首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To estimate the N2 fixation ability of the alder (Alnus hirsuta (Turcz.) var. sibirica), we examined the seasonal variation in nitrogenase activity of nodules using the acetylene reduction method in an 18-year-old stand naturally regenerated after disturbance by road construction in Japan. To evaluate the contribution of N2 fixation to the nitrogen (N) economy in this alder stand, we also measured the phenology of the alder, the litterfall, the decomposition rate of the leaf litter, and N accumulation in the soil. The acetylene reduction activity per unit nodule mass (ARA) under field conditions appeared after bud break, peaked the maximum in midsummer after full expansion of the leaves, and disappeared after all leaves had fallen. There was no consistent correlation between ARA and tree size (dbh). The amount of N2 fixed in this alder stand was estimated at 56.4 kg ha?1 year?1 when a theoretical molar ratio of 3 was used to convert the amount of reduced acetylene to the amount of fixed N2. This amount of N2 fixation corresponded to the 66.4% of N in the leaf litter produced in a year. These results suggested that N2 fixation still contributed to the large portion of N economy in this alder stand.  相似文献   

2.
Summary Isotopic as well as non-isotopic methods were used to assess symbiotic nitrogen fixation within eight soybean [Glycine max (L.) Merr.] cultivars grown at 20 and 100 kg N/ha levels of nitrogen fertilizer under field conditions.The15N methodology revealed large differences between soybean cultivars in their abilities to support nitrogen fixation. In almost all cases, the application of 100 kg N/ha resulted in lower N2 fixed in soybean than at 20 kg N/ha in the first year of the study. However, N2 fixed in one cultivar, Dunadja, was not significantly affected by the higher rate of N fertilizer application. These results were confirmed by measurements of acetylene reduction activity, nodule dry weight and N2 fixed as measured by the difference method. Further proof of differences in N2 fixed within soybean cultivars and the ability of Dunadja to fix similar amounts of N2 at 20 and 100 kg N/ha was obtained during a second year experiment. Dunadja yield was affected by N fertilizer and produced larger yield at 100 kg N/ha than at 20 kg N/ha. This type of cultivar could be particularly useful in situations where soil N levels are high or where there is need to apply high amounts of N fertilizer.The present study reveals the great variability between legume germplasms in the ability to fix N2 at different inorganic N levels, and also the potential that exists in breeding for nitrogen fixation associative traits. The15N methodology offers a unique tool to evaluate germplasms directly in the field for their N2 fixation abilities at different N fertilizer levels.  相似文献   

3.
The relationship between ureide N and N2 fixation was evaluated in greenhouse-grown soybean (Glycine max L. Merr.) and lima bean (Phaseolus lunatus L.) and in field studies with soybean. In the greenhouse, plant N accumulation from N2 fixation in soybean and lima bean correlated with ureide N. In soybean, N2 fixation, ureide N, acetylene reduction, and nodule mass were correlated when N2 fixation was inhibited by applying KNO3 solutions to the plants. The ureide-N concentrations of different plant tissues and of total plant ureide N varied according to the effectiveness of the strain of Bradyrhizobium japonicum used to inoculate plants. The ureide-N concentrations in the different plant tissues correlated with N2 fixation. Ureide N determinations in field studies with soybean correlated with N2 fixation, aboveground N accumulation, nodule weight, and acetylene reduction. N2 fixation was estimated by 15N isotope dilution with nine and ten soybean genotypes in 1979 and 1980, respectively, at the V9, R2, and R5 growth stages. In 1981, we investigated the relationship between ureide N, aboveground N accumulation, acetylene reduction, and nodule mass using four soybean genotypes harvested at the V4, V6, R2, R4, R5, and R6 growth stages. Ureide N concentrations of young stem tissues or plants or aboveground ureide N content of the four soybean genotypes varied throughout growth correlating with acetylene reduction, nodule mass, and aboveground N accumulation. The ureide-N concentrations of young stem tissues or plants or aboveground ureide-N content in three soybean genotypes varied across inoculation treatments of 14 and 13 strains of Bradyrhizobium japonicum in 1981 and 1982, respectively, and correlated with nodule mass and acetylene reduction. In the greenhouse, results correlating nodule mass with N2 fixation and ureide N across strains were variable. Acetylene reduction in soybean across host-strain combinations did not correlate with N2 fixation and ureide N. N2 fixation, ureide N, acetylene reduction, and nodule mass correlated across inoculation treatments with strains of Bradyrhizobium spp. varying in effectiveness on lima beans. Our data indicate that ureide-N determinations may be used as an additional method to acetylene reduction in studies of the physiology of N2 fixation in soybean. Ureide-N measurements also may be useful to rank strains of B. japonicum for effectiveness of N2 fixation.  相似文献   

4.
Nitrogen fixation by cyanobacteria in a moss community on East Ongul Island (69°00'S 39°35'E), Antarctica was investigated using the acetylene reduction method. The mean acetylene reduction rate at 10°C and 200 μE·m−2·s−1 photosynthetically active radiation was 7.12 nmol C2H4 per square centimeter of moss community per hour. The effects of temperature, radiation, desiccation and rehydration on the acetylene reduction rates were examined. A simple predictive model was constructed in order to estimate the amount of nitrogen fixed in the field. Using this model, the daily amount of nitrogen fixation was calculated from microclimatic data (temperature and radiation) measured in the experimental field at Syowa Station on East Ongul Island between 1983 and 1984. The cumulative amount of nitrogen fixation in the growing season during this period was estimated to be 329 mg N per square meter of moss community. It is suggested that nitrogen fixation by cyanobacteria in the moss community is important as a nitrogen source for the community growth on East Ongul Island.  相似文献   

5.
The effects of the herbicide methabenzthiazuron (175 and 220 g ha-1) on vegetative and reproductive growth, nodulation and nitrogenase activity of Vicia faba were studied in the field under Mediterranean conditions. Nitrogenase activity of excised nodules was estimated using the acetylene reduction assay four times during the developmental period. Leaf area index, dry weight and nitrogen content of the different parts of the plants were measured. Methabenzthiazuron-treated plants showed an increase in nodulation, nitrogenase activity and vegetative growth at early pod fill. Methabenzthiazuron also caused an increase in leaf N content and fruits. These were transient effects found during early and mid pot fill. Nevertheless, plants treated with these sublethal doses of herbicide improved seed production and nitrogen content of seeds at harvest time. The stimulatory effect of methabenzthiazuron on N2 fixation and vegetative growth seems not be related with the transient stimulatory effect on photosynthetic capacity, also caused by the herbicide, since the stimulatory effect on N2 fixation was apparent during pod fill, when photosynthetic capacity declined and was not modified by methabenzthiazuron.  相似文献   

6.
It has previously been reported that endophytic diazotrophic bacteria contribute significantly to the nitrogen budgets of some graminaceous species. In this study the contribution of biological nitrogen fixation to the N-budget of a South African sugarcane cultivar was evaluated using 15N natural abundance, acetylene reduction and 15N incorporation. Plants were also screened for the presence of endophytic diazotrophic bacteria using acetylene reduction and nifH-gene targeted PCR with the pure bacterial strains. 15N natural abundance studies on field-grown sugarcane indicated that the plants did not rely extensively on biological nitrogen fixation. Furthermore, no evidence was found for significant N2-fixation or nitrogenase activity in field-grown or glasshouse-grown plants using 15N incorporation measurements and acetylene reduction assays. Seven endophytic bacterial strains were isolated from glasshouse-grown and field-grown plants and cultured on N-free medium. The diazotrophic character of these seven strains could not be confirmed using acetylene reduction and PCR screening for nifH. Thus, although biological nitrogen fixation may occur in South African sugarcane varieties, the contribution of this N-source in the tested cultivar was not significant.  相似文献   

7.
Summary Lucerne is an important forage legume in the south and south-east of Sweden on well-drained soils. However, data is lacking on the apparent amount of nitrogen derived through N2 fixation by field-grown lucerne. This report provides basic information on the subject. The experiment was performed in a lucerne ley grown 40 km north of Uppsala. The input of nitrogen through fixation to the above-ground plant material of an established lucerne (Medicago sativa L.) ley was estimate by15N methodology during two successive years. The amount of fixed N was 242 kg N ha–1 in 1982 and 319 kg N ha–1 in 1983. The proportion of N derived from the atmosphere (%Ndfa) was 70% and 80% for the two years respectively. The first harvest in both years contained a lower proportion fixed N. Both N2 fixation and dry matter production were enhanced during the second year, particularly in the first harvest. The Ndfa was 61% in the first harvest in 1982, compared to 72% Ndfa during the same period in 1983. This demonstrates the strong influence of environment on both dry matter production and N2 fixation capacity of the lucerne.In addition anin situ acetylene reduction assay was used in 1982 to measure the seasonal distribution of the N2 fixation and in 1983 to study the effect of soil moisture on the N2 fixation process. The seasonal pattern showed great dependence on physiological development and harvest pattern of the lucerne ley. The maximum rate of N2 fixation occurred at the bud or early flower stage of growth and was followed by a rapid decline as flowering proceeded. After harvest the nitrogenase activity markedly decreased and remained low during at least two weeks until regrowth of new shoots began. Irrigation doubled the nitrogenase activity of the lucerne in late summer 1983, when soil moisture content in the top soil was near wilting point. No changes in nitrogenase activity did occur in response to watering earlier during the summer, when the soil matric potential was around –0.30 MPa.  相似文献   

8.
It is frequently assumed that nitrogen (N2) fixation and denitrification do not co-occur in streams because each process should be favored under different concentrations of dissolved inorganic nitrogen (DIN), and therefore these processes are rarely quantified together. We asked if these processes could co-exist by conducting a spatial survey of N2 fixation using acetylene reduction and denitrification using acetylene block [with and without amendments of carbon (C) as glucose and nitrogen (N) as nitrate]. Rates were measured on rocks and sediment in 8 southeastern Idaho streams encompassing a DIN gradient of 26–615 µg L?1. Sampling at each site was repeated in summer 2015 and 2016. We found that both denitrification and N2 fixation occurred across the gradient of DIN concentrations, with N2 fixation occurring primarily on rocks and denitrification occurring in sediment. N2 fixation rates on rocks significantly decreased 100× across the DIN gradient in 1 year of the study, and amended (with N and C) denitrification rates increased 10× across the DIN gradient in both years. Multiple linear regression and partial least squares models with environmental characteristics measured at the scale of entire stream reaches showed that C and phosphorus were positive predictors of amended and unamended denitrification rates, but no significant model could explain N2 fixation rates across all streams and years. This, coupled with the observation that detectable rates of N2 fixation occurred primarily on rocks and denitrification occurred primarily on sediment, suggests that microhabitat scale factors may better predict the co-occurrence of these processes within stream reaches. Overlooking the potential co-occurrence of N2 fixation and denitrification in stream ecosystems will impede understanding by oversimplifying the contribution of each process to the N cycle.  相似文献   

9.
Summary The goal of breeding alfalfa for increased N2 fixation potential is addressed. A chronological progression of breeding, physiological, microbiological, and plant pathological research is described. Studies describing the interrelationships among plant morphological, plant physiological, andRhizobium effectiveness traits are summarized. It was concluded that N2 fixation in alfalfa is affected by coordinated responses among many physiological and biochemical traits. The simultaneous improvement of many factors in the symbiosis requires a comprehensive multiple-step breeding program. The current program includes selection in the glasshouse for seedling vigor,Rhizobium preference, shoot growth, nodule mass, root growth, nitrogenase (as measured by acetylene reduction), and nodule enzyme activity. The inclusion of additional selection traits is anticipated. Field evaluations of N2 fixation potential of alfalfa populations are made with15N isotope dilution techniques. Plant germplasm sources used in the breeding program include several heterogeneous populations which have good combining ability and pest resistance when they are intercrossed. Significant progress has been made in achieving the goal of breeding alfalfa for improved N2 fixation.  相似文献   

10.
The CO2-exchange rate required to make full use of available N2-fixation capacity, measured as acetylene reduction, was determined in soybean and alfalfa. Carbohydrates of root systems were depleted during a 40-hour dark treatment; then plants were exposed to a 24-hour light period during which different CO2-exchange rates were maintained with various CO2 concentrations. In three- and four-week-old soybeans and four-week-old alfalfa plants, acetylene-reduction capacity was used fully with CO2-exchange rates as low as 10 milligrams CO2 per plant per hour. In six-week-old alfalfa plants, however, acetylene reduction rates increased linearly, and apparent N2-fixation capacity was not used fully when CO2-exchange rates were higher than 40 milligrams CO2 per plant per hour. Under the conditions established, the energy cost of N2 fixation, measured as Δ(respiration of roots + nodules)/Δacetylene reduction over dark-treatment values, was 0.453 milligrams CO2 per micromole C2H4 for all rates of acetylene reduction and for both ages of soybean and alfalfa plants. Thus, root-plus-nodule respiration was not promoted by higher rates of apparent photosynthesis after C2H2-reduction capacity became saturated, and all available capacity for apparent N2 fixation had the same energy requirement.  相似文献   

11.
We used an acetylene reduction assay to measure rates of nitrogen fixation on a 38-year-oldAlnus hirsuta plantation in central Korea. The diurnal pattern of acetylene reduction changed significantly during May, August, and October, typically varying by 3-fold throughout the course of the day. Maximum rates occurred at 3 p.m. in May and October, but at 6 p.m. in August. Increasing trends were evident during the early growing season, with sustained high rates from mid-May through late September; July had the highest rates, averaging 7.2 μmole g-1 dry nodule h-1. The average nodule biomass for this plantation was 220 kg ha ’. Rates of acetylene reduction were related to soil temperature, but not to soil moisture content. Combining these nodule biomass calculations with seasonal average acetylene reduction rates yielded an estimate of current annual nitrogen fixation of 60 kg N ha-1 for the plantation. This rate of annual nitrogen addition was very large in relation to the yearly nitrogen requirements of coniferous and deciduous forests in central Korea.  相似文献   

12.
Pigeon peas [Cajanus cajan (L.) Millsp.] were grown in soil columns containing 15N-enriched organic matter. Seasonal N2 fixation activity was determined by periodically assaying plants for reduction of C2H2. N2 fixation rose sharply from the first assay period at 51 days after planting to a peak of activity between floral initiation and fruit set. N2 fixation (acetylene reduction) activity dropped concomitantly with pod maturation but recovered after pod harvests. Analysis of 15N content of plant shoots revealed that approximately 91 to 94% of plant N was derived from N2 fixation. The effect of inoculation with hydrogenase-positive and hydrogenase-negative rhizobia was examined. Pigeon peas inoculated with strain P132 (hydrogenase-positive) yielded significantly more total shoot N than other inoculated or uninoculated treatments. However, two other hydrogenase-positive strains did not yield significantly more total shoot N than a hydrogenase-negative strain. The extent of nodulation by inoculum strains compared to indigenous rhizobia was determined by typing nodules according to intrinsic antibiotic resistance of the inoculum strains. The inoculum strains were detected in almost all typed nodules of inoculated plants.

Gas samples were taken from soil columns several times during the growth cycle of the plants. H2 was never detected, even in columns containing pigeon peas inoculated with hydrogenase-negative rhizobia. This was attributed to H2 consumption by soil bacteria. Estimation of N2 fixation by acetylene reduction activity was closest to the direct 15N method when ethylene concentrations in the gas headspace (between the column lid and soil surface) were extrapolated to include the soil pore space as opposed solely to measurement in the headspace. There was an 8-fold difference between the two acetylene reduction assay methods of estimation. Based on a planting density of 15,000 plants per hectare, the direct 15N fixation rates ranged from 67 (noninoculated) to 134 kilograms per hectare, while grain yields ranged from 540 to 825 kilograms per hectare. Grain yields were not increased with N fertilizer.

  相似文献   

13.
Nitrogen fixation (acetylene reduction) rates were measured over an annual cycle in meadows of the seagrass Z. noltii and uncolonised sediments of the Bassin d'Arcachon, south-west France, using both slurry and whole core techniques. Measured rates using the slurry technique in Z. noltii colonised sediments were consistently higher than those determined in isolated cores. This was probably due to the release of labile organic carbon sources during preparation of the slurries. Thus, in colonised sediments the whole core technique may provide a more accurate estimate of in situ activity. Acetylene reduction rates measured by the whole core technique in colonised sediments were 1.8 to 4-fold greater, dependent upon the season, in the light compared with those measured in the dark, indicating that organic carbon released by the plant roots during photosynthesis was an important factor regulating nitrogen fixation. In contrast acetylene reduction rates in uncolonised sediments were independent of light.Addition of sodium molybdate, a specific inhibitor of sulphate reduction inhibited acetylene reduction activity in Z. noltii colonised sediments by > 80% as measured by both slurry and whole core techniques irrespective of the light regime, throughout the year inferring that sulphate reducing bacteria (SRB) were the dominant component of the nitrogen fixing microflora. A mutualistic relationship between Z. noltii and nitrogen fixing SRB in the rhizosphere, based on the exchange of organic carbon and fixed nitrogen is proposed. In uncolonised sediments sodium molybdate initially severely inhibited acetylene reduction rates, but the level of this inhibition declined over the course of the year. These data indicate that the nitrogen fixing SRB associated with the Zostera roots and rhizomes were progressively replaced by an aerobic population of nitrogen fixers associated with the decomposition of this recalcitrant high C:N ratio organic matter.Acetylene and sulphate reduction rates in the seagrass beds showed distinct summer maxima which correlated with a reduced availability of NH 4 + in the sediment and the growth cycle of Z. noltii in the Bassin. Overall, these data indicate that acetylene reduction (nitrogen fixation) activity in the rhizosphere of Z. noltii was regulated both by release of organic carbon from the plant roots and maintenance of low ammonium concentrations in the root zone due to efficient ammonium assimilation.Nitrogen fixation rates determined from acetylene reduction rates measured by the whole core technique ranged from 0.1 to 7.3 mg N m–2 d–1 in the Z. noltii beds and between 0.02 and 3.7 mg N m–2 d–1 in uncolonised sediments, dependent upon the season. Nitrogen fixation in the rhizosphere of Z. noltii was calculated to contribute between 0.4 and 1.1 g N m–2 y–1 or between 6.3 and 12% of the annual fixed nitrogen requirement of the plants. Heterotrophic nitrogen fixation therefore represents a substantial local input of fixed nitrogen to the sediments of this shallow coastal lagoon and contributes to the overall productivity of Z. noltii in this ecosystem.  相似文献   

14.
The role of nitrogen (N2) fixation in balancing N supply to wetland metaphyton was assessed by comparing primary production with enzymatic, isotopic, and elemental correlates. Primary production, N2 fixation (acetylene reduction, AR), phosphatase activity, C:N:P ratio, and N isotopic composition of metaphyton were measured along a nutrient gradient in a freshwater marsh during May through September 2004. N2 fixation and phosphatase activity in metaphyton were negatively correlated with inorganic N and P concentrations, respectively. Although metaphyton N2 fixation demonstrated a clear spatial pattern along the nutrient gradient, N2 fixation rates varied monthly and decreased sharply in September. However, the percent contribution of N2 fixation to N uptake by metaphyton consistently decreased throughout the summer. Furthermore, the decreased contribution of N2 fixation to N uptake corresponded with an increase in metaphyton N content during the growing season. Nitrogen isotopic data suggested the sustained importance of an atmospheric N2 source through September at the most downstream (nutrient poor) site even though the percent contribution of N2 fixition to N uptake was lowest in that month. This suggests that metaphyton were efficiently accumulating and recycling fixed N2 in support of primary production. Over the course of the summer, metaphyton primary production showed a weak inverse correlation with metaphyton phosphatase activity (r 2 = 0.58). The largest residuals in this regression corresponded to the largest vartiation in metaphyton N content. When metaphyton primary production was normalized to metaphyton N content, production rates for the entire growing season were more strongly inversely correlated with metaphyton phosphatase activity (r 2 = 0.78). Results of the study suggest that N2 fixation in N poor areas may adequately supplement community N requirements in metaphyton, thereby causing limitation by other elemental resources such as P.  相似文献   

15.
Biological nitrogen (N2) fixation performed by diazotrophs (N2 fixing bacteria) is thought to be one of the main sources of plant available N in pristine ecosystems like arctic tundra. However, direct evidence of a transfer of fixed N2 to non-diazotroph associated plants is lacking to date. Here, we present results from an in situ 15N–N2 labelling study in the High Arctic. Three dominant vegetation types (organic crust composed of free-living cyanobacteria, mosses, cotton grass) were subjected to acetylene reduction assays (ARA) performed regularly throughout the growing season, as well as 15N–N2 incubations. The 15N-label was followed into the dominant N2 fixer associations, soil, soil microbial biomass and non-diazotroph associated plants three days and three weeks after labelling. Mosses contributed most to habitat N2 fixation throughout the measuring campaigns, and N2 fixation activity was highest at the beginning of the growing season in all plots. Fixed 15N–N2 became quickly (within 3 days) available to non-diazotroph associated plants in all investigated vegetation types, proving that N2 fixation is an actual source of available N in pristine ecosystems.  相似文献   

16.
Nitrogen deposition has decreased the plant-associated nitrogen (N2) fixation when measured using the indirect acetylene reduction assay (ARA). However, nitrogen deposition can also lead to changes in the diversity of moss symbionts, e.g. affect methanotrophic N2 fixation, which is not measured by ARA. To test this hypothesis we compared ARA with the direct stable isotope method (15N2 incorporation) and studied methanotrophy in two mosses, Hylocomium splendens and Pleurozium schreberi, collected from seven forest sites along a boreal latitudinal N deposition transect. We recognized that the two independent N2 fixation measures gave corresponding results with the conversion factor of 3.3, but the 15N2 method was more sensitive for finding a signal of low N2 fixation activity. Methane carbon fixation associated with mosses was under the detection limit (<2 nmol C g−1 h−1). N2 fixation rates were more pronounced in the mosses with higher C/N ratio, and in the green upper parts of the shoot than in the lower brownish parts. Sequencing of nifH genes revealed that dominating diazotrophs were affiliated to cyanobacterial genera Nostoc and Nodularia, but methanotrophic diazotrophs were not found in the nifH libraries. We conclude that the suppression of N2 fixation along the deposition gradient was consistent regardless of the measurement technique, and microbial community changes toward methanotrophic or otherwise acetylene-sensitive N2 fixation could not explain this trend.  相似文献   

17.
The use of the relative ureide content of xylem sap [(ureide-N/total N) × 100] as an indicator of N2 fixation in soybeans (Merr.) was examined under greenhouse conditions. Acetylene treatments to inhibit N2 fixation were imposed upon the root systems of plants totally dependent upon N2 fixation as their source of N and of plants dependent upon both N2 fixation and uptake of exogenous nitrate. Significant decreases in the total N concentration of xylem sap from plants of the former type were observed, but no significant decrease was observed in the total N concentration of sap from the latter type of plants. In both types of plants, acetylene treatment caused significant decreases in the relative ureide content of xylem sap. The results provided further support for a link between the presence of ureides in the xylem and the occurrence of N2 fixation in soybeans. The relative ureide content of xylem sap from plants totally dependent upon N2 fixation was shown to be insensitive to changes in the exudation rate and total N concentration of xylem sap brought about by diurnal changes in environmental factors. There was little evidence of soybean cultivars or nodulating strains affecting the relative ureide content of xylem sap. `Ransom' soybeans nodulated with Rhizobium japonicum strain USDA 110 were grown under conditions to obtain plants exhibiting a wide range of dependency upon N2 fixation. The relative ureide content of xylem sap was shown to indicate reliably the N2 fixation of these plants during vegetative growth using a 15N method to measure N2 fixation activity. The use of the relative ureide content of xylem sap for quantification of N2 fixation in soybeans should be evaluated further.  相似文献   

18.
The role of lateral root nodules in N2 fixation and the relationships between total shoot N and several traits which influence or control N2 fixation in common bean (Phaseolus vulgaris L.)i.e., acetylene reduction value, specific nodule activity, leghemoglobin concentration, total leghemoglobin and nodule mass, were investigated in field studies. Significant variation among bean lines was observed for all the traits measured. Lines varied for the proportion of total N accumulated up to the R3 growth state, thus measurements of total shoot N near maturity (e.g., R7) provided a better estimate of total N2 fixation than measurements taken at an early growth stage. Nodule mass was correlated with acetylene reduction and total leghemoglobin, and total leghemoglobin was correlated with acetylene reduction value. Total shoot N at R7 was correlated with seasonal means of nodule mass and number, acetylene reduction value and total leghemoglobin. For all traits except total leghemoglobin, values for lateral roots were more highly correlated with total shoot N than were values for either crown roots or the whole root system. Seed yield was most highly correlated with nodule mass of the lateral roots. These results will be useful in devising breeding strategies for improved N2 fixation of the host plant.  相似文献   

19.
The effect of nitrate on N2 fixation and the assimilation of fixed N2 in legume nodules was investigated by supplying nitrate to well established soybean (Glycine max L. Merr. cv Bragg)-Rhizobium japonicum (strain 3I1b110) symbioses. Three different techniques, acetylene reduction, 15N2 fixation and relative abundance of ureides ([ureides/(ureides + nitrate + α-amino nitrogen)] × 100) in xylem exudate, gave similar results for the effect of nitrate on N2 fixation by nodulated roots. After 2 days of treatment with 10 millimolar nitrate, acetylene reduction by nodulated roots was inhibited by 48% but there was no effect on either acetylene reduction by isolated bacteroids or in vitro activity of nodule cytoplasmic glutamine synthetase, glutamine oxoglutarate aminotransferase, xanthine dehydrogenase, uricase, or allantoinase. After 7 days, acetylene reduction by isolated bacteroids was almost completely inhibited but, except for glutamine oxoglutarate aminotransferase, there was still no effect on the nodule cytoplasmic enzymes. It was concluded that, when nitrate is supplied to an established symbiosis, inhibition of nodulated root N2 fixation precedes the loss of the potential of bacteroids to fix N2. This in turn precedes the loss of the potential of nodules to assimilate fixed N2.  相似文献   

20.
Groat RG  Vance CP 《Plant physiology》1981,67(6):1198-1203
Nitrogenase-dependent acetylene reduction activity of glasshouse-grown alfalfa (Medicago sativa L.) decreased rapidly in response both to harvesting (80% shoot removal) and applied NO3 at 40 and 80 kilograms N per hectare. Acetylene reduction activity of harvested plants grown on 0 kilogram N per hectare began to recover by day 15 as shoot regrowth became significant. In contrast, acetylene reduction activity of all plants treated with 80 kilograms NO3-N per hectare and harvested plants treated with 40 kilograms NO3-N per hectare remained low for the duration of the experiment. Acetylene reduction of unharvested alfalfa treated with 40 kilograms N per hectare declined to an intermediate level and appeared to recover slightly by day 15. Changes in N2-fixing capacity were accompanied by similar changes in levels of nodule soluble protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号