首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The organization of the 5S rRNA genes in the MACronuclear genome of Tetrahymena thermophila was examined during MAC development and replication. The 5S genes are arranged in several tandem arrays of alternating transcribed and spacer sequences in both MICronucleus and MAC. The number of EcoRI fragments bearing 5S gene clusters is similar in MIC and MAC. Most fragments occur in both the MIC and newly formed MAC genomes, a few being MIC-limited and a few MAC-limited. The same rearrangements are seen in the MACs of all four caryonides of a mating pair, and most rearrangements are seen in the newly formed MACs of different inbred strains. During replication of the MAC about half the fragments bearing 5S gene clusters disappear in different cell lines, and new fragments containing 5S genes appear. These fragments differ in size from those present in the MIC or newly formed MAC. These alterations occur in the MACs of all strains except strain B, which is more resistant to vegetative rearrangement. The losses and gains of fragments occur during clonal propagation of cell lines. The process begins by 35 fissions following conjugation, but once an alteration occurs, it is stably propagated. Clonal variation occurs with respect to which losses and gains occur, although a nonrandom distribution is seen among cell clones. We conclude that the alterations in MAC fragment size occur at two stages in the life cycle of Tetrahymena. The first stage occurs during conjugation, when the MAC develops from the MIC. The second stage becomes manifest during vegetative growth, when DNA replication occurs in the MAC and daughter molecules are distributed “amitotically” to daughter nuclei. The two-stage character to MAC alterations for the 5S genes is interpreted in terms of the two steps previously described for MAC differentiation: determination and phenotypic assortment. Possible molecular mechanisms are also discussed.  相似文献   

2.
DNA is eliminated during development of the somatic MACronucleus from the germinal MICronucleus in the ciliated protozoan, Tetrahymena thermophila. Facultatively persistent sequences are a class of sequences that persist in the MAC DNA of some cell lines but are eliminated from the MAC DNA of other cell lines. One cloned MAC fragment contains a persistent sequence as well as sequences normally retained in the MAC. When this cloned fragment was used to construct MAC restriction maps of this region in cell lines whose MAC DNAs do, or do not, contain the persistent sequence, extensive variation in the map flanking this region was observed. The different DNA rearrangements of this MIC segment are epigenetically determined during or soon after MAC development. Moreover, different rearrangements may occur among the 45 copies of this MIC segment as a MAC is formed, resulting in polymorphisms that are later resolved by phenotypic assortment.  相似文献   

3.
During conjugation in the ciliated protozoan, Tetrahymena thermophila, a somatic MAC-ronucleus develops from the germinal MICronucleus. Ten to 20 percent of the MIC genome is eliminated during this process. Three repetitive families have been identified which have different levels of repetition in the MIC and are eliminated to different degrees in the MAC. Some members of two of these families persist in the MAC. In this study, we have looked at these persistent sequences in the MAC of cell lines from a variety of sources including several inbed strains, two sets of caryonides, caryonidal subclones, and vegetatively aged cell clones. The results suggest that the sequences that remain in the MAC have a genetic predisposition to persist. However, epigenetic variations occur as the MAC develops so that only some of the persistent sequences are actually observed in a particular MAC. Polymorphisms may be generated if alternative processing of a single MIC segment occurs. These polymorphisms can later be resolved by phenotypic assortment during vegetative growth. These facultatively persistent sequences appear to differ from sequences previously described in this organism.  相似文献   

4.
We have investigated the occurrence of methylated adenine residues in the macronuclear ribosomal RNA genes of Tetrahymena thermophila. It has been shown previously that macronuclear DNA, including the palindromic ribosomal RNA genes (rDNA), of Tetrahymena thermophila contains the modified base N-6-methyladenine, but no 5-methylcytosine. Purified rDNA was digested with restriction enzymes Sau 3AI, MboI and DpnI to map the positions and levels of N-6-methyladenine in the sequence 5' GATC 3'. A specific pattern of doubly methylated GATC sequences was found; hemimethylated sites were not detected. The patterns and levels of methylation of these sites did not change significantly in different physiological states. A molecular form of the rDNA found in the newly developing macronucleus and for several generations following the sexual process, conjugation, contained no detectably methylated GATC sites. However, both the bulk macronuclear DNA and palindromic rDNA from the same macronuclei were methylated. Possible roles for N-6-methyladenine in macronuclear DNA are discussed in light of these findings.  相似文献   

5.
M C Yao  C H Yao 《Nucleic acids research》1994,22(25):5702-5708
Extensive programmed DNA deletion occurs in ciliates during development. In this study we examine the excised forms of two previously characterized deletion elements, the R- and M-element, in Tetrahymena. Using divergently oriented primers in polymerase chain reactions we have detected the junctions formed by joining the two ends of these elements, providing evidence for the presence of circular excised forms. These circular forms were detected in developing macronuclear DNA from 12-24 h after mating began, but not in micronuclear or whole cell DNA of vegetative cells. They are present at very low abundance, detectable after PCR only through hybridization with specific probes. Sequence analysis shows that the circle junctions occur at or very near the known ends of the elements. There is sequence microheterogeneity in these junctions, which does not support a simple reciprocal exchange model for DNA deletion. A model involving staggered cuts and variable mismatch repair is proposed to explain these results. This model also explains the sequence microheterogeneity previously detected among the junction sequences retained in the macronuclear chromosome.  相似文献   

6.
Endo M  Sugai T 《Zoological science》2011,28(7):482-490
The macronucleus of the ciliate Tetrahymena cell contains euchromatin and numerous heterochromatins called chromatin bodies. During cell division, a chromatin aggregate larger than chromatin body appears in the macronucleus. We observed chromatin aggregates in the dividing macronucleus in a living T. thermophila cell, and found that these were globular in morphology and homogeneous in size. To observe globular chromatin clearly, optimal conditions for making it compact were studied. Addition of Mg ion, benomyl and oryzalin, microtubule inhibitors, to cell suspension was effective. Globular chromatin appeared when the micronuclear anaphase began at the cell cortex, and disappeared long after cell separation. Using living cells with a small macronucleus at early log phase, we counted the number of globular chromatin per nucleus and measured the DNA content of globular chromatin in the macronucleus which was stained with Hoechst 33342 by using ImageJ. The number of globular chromatin per nucleus was reduced by half after division, indicating the globular chromatin is a distribution unit of DNA. A globular chromatin contained similar DNA content as that of the macronuclear genome. We developed methods for inducing and isolating a cell with an extremely small macronucleus with a DNA amount of one globular chromatin. These cells grew, divided, and give clones, suggesting that the macronuclear genome is not dispersed within the macronucleus and the globular chromatin may be a macronuclear genome. We named this globular chromatin "macronuclear genome unit" (MGU).  相似文献   

7.
DNA methylation occurs at the adenines in the somatic macronucleus of Tetrahymena thermophila. We report on a methylation site within a DNA segment showing facultative persistence in the macronucleus. When the site is present, methylation occurs on both strands, although only 50% of the DNA molecules are methylated.  相似文献   

8.
Liang H  Xu J  Zhao D  Tian H  Yang X  Liang A  Wang W 《The FEBS journal》2012,279(14):2520-2533
Amitosis, a direct method of cell division is common in ciliated protozoan, fungi and some animal and plant cells. During amitosis, intranuclear microtubules are reorganized into specified arrays which assist in separation of nucleus, despite lack of a bipolar spindle. However, the regulation of amitosis is not understood. Here, we focused on the localization and role of mitotic spindle assembly regulator: Ran GTPase (Ran1) in macronuclear amitosis in binucleated protozoan Tetrahymena thermophila. HA-tagged Ran1 was localized in the macronucleus throughout the cell cycle of Tetrahymena during vegetative growth, and the accessory factor binding domains of Ran1 contributed to its macronuclear localization. Incomplete somatic knockout of RAN1 resulted in aberrant intramacronuclear microtubule array formation, missegregation of macronuclear chromosomes and ultimately blocked macronuclei proliferation. When the Ran1 cycle was perturbed by overexpression of Ran1T25N (GDP-bound Ran1-mimetic) or Ran1Q70L (GTP-bound Ran1-mimetic), intramacronuclear microtubule assembly was inhibited or multi-micronucleate cells formed. These results suggest that Ran GTPase pathway is involved in assembly of a specialized intramacronuclear microtubule network and coordinates amitotic progression in Tetrahymena.  相似文献   

9.
In exponentially growing Tretrahymena thermophila the DNA content of the following structures was determined by cytophotometry: macronuclei of sister cells immediately after division; micronuclei; extranuclear chromatin in dividing cells and postdividers. Further, the development of macro-nuclear DNA amount in successive cell generations was determined. It was found that chromatin elimination is a frequent process reducing DNA content by about 4% per fission. This chromatin disappears within 20 min after division. The quantity of DNA extruded is highly variable and is different from the micronuclear DNA amount or multiples of it. The frequency of generations with two replication rounds as well as those without replication is estimated to be in the range of 2% each. These findings together with the qualitative difference between micro- and macronuclear DNAs suggest that the macronucleus of Tetrahymena is not entirely composed of complete genomes and that parts of the genetic material must be treated specifically for different sequences either during extrusion or during replication.  相似文献   

10.
During macronuclear development in the ciliate Tetrahymena thermophila, extensive rearrangement events occur as DNA deletions. We have studied a developmentally programmed deletion called mse2.9 that occurs within an intron in a gene in both genomic DNA and in an rDNA vector introduced into the cell by transformation. Extensive microheterogeneity at the deletion junctions has been found in caryonidal strains and in the rDNA in transformed cells. A transformation assay has been used to identify sequences required for proper processing of mse2.9. Models to explain deletion site selection as well as microheterogeneity at junction sites are presented.  相似文献   

11.
Macronuclear DNA molecules of Tetrahymena thermophila.   总被引:7,自引:2,他引:5       下载免费PDF全文
The physical organization of the DNA in the macronuclei of Tetrahymena thermophila was investigated by using alternating-orthogonal-field gel electrophoresis. The genome consisted of a spectrum of molecules with lengths ranging from less than 100 to in excess of 1,500 kilobase pairs. There were about 270 different macronuclear DNA molecules, with an average size of about 800 kilobase pairs. Specific genes were mapped and were generally found on macronuclear DNA molecules of the same size in different strains of T. thermophila. This indicates that the molecular mechanisms giving rise to the macronuclear DNA molecules were precise. The fragmentation process that gave rise to macronuclear DNA molecules occurred between 11 and 19 h after the initiation of conjugation.  相似文献   

12.
Tlr elements are a novel family of ~30 putative mobile genetic elements that are confined to the germ line micronuclear genome in Tetrahymena thermophila. Thousands of diverse germ line-limited sequences, including the Tlr elements, are specifically eliminated from the differentiating somatic macronucleus. Macronucleus-retained sequences flanking deleted regions are known to contain cis-acting signals that delineate elimination boundaries. It is unclear whether sequences within deleted DNA also play a regulatory role in the elimination process. In the current study, an in vivo DNA rearrangement assay was used to identify internal sequences required in cis for the elimination of Tlr elements. Multiple, nonoverlapping regions from the ~23-kb Tlr elements were independently sufficient to stimulate developmentally regulated DNA elimination when placed within the context of flanking sequences from the most thoroughly characterized family member, Tlr1. Replacement of element DNA with macronuclear or foreign DNA abolished elimination activity. Thus, diverse sequences dispersed throughout Tlr DNA contain cis-acting signals that target these elements for programmed elimination. Surprisingly, Tlr DNA was also efficiently deleted when Tlr1 flanking sequences were replaced with DNA from a region of the genome that is not normally associated with rearrangement, suggesting that specific flanking sequences are not required for the elimination of Tlr element DNA.  相似文献   

13.
We have investigated the timing of DNA synthesis, methylation and degradation during macronuclear development in the ciliate, Tetrahymena thermophila. DNA synthesis was first detected in the anlagen early in macronuclear development, but the majority of DNA synthesis occurred later, after pair separation. Anlagen DNA was first detectably methylated at GATC sites 3-5 hours after its synthesis. Once initiated, de novo methylation was rapid and complete, occurring between 13.5 and 15 hours of conjugation. The level of methylation of GATC sites was constant throughout the remainder of conjugation, and was similar to that in mock-conjugated cells. Degradation of DNA in the old macronucleus and DNA synthesis in the anlagen began at about the same time. Upon pair separation, less than 20% of old macronuclear DNA remained. A small percentage of nucleotides prelabeled prior to conjugation were recycled in the developing anlagen.  相似文献   

14.
15.
Previous studies have indicated that certain sequences in the micronuclear genome are absent from the somatic macronucleus of Tetrahymena (Yao and Gorovsky, 1974; Yao and Gall, 1979; Yao, submitted). The present study used in situ hybridization to follow the elimination process during the formation of the new macronucleus. Micronuclear-specific DNA cloned in recombinant plasmids was labelled with 3H and hybridized to cytological preparations of T. thermophila at various stages of conjugation. Despite a smaller size and lower DNA content, the micronucleus has more hybridization than the mature macronucleus. Hybridization initially increased in the anlage (newly developing macronucleus) to reach a maximal level right after the old macronuclei had disappeared. The hybridization in the anlage then decreased to a significant extent prior to the first cell division. The results suggest that the micronuclear-specific sequence is first replicated a few rounds before it is eliminated from the anlage, and the elimination process occurs without nuclear division.  相似文献   

16.
The macronuclear rRNA genes (rDNA) in the ciliate Tetrahymena thermophila are normally palindromic linear replicons, containing two copies of the replication origin region in inverted orientation. A circular plasmid containing a single Tetrahymena rRNA gene (one half palindrome) joined to a tandem repeat of a 1.9-kilobase (kb) rDNA segment encompassing the rDNA replication origin and known replication control elements was used to transform Tetrahymena macronuclei by microinjection. This plasmid was shown previously to have a replication advantage over the rDNA allele of the recipient cell strain (G.-L. Yu and E. H. Blackburn, Proc. Natl. Acad. Sci. USA 86:8487-8491, 1990). During vegetative cell divisions, the circular and palindromic rDNAs were rapidly replaced by novel, successively longer linear rDNAs that eventually contained up to 30 tandem 1.9-kb repeats, resulting from homologous but unequal crossovers between the 1.9-kb repeats. We present evidence to show that increasing the number of copies of the replication control regions increases the replicative advantage of the rDNA, the first such situation for a cellular nuclear replicon in a eucaryote.  相似文献   

17.
The development of the macronucleus from the zygotic micronucleus in the ciliated protozoan Tetrahymena spp. involves the elimination of specific DNA sequences (M. C. Yao and M. Gorovsky, Chromosoma 48:1-18 1974). The present study demonstrates that micronucleus-specific DNA is present on all five of the micronuclear chromosomes. Fragments of micronuclear DNA from Tetrahymena thermophila were cloned in the plasmid vector pBR322. A procedure was developed to examine the organization of the cloned sequences in micro- and macronuclear DNA without nick translating each individual probe. Twenty-three percent of randomly selected DNA sequences examined by this method were micronucleus (germ line) specific. They were all members of families of repeated sequences. Hybridization of six micronucleus-specific DNA sequences to micronuclear DNA from nullisomic strains of T. thermophila, which are lacking one or more pairs of chromosomes in the micronucleus, suggested that these sequences are present on several chromosomes. One micronucleus-specific sequence was shown by in situ hybridization to be present on all five of the micronuclear chromosomes.  相似文献   

18.
19.
ABSTRACT. A large number of developmentally regulated DNA rearrangements occur during the development of the macronucleus in Tetrahymena thermophila , Tlr1 is a deletion element which has large inverted repeats near the rearrangement junctions and deletes more than 13 kbp of internal DNA. Previous analysis of caryonidal lines revealed alternate left junctions for the Tlr1 rearrangement in B strain cells. We show here that C2 strain Tetrahymena also use alternate rearrangement junctions. We have mapped and sequenced two additional rearrangement variants and find that both the left and right can vary over a range of approximately 200 bp. We also demonstrate the presence of sequence microheterogeneity in the most commonly found Tlr1 rearrangement product.  相似文献   

20.
Extensive programmed DNA rearrangements occur during the development of the somatic macronucleus from the germ line micronucleus in the sexual cycle of the ciliated protozoan Tetrahymena thermophila. Using an in vivo processing assay, we analyzed the role of micronucleus-limited DNA during the programmed deletion of mse2.9, an internal eliminated sequence (IES). We identified a 200-bp region within mse2.9 that contains an important cis-acting element which is required for the targeting of efficient programmed deletion. Our results, obtained with a series of mse2.9-based chimeric IESs, led us to suggest that the cis-acting elements in both micronucleus-limited and macronucleus-retained flanking DNAs stimulate programmed deletion to different degrees depending on the particular eliminated sequence. The mse2.9 IES is situated within the second intron of the micronuclear locus of the ARP1 gene. We show that the expression of ARP1 is not essential for the growth of Tetrahymena. Our results also suggest that mse2.9 is not subject to epigenetic regulation of DNA deletion, placing possible constraints on the scan RNA model of IES excision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号