) and the highest mean number of PLBs per explant (30.2) were observed in protocorms cultured with 0.5 mg l?1 BA. Assessment of clonal fidelity by inter-simple sequence repeat (ISSR) markers revealed similarity ranges of 99.8–100.0 % between the regenerants and their mother plants and 99.5–100.0 % among the regenerants, which suggested the micropropagation protocols were genetically stable.  相似文献   

18.
Protocorm-like bodies (PLBs) formed on leaf segmentsin vitro were used as explants for bioreactor cultures. Continuous immersion cultures (air lift column and air lift-balloon bioreactor), and temporary immersion cultures (with or without charcoal filter attached) were used for the culture of PLB sections. A temporary immersion culture with charcoal filter attached was most suitable for PLB culture. About 18,000 PLBs were harvested from 20 g of inoculum (∼1000 PLB sections) in 2 l Hyponex medium after 8 weeks of incubation. Aeration in a bioreactor at 0.5 or 2.0 volume of air per volume of medium min−1 (vvm) yielded similar levels of biomass production. PLBs grown in bioreactors were cultured on solid Murashige and Skoog, Vacin and Went, Knudson C, Lindemann and Hyponex media. Hyponex medium was found to be suitable for conversion of PLBs into plantlets and 83% of PLBs transformed into plantlets on this medium. The feasibility of using PLBs for large-scale micropropagation was evaluated for scaled-up liquid cultures in bioreactors, rate of proliferation, and regeneration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
A thin section culture system for rapid regeneration of the monopodial orchid hybrid Aranda Deborah has been developed. Thin sections (0.6–0.7mm thick) obtained by transverse sectioning of a single shoot tip (6–7mm), when cultured in Vacin and Went medium enriched with coconut water (20% v/v), produced an average 13.6 protocorm-like bodies (PLB) after 45 days, compared to 2.7 PLB formed by a single 6–7 mm long shoot tip under same culture condition. Addition of -naphthaleneacetic acid to Vacin and Went medium enriched with coconut water further increased PLB production by thin sections. PLB developed into plantlets on solid Vacin and Went medium containing 10% (v/v) coconut water and 0.5 g l–1 activated charcoal. With this procedure, more than 80,000 plantlets could be produced from thin sections obtained from a single shoot tip in a year as compared to nearly 11,000 plantlets produced by the conventional shoot tip method.Abbreviations BA 6-benzyladenine - CD callus development - CW coconut water - KC Knudson C medium - MS Murashige and Skoog medium - NAA -naphthaleneacetic acid - PLB protocorm-like body - TS thin section - VW Vacin and Went medium  相似文献   

20.
Paphiopedilum orchids are among the world’s most popular orchid due to their impressively beautiful flowers. Propagation of these orchid genera has been hampered by the naturally slow growth rate of the plant, which renders it very difficult to be propagated through conventional methods. In vitro culture techniques have provided a useful alternative technology for propagating this recalcitrant species. In this study, the propagation of P. rothschildianum was achieved through the in vitro formation of secondary protocorm-like bodies (PLBs) from the primary PLB that developed from stem-derived callus. The PLBs were cultured on half-strength MS medium supplemented with different concentrations (1.0, 2.0, 3.0, and 4.0 μM) of 6-benzyladenine (BA) and kinetin for the induction of secondary PLBs. The highest number of secondary PLBs formed was obtained on half-strength MS medium supplemented with 4.0 μM kinetin, with an average of 4.1 PLBs per explant after 8 weeks of culture. The secondary PLBs continued to proliferate further and formed 9.5–12.1 new PLBs per secondary PLB after being subcultured onto half-strength plant growth regulator-free MS medium supplemented with 60 g/L banana homogenate (BH). These tertiary PLBs were subcultured onto media containing different organic additives, such as BH, coconut water, potato homogenate, and tomato homogenate, for plantlet regeneration. Among the organic additives tested, the addition of 20% CW to half-strength MS medium resulted in the best average plantlet regeneration percentage from the PLBs, 67.9%, after 8 weeks of culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号