首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gut flora analysis is hampered by the complexity of the intestinal microbiota and by inherent limitations of culture-based approaches. Therefore, culture-independent molecular methods based upon 16S rRNA gene analysis were applied successfully for the analysis of complex microbial communities. However, generally accepted and validated profiling methods such as denaturing and temperature gradient gel electrophoresis (DGGE/TGGE) are still laborious and time consuming. Thus, we adapted the separation of amplified bacterial 16S rRNA gene fragments by denaturing high performance liquid chromatography (DHPLC) using the WAVE Microbial Analysis System as a rapid and convenient means to display complex intestinal bacterial communities and to monitor changes in the gut flora. The separation of 16S rRNA gene fragments amplified from reference strains representing main gut bacterial populations and from human stool samples revealed that DHPLC analysis effectively detects bacterial groups predominant in the human gut flora. The investigation of faecal samples from hospitalized patients before, during and after antibiotic therapy showed that PCR-based DHPLC can be used to monitor gut flora changes. Results from DHPLC analysis were comparable with DGGE profiles generated from the same samples, demonstrating that the adapted DHPLC protocol is well suited for the analysis of complex microbial communities.  相似文献   

2.
The aim of this study was to evaluate the use of denaturing high-performance liquid chromatography (DHPLC) to characterize cystic fibrosis (CF) airway microbiota including both bacteria and fungi. DHPLC conditions were first optimized using a mixture of V6, V7 and V8 region 16S rRNA gene PCR amplicons from 18 bacterial species commonly found in CF patients. Then, the microbial diversity of 4 sputum samples from 4 CF patients was analyzed using cultural methods, cloning/sequencing (for bacteria only) and DHPLC peak fraction collection/sequencing. DHPLC analysis allowed identifying more bacterial and fungal species than the classical culture methods, including well-recognized pathogens such as Pseudomonas aeruginosa. Even if a lower number of bacterial Operational Taxonomic Units (OTUs) was identified by DHPLC, it allowed to find OTUs unidentified by cloning/sequencing. The combination of both techniques permitted to correlate the majority of DHPLC peaks to defined OTUs. Finally, although Aspergillus fumigatus detection using DHPLC can still be improved, this technique clearly allowed to identify a higher number of fungal species versus classical culture-based methods. To conclude, DHPLC provided meaningful additional data concerning pathogenic bacteria and fungi as well as fastidious microorganisms present within the CF respiratory tract. DHPLC can be considered as a complementary technique to culture-dependent analyses in routine microbiological laboratories.  相似文献   

3.
We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.  相似文献   

4.
The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by β-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting.  相似文献   

5.
High-throughput quantification of genetically coherent units (GCUs) is essential for deciphering population dynamics and species interactions within a community of microbes. Current techniques for microbial community analyses are, however, not suitable for this kind of high-throughput application. Here, we demonstrate the use of multivariate statistical analysis of complex DNA sequence electropherograms for the effective and accurate estimation of relative genotype abundance in cell samples from mixed microbial populations. The procedure is no more labor-intensive than standard automated DNA sequencing and provides a very effective means of quantitative data acquisition from experimental microbial communities. We present results with the Campylobacter jejuni strain-specific marker gene gltA, as well as the 16S rRNA gene, which is a universal marker across bacterial assemblages. The statistical models computed for these genes are applied to genetic data from two different experimental settings, namely, a chicken infection model and a multispecies anaerobic fermentation model, demonstrating collection of time series data from model bacterial communities. The method presented here is, however, applicable to any experimental scenario where the interest is quantification of GCUs in genetically heterogeneous DNA samples.  相似文献   

6.
The role of disturbance in structuring natural microbial communities has been largely unexplored. Disturbance associated with invertebrate ingestion can reduce bacterial biomass and alter metabolic activities and compositions of bacterial assemblages in marine sediments. The primary objectives of the research presented here were to test whether ingestion by a taxonomically diverse group of deposit feeders constituted a disturbance, and to determine the mechanisms by which bacterial assemblages recover following deposit-feeder ingestion. To test the question of disturbance, we compared fresh egesta vs surficial sediments with respect to bacterial assemblage structure. In emersed intertidal sediments, microbial recovery could be due to regrowth of bacterial populations surviving gut passage or to immigration from adjacent sediments. To differentiate between these modes of recolonization we used field manipulative experiments to exclude migration by isolating freshly extruded fecal coils of three deposit-feeding species from surrounding sediments. We then followed the quantitative and qualitative recovery in egesta and sediments through time using epifluorescence microscopy and PCR-DGGE analysis of 16S rDNA. Our findings indicate that (1) the degree and nature of the disturbance to bacterial assemblages from deposit feeding varies among invertebrate taxa, (2) recovery was significant but incomplete over 3 h, and (3) recolonization of biotically disturbed sediments is dominated by immigration.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

7.
Glaciers represent important biomes of Earth and are recognized as key species pools for downstream aquatic environments. Worldwide, rapidly receding glaciers are driving shifts in hydrology, species distributions and threatening microbial diversity in glacier-fed aquatic ecosystems. However, the impact of glacier surface snow-originating taxa on the microbial diversity in downstream aquatic environments has been little explored. To elucidate the contribution of glacier surface snow-originating taxa to bacterial diversity in downstream aquatic environments, we collected samples from glacier surface snows, downstream streams and lakes along three glacier-fed hydrologic continuums on the Tibetan Plateau. Our results showed that glacier stream acts as recipients and vectors of bacteria originating from the glacier environments. The contributions of glacier surface snow-originating taxa to downstream bacterial communities decrease from the streams to lakes, which was consistently observed in three geographically separated glacier-fed ecosystems. Our results also revealed that some rare snow-originating bacteria can thrive along the hydrologic continuums and become dominant in downstream habitats. Finally, our results indicated that the dispersal patterns of bacterial communities are largely determined by mass effects and increasingly subjected to local sorting of species along the glacier-fed hydrologic continuums. Collectively, this study provides insights into the fate of bacterial assemblages in glacier surface snow following snow melt and how bacterial communities in aquatic environments are affected by the influx of glacier snow-originating bacteria.  相似文献   

8.
AIM: As a prelude to long-term studies to characterize the microbiota of the turkey ceca, 14 DNA isolation protocols were evaluated for their ability to reproducibly characterize microbial diversity. METHODS AND RESULTS: Eight commercially available DNA extraction kits were assessed. DNA quantity and quality were assessed and competitive PCR was used to quantify the 16S bacterial rRNA genes. The Invitrogen Easy-DNA Kit extraction method for large samples yielded over eight times more DNA than any other method (3144 +/- 873 microg g(-1) of sample, P < 0.05). Bacterial and fungal species richness was estimated by Automated Ribosomal Intergenic Spacer Analysis. The Invitrogen Easy-DNA Kit generated the greatest bacterial species richness (46 +/- 7 peaks) while Bio-Rad Aquapure yielded the highest fungal species richness (71 +/- 9.5 peaks). CONCLUSION: Cluster analysis indicated different DNA extraction methods generated different microbial community compositions using the same cecal matrix from a single donor bird. SIGNIFICANCE AND IMPACT OF THE STUDY: Optimized DNA extraction protocols Invitrogen Easy-DNA Kit extraction method for large samples and Bio-Rad Aquapure outperform other methods for extraction of DNA from poultry fecal samples, although these methods do not necessarily recover all available DNA. They will be used in future studies to monitor the dynamics of microbial communities of the avian ceca.  相似文献   

9.
Soil microbial communities are believed to be comprised of thousands of different bacterial species. One prevailing idea is that "everything is everywhere, and the environment selects," implying that all types of bacteria are present in all environments where their growth requirements are met. We tested this hypothesis using actinomycete communities and type II polyketide synthase (PKS) genes found in soils collected from New Jersey and Uzbekistan (n = 91). Terminal restriction fragment length polymorphism analysis using actinomycete 16S rRNA and type II PKS genes was employed to determine community profiles. The terminal fragment frequencies in soil samples had a lognormal distribution, indicating that the majority of actinomycete phylotypes and PKS pathways are present infrequently in the environment. Less than 1% of peaks were detected in more than 50% of samples, and as many as 18% of the fragments were unique and detected in only one sample. Actinomycete 16S rRNA fingerprints clustered by country of origin, indicating that unique populations are present in North America and Central Asia. Sequence analysis of type II PKS gene fragments cloned from Uzbek soil revealed 35 novel sequence clades whose levels of identity to genes in the GenBank database ranged from 68 to 92%. The data indicate that actinomycetes are patchily distributed but that distinct populations are present in North American and Central Asia. These results have implications for microbial bioprospecting and indicate that the cosmopolitan actinomycete species and PKS pathways may account for only a small proportion of the total diversity in soil.  相似文献   

10.
Abstract Horizontal gene transfer among microbial populations has been assumed to occur in the environment, yet direct observations of this phenomenon are rare or limited to observations where the mechanism(s) could not be explicitly determined. Here we demonstrate the transfer of exogenous plasmid DNA to members of indigenous marine bacterial populations by natural transformation, the first report of this process for any natural microbial community. Ten percent of marine bacterial isolates examined were transformed by plasmid DNA while 14% were transformed by chromosomal DNA. Transformation of mixed marine microbial assemblages was observed in 5 of 14 experiments. In every case, acquisition of the plasmid by members of the indigenous flora was accompanied by modification (probably from genetic rearrangement or methylation) that altered its restriction enzyme digestion pattern. Estimation of transformation rates in estuarine environments based upon the distribution of competency and transformation frequencies in isolates and mixed populations ranged from 5 × 10−4 to 1.5 transformants/1 day. Extrapolation of these rates to ecosystem scales suggests that natural transformation may be an important mechanism for plasmid transfer among marine bacterial communities.  相似文献   

11.
Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.  相似文献   

12.
Microbial succession during a laboratory-scale composting process of garbage was analysed by denaturing gradient gel electrophoresis (DGGE) combined with measurement of physicochemical parameters such as temperature, pH, organic acids, total dissolved organic carbon and water-soluble humic substance. From the temperature changes, a rapid increase from 25 to 58 degrees C and then a gradual decrease, four phases were recognized in the process as follows; mesophilic (S), thermophilic (T), cooling (C) and maturing (M). The polymerase chain reaction-amplified 16S rDNA fragments with universal (907R) and eubacterial (341F with GC clamp) primers were subjected to DGGE analysis. Consequently, the DGGE band pattern changed during the composting process. The direct sequences from DGGE bands were related to those of known genera in the DNA database. The microbial succession determined by DGGE was summarized as follows: in the S phase some fermenting bacteria, such as lactobacillus, were present with the existing organic acids; in the T phase thermophilic bacillus appeared and, after the C phase, bacterial populations were more complex than in previous phases and the phylogenetic positions of those populations were relatively distant from strains so far in the DNA database. Thus, the DGGE method is useful to reveal microbial succession during a composting process.  相似文献   

13.
All studies of the microbial community of the gastrointestinal tract of salmon to date have employed culture-based approaches, typically on pond- or tank-raised, freshwater animals. We present a phylogenetic survey of the bacterial populations present in the distal intestine of salmon from three different marine locations in Europe. This was accomplished through PCR amplification, cloning, and sequencing of partial 16S rDNA genes from microbial community DNA isolated from the contents of the GI tract distal to the pyloric ceca. Using this approach, the intestinal microbial communities of wild salmon from Scotland and pen-raised salmon from Scotland and Norway were compared. The predominating bacterial populations detected were Acinetobacter junii and a novel Mycoplasma phylotype. This Mycoplasma phylotype apparently comprised ~96% of the total microbes in the distal intestine of wild salmon. Substantial differences in intestinal microbial community composition and diversity were observed between the two groups of pen-raised salmon, which, in addition to geographical separation, were raised on different feeds. The microbial profiles found in this study were substantially different from those indicated in earlier culture-based studies for several species of fish, presumably because of the culture-independent techniques employed. Further, analysis of short-chain fatty acids in the digestive tract indicated that the decreasing redox gradient from proximal to distal reaches common to homeothermic animals was absent in salmon, and that the bacterial fermentation levels were much lower than are reported in homeothermic animals.  相似文献   

14.
Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems.  相似文献   

15.
We prepared DNA from the production waters of oil deposits and wellheads of the high- and hypertemperature Japanese oil wells #AR39 (depth, 1230 m; temperature, 74 °C; pressure, 2.92 MPa) and #SR123 (depth, 1687 m; temperature, 98 °C; pressure, 11.3 MPa) to detect indigenous bacterial and archaeal microorganisms. We used PCR to amplify the 16S rRNA genes of microbial communities and characterized them based on their sequences. A few species of microorganisms with high GC contents were detected in samples from oil deposits, whereas the microbial constituents and their GC contents were diverse in wellhead samples. A comparison of the composition of the microbial communities found that the predominant indigenous populations in the #SR123 oil deposit were Thermotoga hypogea-, Thermotoga petrophila- and Thermodesulfobacterium commune-like bacteria with a 61-63% GC content in their 16S rRNA gene sequences, and Archaeoglobus fulgidus-like archaea with a 65% GC content, whereas the major population in #AR39 comprised Thermacetogenium phaeum- and Fervidobacterium pennavorans-like bacteria and Methanothermobacter thermautotrophicus-like archaea with a 60%, 60% and 61% GC content, respectively.  相似文献   

16.
17.
We describe a rapid, reproducible, and sensitive method for detection and quantification of archaea in naturally occurring microbial communities. A domain-specific PCR primer set and a domain-specific fluorogenic probe having strong and weak selectivity, respectively, for archaeal rRNA genes (rDNAs) were designed. A universal PCR primer set and a universal fluorogenic probe for both bacterial and archaeal rDNAs were also designed. Using these primers and probes, we demonstrated that detection and quantification of archaeal rDNAs in controlled microbial rDNA assemblages can be successfully achieved. The system which we designed was also able to detect and quantify archaeal rDNAs in DNA samples obtained not only from environments in which thermophilic archaea are abundant but also from environments in which methanogenic archaea are abundant. Our findings indicate that this method is applicable to culture-independent molecular analysis of microbial communities in various environments.  相似文献   

18.
Effectively and accurately assessing total microbial community diversity is one of the primary challenges in modern microbial ecology. This is particularly true with regard to the detection and characterization of unculturable populations and those present only in low abundance. We report a novel strategy, GC fractionation combined with denaturing gradient gel electrophoresis (GC-DGGE), which combines mechanistically different community analysis approaches to enhance assessment of microbial community diversity and detection of minority populations of microbes. This approach employs GC fractionation as an initial step to reduce the complexity of the community in each fraction. This reduced complexity facilitates subsequent detection of diversity in individual fractions. DGGE analysis of individual fractions revealed bands that were undetected or only poorly represented when total bacterial community DNA was analyzed. Also, directed cloning and sequencing of individual bands from DGGE lanes corresponding to individual G+C fractions allowed detection of numerous phylotypes that were not recovered using a traditional random cloning and sequencing approach.  相似文献   

19.
Effectively and accurately assessing total microbial community diversity is one of the primary challenges in modern microbial ecology. This is particularly true with regard to the detection and characterization of unculturable populations and those present only in low abundance. We report a novel strategy, GC fractionation combined with denaturing gradient gel electrophoresis (GC-DGGE), which combines mechanistically different community analysis approaches to enhance assessment of microbial community diversity and detection of minority populations of microbes. This approach employs GC fractionation as an initial step to reduce the complexity of the community in each fraction. This reduced complexity facilitates subsequent detection of diversity in individual fractions. DGGE analysis of individual fractions revealed bands that were undetected or only poorly represented when total bacterial community DNA was analyzed. Also, directed cloning and sequencing of individual bands from DGGE lanes corresponding to individual G+C fractions allowed detection of numerous phylotypes that were not recovered using a traditional random cloning and sequencing approach.  相似文献   

20.
Denaturing HPLC for identifying bacteria   总被引:37,自引:0,他引:37  
Hurtle W  Shoemaker D  Henchal E  Norwood D 《BioTechniques》2002,33(2):386-8, 390-1
Denaturing HPLC (DHPLC) is used in a wide variety of genetic applications. Here we introduce a new application for this technique, the identification of bacteria. We combined the capability of DHPLC to detect sequence variation with the principles of rRNA genotyping analysis to develop a high-throughput method of identifying microorganisms. Thirty-nine bacterial species from a broad spectrum of genera were tested to determine if DHPLC could be usedfor identification. Most (36 of 39) species of bacteria had a unique peak profile that could be used as a molecular fingerprint. Furthermore, a blind panel of 65 different bacterial isolates was analyzed to demonstrate the diagnostic capability of this method to specifically identify Yersinia pestis and Bacillus anthracis. All the Y. pestis samples (10 of 10) and the majority of B. anthracis samples (12 of 14) were correctly identified. The procedure had an overall specificity of 100%, overall sensitivity of 91.7%, and a predictive value of 96.9%. The data suggest that DHPLC of products spanning regions of genetic variability will be a useful application for bacterial identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号