首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H B Smith  F C Hartman 《Biochemistry》1991,30(21):5172-5177
Ribulosebisphosphate carboxylase/oxygenase is reversibly activated by the reaction of CO2 with a specific lysyl residue (Lys191 of the Rhodospirillum rubrum enzyme) to form a carbamate that coordinates an essential Mg2+ cation. Surprisingly, the Lys191----Cys mutant protein, in the presence of CO2 and Mg2+, exhibits tight binding of the reaction intermediate analogue 2-carboxyarabinitol bisphosphate [Smith, H. B., Larimer, F. W., & Hartman, F. C. (1988) Biochem. Biophys. Res. Commun. 152, 579-584], a property normally equated with effective coordination of the Mg2+ by the carbamate. Catalytic ineptness of the Cys191 mutant protein, despite its ability to coordinate Mg2+ properly, might be due to the absence of the carbamate nitrogen. To investigate this possibility, we have evaluated the ability of exogenous amines to restore catalytic activity to the mutant protein. Significantly, the Cys191 protein manifests ribulose bisphosphate dependent fixation of 14CO2 when incubated with aminomethanesulfonate but not ethanesulfonate. This novel activity reflects a Km value for ribulose bisphosphate which is not markedly perturbed relative to wild-type enzyme, a Km for Mg2+ which is in fact decreased 10-fold, and rate saturation with respect to aminomethanesulfonate (Kd = 8 mM). Chromatographic and spectrophotometric analyses reveal the product of CO2 fixation to be D-3-phosphoglycerate, while turnover of [1-3H]ribulose bisphosphate into [3H]phosphoglycolate confirms oxygenase activity. We conclude that aminomethanesulfonate restored ribulosebisphosphate carboxylase/oxygenase activities to the Cys191 mutant protein by providing a nitrogenous function which satisfies a catalytic demand normally met by the carbamate nitrogen of Lys191.  相似文献   

2.
The unusual chemical properties of active-site Lys-329 of ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have suggested that this residue is required for catalysis. To test this postulate Lys-329 was replaced with glycine, serine, alanine, cysteine, arginine, glutamic acid or glutamine by site-directed mutagenesis. These single amino acid substitutions do not appear to induce major conformational changes because (i) intersubunit interactions are unperturbed in that the purified mutant proteins are stable dimers like the wild-type enzyme and (ii) intrasubunit folding is normal in that the mutant proteins bind the competitive inhibitor 6-phosphogluconate with an affinity similar to that of wild-type enzyme. In contrast, all of the mutant proteins are severely deficient in carboxylase activity (less than 0.01% of wild-type) and are unable to form the exchange-inert complex, characteristic of the wild-type enzyme, with the transition-state analogue carboxyarabinitol bisphosphate. These results underscore the stringency of the requirement for a lysyl side-chain at position 329 and imply that Lys-329 is involved in catalysis, perhaps stabilizing a transition state in the overall reaction pathway.  相似文献   

3.
Diverse approaches that include site-directed mutagenesis have indicated a catalytic role of Lys-329 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. To determine whether Lys-329 is required for the initial enolization of ribulose bisphosphate or for some subsequent step in the overall reaction pathway, the competence of position 329 mutant proteins (devoid of carboxylase activity) in catalyzing exchange of solvent protons with the C-3 proton of substrate has now been examined. Irrespective of the amino acid substitution for Lys-329, the mutant protein retains 2-6% of the wild-type activity in the proton exchange reaction. The complete stability of ribulose bisphosphate during the enolization catalyzed by mutant protein suggests that the major effect of Lys-329 is to facilitate the addition of gaseous substrates (CO2 or O2) to the enediol intermediate. The exchange reaction requires Mg2+, is CO2-dependent, and is inhibited by the transition-state analogue 2-carboxyarabinitol 1,5-bisphosphate. A mutant protein in which Lys-191, the site for carbamylation by CO2 in an obligatory activation step, is replaced by a cysteinyl residue totally lacks proton exchange activity. Barely detectable exchange activity (approximately 0.2% of wild-type) is displayed by the Lys-166----Cys mutant protein, consistent with the previously implicated role of Lys-166 in the deprotonation of ribulose bisphosphate. Retention of exchange activity by the Glu-48----Gln mutant protein, which is slightly active in overall carboxylation, demonstrates that active site Glu-48, like Lys-329, exerts its major effect at some step subsequent to the initial enolization.  相似文献   

4.
Substitutions for active-site lysyl residues at positions 166 and 329 in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been shown to abolish catalytic activity. Treatment of the Cys-166 and Cys-329 mutant proteins with 2-bromoethylamine partially restores enzyme activity, presumably as a consequence of selective aminoethylation of the thiol group unique to each protein. Amino acid analyses, slow inactivation of the wild-type carboxylase by bromoethylamine, and the failure of bromoethylamine to restore activity to the corresponding glycyl mutant proteins support this interpretation. The observed facile, selective aminoethylations may reflect an active site microenvironment not dissimilar to that of the native enzyme. Catalytic constants of these novel carboxylases, which contain a sulfur atom in place of a specific lysyl gamma-methylene group, are significantly lower than that of the wild-type enzyme. Furthermore, the aminoethylated mutant proteins form isolable complexes with a transition state analogue, but with compromised stabilities. These detrimental effects by such a modest structural change underscore the stringent requirement for lysyl side chains at positions 166 and 329. In contrast, the aminoethylated mutant proteins exhibit carboxylase/oxygenase activity ratios and Km values that are unperturbed relative to those for the native enzyme.  相似文献   

5.
The epsilon-amino group of Lys-166 of Rhodospirillum rubrum ribulosebisphosphate carboxylase/oxygenase was postulated as the essential base which initiates catalysis by abstracting the proton at C-3 of ribulose 1,5-bisphosphate (Hartman, F. C., Soper, T. S., Niyogi, S. K., Mural, R. J., Foote, R. S., Mitra, S., Lee, E. H., Machanoff, R., and Larimer, F. W. (1987) J. Biol. Chem. 262, 3496-3501). To scrutinize this possibility, the site-directed Gly-166 mutant, totally devoid of ribulosebisphosphate carboxylase activity, was examined for its ability to catalyze each of three partial reactions. When carbamylated at Lys-191 (i.e. activated with CO2 and Mg2+), wild-type enzyme catalyzed the hydrolysis of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate, the six-carbon reaction intermediate of the carboxylase reaction (Pierce, J., Andrews, T. J., and Lorimer, G. H. (1986a) J. Biol. Chem. 261, 10248-10256). Likewise, when carbamylated at Lys-191, the Gly-166 mutant also catalyzed the hydrolysis of this reaction intermediate. The carbamylated wild type catalyzed the enolization of ribulose 1,5-bisphosphate as indicated by the transfer of 3H radioactivity from [3-3H]ribulose, 1,5-bisphosphate to the medium. However, even when carbamylated at Lys-191, the mutant protein did not catalyze the enolization of ribulose 1,5-bisphosphate. Additionally, unlike the decarbamylated wild-type enzyme, which catalyzed the decarboxylation of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate in the absence of Mg2+, the mutant protein was inactive in this partial reaction. These properties exclude the epsilon-amino group of Lys-166 as an obligatory participant in the hydrolysis of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate. In contrast, these properties are consistent with the epsilon-amino group of Lys-166 functioning as an acid-base catalyst in the enolization of ribulose 1,5-bisphosphate (when the enzyme is carbamylated) and in the decarboxylation of 2-carboxy-3-keto-D-arabinitol 1,5-bisphosphate (when the enzyme is decarbamylated). Alternatively, Lys-166 may stabilize the transition states of these two partial reactions.  相似文献   

6.
G J Lee  B A McFadden 《Biochemistry》1992,31(8):2304-2308
Site-directed mutagenesis was used to change Ser376 in the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase from the cyanobacterium Anacystis nidulans to Cys, Thr, or Ala. When expressed in Escherichia coli and purified, the mutant enzymes exhibited carboxylase activities that were reduced by 99% or more with respect to the activity of the wild-type enzyme. The Km values for ribulose bisphosphate at pH 8.0, 30 degrees C, were elevated from 46 microM for wild-type enzyme to 287, 978, and 81 microM for mutants in which Cys, Thr, or Ala, respectively, replaced Ser376. The Cys and Thr variants were almost devoid of oxygenase activity whereas the Ala variant had 16% as much oxygenase as wild-type enzyme, suggesting that this mutation had greatly elevated the oxygenase:carboxylase ratio.  相似文献   

7.
Affinity labeling and comparative sequence analyses have placed Lys-166 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum at the active site. The unusual nucleophilicity and acidity of the epsilon-amino group of Lys 166 (pKa = 7.9) suggest its involvement in catalysis, perhaps as the base that enolizes ribulosebisphosphate (Hartman, F.C., Milanez, S., and Lee, E.H. (1985) J. Biol. Chem. 260, 13968-13975). In attempts to clarify the role of Lys-166 of the carboxylase, we have used site-directed mutagenesis to replace this lysyl residue with glycine, alanine, serine, glutamine, arginine, cysteine, or histidine. All seven of these mutant proteins, purified by immunoaffinity chromatography, are severely deficient in carboxylase activity; the serine mutant, which is the most active, has a kcat only 0.2% that of the wild-type enzyme. Although low, the carboxylase activity displayed by some of the mutant proteins proves that Lys-166 is not required for substrate binding and argues that the detrimental effects brought about by amino acid substitutions at position 166 do not reflect gross conformational changes. As demonstrated by their ability to tightly bind a transition-state analogue (2-carboxyarabinitol 1,5-bisphosphate) in the presence of CO2 and Mg2+, some of the mutant proteins undergo the carbamylation reaction that is required for activation of the wild-type enzyme. Since Lys-166 is required neither for activation (i.e. carbamylation by CO2) nor for substrate binding, it must be essential to catalysis. When viewed within the context of previous related studies, the results of site-directed mutagenesis are entirely consistent with Lys-166 functioning as the base that initiates catalysis by abstracting the C-3 proton from ribulosebisphosphate. An alternative possibility that Lys-166 acts to stabilize a transition state in the reaction pathway cannot be rigorously excluded.  相似文献   

8.
Limited tryptic proteolysis of spinach (Spinacia oleracea) ribulose bisphosphate carboxylase/oxygenase (ribulose-P2 carboxylase) resulted in the ordered release of two adjacent N-terminal peptides from the large subunit, and an irreversible, partial inactivation of catalysis. The two peptides were identified as the N-terminal tryptic peptide (acetylated Pro-3 to Lys-8) and the penultimate tryptic peptide (Ala-9 to Lys-14). Kinetic comparison of hydrolysis at Lys-8 and Lys-14, enzyme inactivation, and changes in the molecular weight of the large subunit, indicated that proteolysis at Lys-14 correlated with inactivation, while proteolysis at Lys-8 occurred much more rapidly. Thus, enzyme inactivation is primarily the result of proteolysis at Lys-14. Proteolysis of ribulose-P2 carboxylase under catalytic conditions (in the presence of CO2, Mg2+, and ribulose-P2) also resulted in ordered release of these tryptic peptides; however, the rate of proteolysis at lysyl residues 8 and 14 was reduced to approximately one-third of the rate of proteolysis of these lysyl residues under noncatalytic conditions (in the presence of CO2 and Mg2+ only). The protection of these lysyl residues from proteolysis under catalytic conditions could reflect conformational changes in the N-terminal domain of the large subunit which occur during the catalytic cycle.  相似文献   

9.
Oligonucleotide-directed mutagenesis of cloned Rhodospirillum rubrum ribulose bisphosphate carboxylase/oxygenase with a synthetic 13mer oligonucleotide primer was used to effect a change at Met-330 to Leu-330. The resultant enzyme was kinetically examined in some detail and the following changes were found. The Km(CO2) increased from 0.16 to 2.35 mM, the Km(ribulose bisphosphate) increased from 0.05 to 1.40 mM for the carboxylase reaction and by a similar amount for the oxygenase reaction. The Ki(O2) increased from 0.17 to 6.00 mM, but the ratio of carboxylase activity to oxygenase activity was scarcely affected by the change in amino acid. The binding of the transition state analogue 2-carboxyribitol 1,5-bisphosphate was reversible in the mutant and essentially irreversible in the wild type enzyme. Inhibition by fructose bisphosphate, competitive with ribulose bisphosphate, was slightly increased in the mutant enzyme. These data suggest that the change of the residue from methionine to leucine decreases the stability of the enediol reaction intermediate.  相似文献   

10.
Ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum was modified with pyridoxal 5'-phosphate and then reduced with sodium borohydride. Both carboxylase and oxygenase activities were lost when one molecule of pyridoxal 5'-phosphate was bound per enzyme dimer. Peptide maps of modified enzyme showed one N6-(phosphopyridoxal)lysine-containing peptide. This peptide was isolated by gel filtration and cation-exchange chromatography and its sequence determined as Ala-Leu-Gly-Arg-Pro-Glu-Val-Asp-(PLP-Lys)-Gly-Thr-Leu-Val-Ile-Lys. Since activation of the enzyme with Mg2+/CO2 enhances pyridoxal 5'-phosphate modification and subsequent inactivation and the substrate ribulose bisphosphate protects against modification, the modified lysyl group is most certainly at the catalytic site and not at the activation site of the enzyme.  相似文献   

11.
Site-specific mutagenesis of a cloned gene for ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum was used to examine the functional significance of carbamate activation. Lysine 191, the residue involved in carbamate formation, was replaced with a glutamate in order to mimic the anionic nature of the carbamate. The resulting enzyme was capable of binding the six-carbon transition state analog carboxyarabinitol bisphosphate, but completely lacked catalytic activity. In contrast to the wild-type enzyme, carboxyarabinitol bisphosphate binding was not stabilized by divalent metal and CO2. These observations are consistent with a proposed role for the carbamate in binding the metal required for catalysis.  相似文献   

12.
Shen JB  Ogren WL 《Plant physiology》1992,99(3):1201-1207
Site-directed mutagenesis was performed on the 1.6 and 1.9 kilobase spinach (Spinacea oleracea) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase cDNAs, encoding the 41 and 45 kilodalton (kD) isoforms of the enzyme, to create single amino acid changes in the putative ATP-binding site of Rubisco activase (Lys-107, Gln-109, and Ser-112) and in an unrelated cysteine residue (Cys-256). Replacement of Lys-107 with Met produced soluble protein with reduced Rubisco activase and ATPase activities in both isoforms. Substituting Ala or Arg for Lys-107 produced insoluble proteins. Rubisco activase activity increased in the 41-kD isoform when Gln-109 was changed to Glu, but activity in the 45-kD isoform was similar to the wild-type enzyme. ATPase activity in the Glu-109 mutations did not parallel the changes in Rubisco activase activity. Rather, a higher ratio of Rubisco activase to ATPase activity occurred in both isoforms. The mutation of Gln-109 to Lys inactivated Rubisco activase activity. Replacement of Ser-112 with Pro created an inactive protein, whereas attempts to replace Ser-112 with Thr were not successful. The mutation of Cys-256 to Ser in the 45-kD isoform reduced both Rubisco activase and ATPase activities. The results indicate that the two activities of Rubisco activase are not tightly coupled and that variations in photosynthetic efficiency may occur in vivo by replacing the wild-type enzyme with mutant enzymes.  相似文献   

13.
The role of Leu 332 in ribulose-1,5-bisphosphate carboxylase/oxygenase from the cyanobacterium Anacystis nidulans was investigated by site-directed mutagenesis. Substitutions of this residue with Met, Ile, Val, Thr, or Ala decreased the CO2/O2 specificity factor by as much as 67% and 96% for the Ile mutant in the presence of Mg2+ and Mn2+, respectively. For the Met, Ile, and Ala mutants in the presence of Mg2+, no loss of oxygenase activity was observed despite the loss of greater than 65% of the carboxylase activity relative to the wild-type enzyme. In the presence of Mn2+, carboxylase activities for mutant enzymes were reduced to approximately the same degree as was observed in the presence of Mg2+, although oxygenase activities were also reduced to similar extents as carboxylase activities. Only minor changes in Km(RuBP) were observed for all mutants in the presence of Mg2+ relative to the wild-type enzyme, indicating that Leu 332 does not function in RuBP binding. These results suggest that in the presence of Mg2+, Leu 332 contributes to the stabilization of the transition state for the carboxylase reaction, and demonstrate that it is possible to affect only one of the activities of this bifunctional enzyme.  相似文献   

14.
T Katsube  Y Kazuta  K Tanizawa  T Fukui 《Biochemistry》1991,30(35):8546-8551
The entire structural gene for potato tuber UDP-glucose pyrophosphorylase has been amplified from its cDNA by the polymerase chain reaction and inserted into the expression plasmid pTV118-N downstream from the lac promoter. Escherichia coli JM105 cells carrying thus constructed plasmid produced the enzyme to a level of about 5% of the total soluble protein upon induction with isopropyl beta-D-thiogalactopyranoside. The recombinant enzyme purified to homogeneity in two column chromatographic steps was structurally and catalytically identical with the enzyme purified from potato tuber except for the absence of an N-terminal-blocking acetyl group. To examine functional roles of the five lysyl residues that had been identified by affinity labeling studies to be located at or near the active site of the enzyme [Kazuta, Y., Omura, Y., Tagaya, M., Nakano, K., & Fukui, T. (1991) Biochemistry (preceding paper in this issue)], they were replaced individually by glutamine via site-directed mutagenesis. The Lys-367----Gln mutant enzyme was almost completely inactive, and the Lys-263----Gln mutant enzyme had significantly decreased Vmax values with perturbed Km values for pyrophosphate and alpha-D-glucose 1-phosphate. Lys-329----Gln also exhibited increased Km values for these substrates but exhibited Vmax values similar to those of the wild-type enzyme. The two mutant enzymes Lys-409----Gln and Lys-410----Gln showed catalytic properties almost identical with those of the wild-type enzyme. Thus, among the five lysyl residues, Lys-367 is essential for catalytic activity of the enzyme and Lys-263 and Lys-329 may participate in binding of pyrophosphate and/or alpha-D-glucose 1-phosphate.  相似文献   

15.
Toluene-permeabilized Rhodospirillum rubrum cells were used to study activation of and catalysis by the dual-function enzyme ribulose bisphosphate carboxylase/oxygenase. Incubation with CO2 provided as HCO3-, followed by rapid removal of CO2 at 2 degrees C and subsequent incubation at 30 degrees C before assay, enabled a determination of decay rates of the carboxylase and the oxygenase. Half-times at 30 degrees C with 20 mM-Mg2+ were 10.8 and 3.7 min respectively. Additionally, the concentrations of CO2 required for half-maximal activation were 56 and 72 microM for the oxygenase and the carboxylase respectively. After activation and CO2 removal, inactivation of ribulose bisphosphate oxygenase in the presence of 1 mM- or 20mM-Mn2+ was slower than that with the same concentrations of Co2+ or Mg2+. Only the addition of Mg2+ supported ribulose bisphosphate carboxylase activity, as Mn2+, Co2+ and Ni2+ had no effect. A pH increase after activation in the range 6.8-8.0 decreased the stability of the carboxylase but in the range 7.2-8.0 increased the stability of the oxygenase. With regard to catalysis. Km values for ribulose 1,5-bisphosphate4- were 1.5 and 67 microM for the oxygenase and the carboxylase respectively, and 125 microM for O2. Over a broad range of CO2 concentrations in the activation mixture, the pH optima were 7.8 and 8-9.2 for the carboxylase and the oxygenase respectively. The ratio of specific activities was constant (9:1 for the carboxylase/oxygenase) of ribulose bisphosphate carboxylase/oxygenase in toluene-treated Rsp. rubrum. Below concentrations of 10 microM-CO2 in the activation mixture, this ratio increased.  相似文献   

16.
The Calvin cycle enzyme ribulose-bisphosphate carboxylase/oxygenase has been purified and characterized from the thermophilic and obligately anaerobic purple sulfur bacterium, Chromatium tepidum. The enzyme is an L8S8 carboxylase with a molecular mass near 550 kDa. No evidence for a second form of the enzyme lacking small subunits was obtained. C. tepidum ribulose-bisphosphate carboxylase/oxygenase was stable to heating to temperatures of 60 degrees C and could be readily purified in an active form at room temperature. Both carboxylase and oxygenase activities of this enzyme were Mg2+-dependent and carboxylase activity was sensitive to the effector 6-phosphogluconic acid. The Km for ribulose bisphosphate for the carboxylase activity of the C. tepidum enzyme was substantially higher than that observed in mesophilic Calvin cycle autotrophs. Amino acid composition and immunological analyses of C. tepidum and Chromatium vinosum ribulose-bisphosphate carboxylases showed the enzymes to be highly related despite significant differences in heat stability. It is hypothesized that thermal stability of C. tepidum ribulose-bisphosphate carboxylase/oxygenase is due to differences in primary structure affecting folding patterns in both the large and small subunits and is clearly not the result of any unique quaternary structure of the thermostable enzyme.  相似文献   

17.
In free-living Rhizobium japonicum cultures, the stimulatory effect of CO2 on nitrogenase (acetylene reduction) activity was mediated through ribulose bisphosphate carboxylase activity. Two mutant strains (CJ5 and CJ6) of R. japonicum defective in CO2 fixation were isolated by mitomycin C treatment. No ribulose bisphosphate carboxylase activity could be detected in strain CJ6, but a low level of enzyme activity was present in strain CJ5. Mutant strain CJ5 also exhibited pleiotropic effects on carbon metabolism. The mutant strains possessed reduced levels of hydrogen uptake, formate dehydrogenase, and phosphoribulokinase activities, which indicated a regulatory relationship between these enzymes. The CO2-dependent stimulation of nitrogenase activity was not observed in the mutant strains. Both mutant strains nodulated soybean plants and fixed nitrogen at rates comparable to that of the wild-type strain.  相似文献   

18.
The conserved asparagine 111 of ribulose-1,5-bisphosphate carboxylase/oxygenase from the photosynthetic bacteria Rhodospirillum rubrum was identified as a candidate for a side-chain that might be involved in the carboxylase/oxygenase specificity. It was replaced by site-directed mutagenesis with aspartic acid, leucine, glutamine or glycine residues. The mutant enzymes exhibit a very low carboxylase activity compared with the wild-type enzyme. The values of Km(RuBP) and kcat for Asn111----Gly, the most active mutant, are 420 microM and 0.034 s-1, compared with 13 microM and 3.0 s-1 for wild-type. The mutation of Asn111----Gly causes a more than tenfold decrease in the CO2/O2 specificity factor, tau, tau Asn111----Gly = 0.56 and tau wild-type = 6.7. This is the first reported change in rubisco specificity by a single site-directed mutation alone and suggests a target for future protein engineering studies.  相似文献   

19.
The functions of His291, His295 and His324 at the active-site of recombinant A. nidulans ribulose-1,5-bisphosphate carboxylase/ oxygenase have been explored by site-directed mutagenesis. Replacement of His291 by K or R resulted in unassembled proteins, while its replacement by E, Q or N resulted in assembled but inactive proteins. These results are in accord with a metal ion-binding role of this residue in the activated ternary complex by analogy to x-ray crystallographic analyses of tobacco and spinach enzymes.His324 (H327 in spinach), which is located within bonding distance of the 5-phosphate of bound bi-substrate analog 2-carboxyarabinitol 1,5-bisphosphate in the crystal structures, has been substituted by A, K, R, Q and N. Again with the exception of the H324K and R variants, these changes resulted in detectable assembled protein. The mutant H324A protein exhibited no detectable carboxylase activity, whereas the H324Q and H324N changes resulted in purifiable holoenzyme with 2.0 and 0.1% of the recombinant wild-type specific carboxylase activity, respectively. These results are consistent with a phosphate binding role for this residue.The replacement of His295, which has been suggested to aid in phosphate binding, with Ala in the A. nidulans enzyme leads to a mutant with 5.8% of the recombinant wild-type carboxylase activity. All other mutations at this position resulted in unassembled proteins. Purified H295A and H324Q enzymes had elevated Km(RuBP) values and unchanged CO2/O2 specificity factors compared to recombinant wild-type.Abbreviations CABP D-2-carboxyarabinitol 1,5 bisphosphate - IPTG isopropyl-b-d-thiogalactopyranoside - L large subunit of rubisco - PAGE polyacrylamide gel electrophoresis - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-P2, ribulose 1,5 bisphosphate - S small subunit of rubisco - SDS sodium dodecyl sulfate - X-gal 5-bromo-4-chloro-3-indolyl-b-d-galactoside  相似文献   

20.
Ribulose 1,5-bisphosphate carboxylase from Rhodospirillum rubrum requires CO2 and Mg2+ for activation of both CO2, both the carboxylase and oxygenase activities are stimulated by 6-phoshpo-D-gluconate, fructose 1,6-bisphosphate, 2-phosphoglycolate, 3-phosphoglycerate, NADPH, and fructose 6-phosphate. The carboxylase activity is not activated by ribose 5-phosphate. The substrate, ribulose bisphosphate, neither activates nor inhibits the CO2 and Mg2+ activation of this enzyme. Activation by CO2 and Mg2+ is rapid and results in increased susceptibility to active-site-directed protein modification reagents. Because the R. rubrum carboxylase-oxygenase is a dimer of large subunits and contains no small subunits, these results suggest that the effector binding sites of the higher plant enzyme may also be found on the large subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号