首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Experiments were performed to determine whether mannitol occurs as a native constituent of marine and freshwater Rhodophyceae. Those red algae which had previously been reported to contain mannitol were tested. In none of these species could mannitol or any other hexitol be detected, either as 14C-assimilate after photosynthetic assimilation of 14C from H14CO3 or in trace amounts of the EtOH-soluble fraction. Attempts to qualify the action of a specific mannitol synthesizing enzyme (mannitol-1-phosphate dehydrogenase, EC 1.1.1.17) also failed. Though mannitol [14C] is taken up when exogenously supplied by a seawater medium, less than 5% of 14C from mannitol [14C] taken up after 3 hr is recovered in other compounds. Mannitol is therefore not regarded as a natural metabolite (assimilate) of Rhodophyceae.  相似文献   

2.
The effect of body temperature in the 4–30°C range on L-leucine uptake by toadfish liver in vivo was examined by means of a single-injection pulse technique. The ratio of [14C]leucine to [3H]mannitol or [3H]inulin in blood leaving the liver was measured as a function of time after hepatic portal vein injection. Recoveries of the two isotopes in liver and [14C]leucine incorporation into protein were determined.The Q10 value for influx was 3.8, that for efflux 2.8. At all temperatures, the leucine influx was 8–10-times higher than its incorporation into protein. The directly energy-linked reactions appear to be the main site of increased temperature sensitivity at low temperatures.  相似文献   

3.
Mycelium of Puccinia graminis was grown for 4 d on 200 mM D-[U-14C]glucose followed by a cold chase for 30 h. Analysis of cellular metabolites during the chase indicated significant turnover only in carbohydrates soluble in 80% (w/v) ethanol. A kinetic analysis of the depletion of [14C] in pools of free sugars and sugar alcohols indicated that the trehalose pools and a small proportion (12–16%) of the mannitol and glucitol pools did not turn over, whilst pools of glucose, fructose, and the remainder of the hexitols became totally,depleted of label during the chase. Because the [14C] was totally lost from the pools of glucose and fructose prior to the hexitols, it was deduced that both of these hexoses were precursors of the hexitols. Estimation of the carbon fluxes through pools indicated that 52, 36 and 16% of the carbon from glucose was assimilated via glucitol, fructose and mannitol respectively, demonstrating that glucitol could not have originated from fructose as sole precursor. After offering D-[U-14C]glucitol, [14C] was assimilated into trehalose phosphate, glucans and amino acids, but not into free glucose or fructose. These data indicate that hexitols are quantitatively important intermediates during the assimilation of glucose by Puccinia graminis.  相似文献   

4.
Summary Extensive biodegradation of [14C]-2,4,5-trichlorophenoxyacetic acid ([14C]-2,4,5-T) by the white rot fungus Phanerochaete chrysosporium was demonstrated in nutrient nitrogen-limited aqueous cultures and in [14C]-2,4,5-T-contaminated soil inoculated with this fungus and supplemented with ground corn cobs. After incubation of [14C]-2,4,5-T with aqueous cultures of the fungus for 30 days, 62.0%±2.0% of the [14C]-2,4,5-T initially present was degraded to 14CO2. Mass balance analysis demonstrated that water soluble metabolites were formed during degradation, and HPLC and thin layer chromatography (TLC) of methylene chloride-extractable material revealed the presence of polar and non-polar [14C]-2,4,5-T metabolites. It was also shown that only 5% of the [14C]-2,4,5-T initially present in cultures remained as undegraded [14C]-2,4,5-T. In incubations composed of [14C]-2,4,5-T-contaminated soil, ground corn cobs, and 40% (w/w) water, 32.5%±3.6% of the [14C]-2,4,5-T initially present was converted to 14CO2 after 30 days of incubation. These results suggest that it may be possible to develop practical systems based on the use of this fungus to detoxify 2,4,5-T-contaminated water and soil.  相似文献   

5.
Acetylcholine (ACh) synthesis in vivo is known to decrease during the aging process (senescence). To elucidate the molecular mechanism(s) of this age-related decline, we studied brain slices from 3-, 10-, and 30-month-old mice of two strains (C57B1 and Balb/c). In low K+ media, oxidative metabolism as measured by 14CO2 production decreased with aging from 100% (3 months) to 85% (10 months) or 71% (30 months) whether [U?14C]glucose, [3,4-14C]glucose, or [l-14C]pyruvate was the substrate. In the aged brain (3 months) the increase in 14CO2 production with K+ stimulation was about twofold higher than in the young brain (3 months). Thus, in high K+ media, only slight decreases (<10%) in oxidative metabolism occurred with aging. Changes in ACh synthesis paralleled the decreases in 14CO2 production. Synthesis of [14C]ACh from [U-14C]glucose in low K+ media declined from 100% (3 months) to 85% (10 months) or 66% (30 months), while in high K+ media only slight decreases (<10.5%) occurred with aging. The Ca2+-dependent, K+-stimulated release of [14C]ACh declined from 100% (3 months) to 58% (10 months) or 25% (30 months). Only the decrease in the release of ACh declined to the same extent as the reduced in vivo synthesis of ACh with aging. The results suggest that decreases in oxidative metabolism, ACh synthesis, and in the release of ACh contribute to a reduction in cholinergic function in the senescent brain.  相似文献   

6.
METABOLISM OF MALONIC ACID IN RAT BRAIN AFTER INTRACEREBRAL INJECTION   总被引:4,自引:4,他引:0  
Labeled malonic acid ([1-14C] and [2-14C]) was injected into the left cerebral hemisphere of anesthetized adult rats in order to determine the metabolic fate of this dicarboxylic acid in central nervous tissue. The animals were allowed to survive for 2, 5, 10. 15 or 30min. Blood was sampled from the torcular during the experimental period and labeled metabolites were extracted from the brain after intracardiac perfusion. There was a very rapid efflux of unreacted malonate in the cerebral venous blood. Labeled CO2 was recovered from the venous blood and the respired air after the injection of [1-14C]malonate but not after [2-14C]malonate. The tissue extracts prepared from the brain showed only minimal labeling of fatty acids and sterols. Much higher radioactivity was present in glutamate, glutamine, aspartate, and GABA. The relative specific activities (RSA) of glutamine never rose above 1.00. Aspartate was labeled very rapidly and revealed evidence of 14CO2 fixation in addition to labeling through the Krebs cycle. GABA revealed higher RSA after [1-14C]malonate than after [2-14C]malonate. Sequential degradations of glutamate and aspartate proved that labeling of these amino acids occurred from [1-14C] acetyl-CoA and [2-14C] acetyl-CoA, respectively, via the Krebs cycle. Malonate activation and malonyl-CoA decarboxylation in vivo were similar to experiments with isolated mitochondria. However, labeled malonate was not incorporated into the amino acids of free mitochondria. The results were compared to data obtained after intracerebral injection of [1-14C]acetate and [2-14C]acetate.  相似文献   

7.
The transport into and release of14C-labeled niacin and niacinamide from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated 14C by specific, energy-dependent mechanisms when [14C]niacinamide was added to the incubation medium. The saturable accumulation velocities, which were linear for 30 min, depended, in part, on incorporation of the [14C]niacinamide into NAD. The XT and Ymax for 14C accumulation with [14C]niacinamide in the medium by brain slices and choroid plexus were 0.80 μM and 1.45 μmolkg?1 (30 min)?1, and 0.23 μM and 18.6 μmol kg?1 (30 min)?1 respectively. In vitro, the choroid plexus, unlike brain slices, vigorously concentrated 14C by a separate, specific energy-dependent process when 14C niacin was added to the incubation medium. The saturable accumulation velocity, which was linear for 30 min, depended completely on the metabolism of [14C]niacin. The KT and Ymax for14C accumulation by choroid plexus with [14C]niacin in the medium were 18.1 μM and 439 μmol kg?1 (30 min)?1 respectively. Whether preincubated in [14C]niacin or [14C]niacinamide, choroid plexus released predominantly [14C]niacinamide.  相似文献   

8.
Farnesyl pyrophosphate-[14C] and geranylgeranyl pyrophosphate-[14C] were biosynthesized from mevalonic acid-[2-14C] by cell-free enzyme extracts of pea (Pisum sativum) cotyledons containing MgCl2, MnCl2, ATP and AMO-1618. Maximum yields of farnesyl pyrophosphate were obtained after 30 min incubation while geranylgeranyl pyrophosphate was the primary product after 180 min. Biosynthesized geranylgeranyl pyrophosphate-[14C] served as an efficient substrate for ent-kaurene biosynthesis in reaction mixtures containing cotyledon enzymes when AMO-1618 was omitted. Enzyme extracts from green pea shoot tips and chloroplasts also converted geranylgeranyl pyrophosphate to ent-kaurene in very low yields. Ent-kaurene production from mevalonic acid-[2-14C] in extracts of pea shoot tips was also enhanced by addition of chloroplast enzymes. This evidence indicates that kaurene synthetase is present in pea chloroplasts and adds to the possibility that some gibberellin biosynthesis may be compartmentalized in those organelles.  相似文献   

9.
Abstract: Abstract: When the kinetics of interconversion of deoxy[14C]glucose ([14C]DG) and [14C]DG-6-phosphate ([14C]DG-6-P) in brain in vivo are estimated by direct chemical measurement of precursor and products in acid extracts of brain, the predicted rate of product formation exceeds the experimentally measured rate. This discrepancy is due, in part, to the fact that acid extraction regenerates [14C]DG from unidentified labeled metabolites in vitro. In the present study, we have attempted to identify the 14C-labeled compounds in ethanol extracts of brains of rats given [14C]DG. Six 14C-labeled metabolites, in addition to [14C]DG-6-P, were detected and separated. The major acid-labile derivatives, DG-1-phosphate (DG-1-P) and DG-1,6-bisphosphate (DG-1,6-P2), comprised ?5 and ?10–15%, respectively, of the total 14C in the brain 45 min after a pulse or square-wave infusion of [14C]DG, and their levels were influenced by tissue glucose concentration. Both of these acid-labile compounds could be synthesized from DG-6-P by phosphoglucomutase in vitro. DG-6-P, DG-1-P, DG-1,6-P2, and ethanol-insoluble compounds were rapidly labeled after a pulse of [14C]DG, whereas there was a 10–30-min lag before there was significant labeling of minor labeled derivatives. During the time when there was net loss of [14C]DG-6-P from the brain (i.e., between 60 and 180 min after the pulse), there was also further metabolism of [14C]DG-6-P into other ethanol-soluble and ethanol-insoluble 14C-labeled compounds. These results demonstrate that DG is more extensively metabolized in rat brain than commonly recognized and that hydrolysis of [14C]DG-1-P can explain the overestimation of the [14C]DG content and underestimation of the metabolite pools of acid extracts of brain. Further metabolism of DG does not interfere with the autoradiographic DG method.  相似文献   

10.
Summary The patterns of hyoscyamine and proline accumulation were studied in Agrobacterium-transformed ‘hairy root’ cultures of Hyoscyamus muticus to determine if proline is a metabolic precursor of hyoscyamine. Root cultures were stressed osmotically with mannitol and the subsequent growth, hyoscyamine levels, and proline levels were measured after each transfer to fresh experimental medium for a total of four transfers. H. muticus ‘hairy roots’ were also treated with [U-14C] proline or [1,4-14C] putrescine and analyzed for radioactive hyoscyamine. Growth of ‘hairy root’ cultures was reduced by up to 90% in 0.4 M mannitol, and this inhibition persisted for at least four transfers. ‘Hairy root’ cultures of H. muticus accumulated hyoscyamine and free proline (up to 6-fold and 25-fold, respectively) when osmotically stressed with mannitol, and this effect also persisted for four transfers when grown in the same mannitol concentration. Because the total production of hyoscyamine was also increased by twofold, we conclude that the elevated hyoscyamine concentration results from increased hyoscyamine synthesis and not from reduced growth. H. muticus ‘hairy roots’ incorporated radioactivity from [1,4-14C] putrescine efficiently into hyoscyamine in both treatments, but failed to convert [U-14C] proline into hyoscyamine. We thus conclude that accumulated proline does not serve as a precursor for hyoscyamine.  相似文献   

11.
Survival of Lactococcus lactis subjected to different drying conditions was investigated. Mannitol most remarkably enhanced the survival of dried cells to a level almost equalling that of viable cells [log10 (cfu ml−1) = 9.42] as was found prior to the drying process (log10 = 9.6). In the absence of mannitol, a survival was reduced by a factor of 104. Drying of cells at 20 °C led to higher survival rates than drying at 30 °C. Mannitol enhanced the survival rate at both temperatures, and at both 20 °C and 30 °C the highest reduction in survival occurred when cells were dried at a water activity of 0.76. In the presence of mannitol, differences in survival after drying at different water activities were less pronounced. Rehydration of cells dried in the presence of mannitol resulted in an extended lag phase of 4 h compared to fresh cells. No growth or acidification of the culture medium was observed for 12 h in the case of rehydrated cells dried in the absence of mannitol. It was hypothesized that a radical scavenging activity of mannitol could partly explain these observations. Received: 28 August 1998 / Accepted: 2 October 1998  相似文献   

12.
Summary The effects of glucose and arginine on islet hormone biosynthesis were investigated using primary cell cultures prepared from islets of the anglerfish (Lophius americanus). After dispersion under sterile conditions, islet cells were maintained at 23° C in medium containing RPMI 1640 with Hanks' buffer, pH 7.5, modified by the adjustment of glucose (to 0.56 or 5.6 mM) and arginine (to 0.1, 1.15, or 10 mM) with the addition of 10% fetal bovine serum (dialyzed, heat inactivated) and penicillin/streptomycin. After 48 h, media were replaced by incorporation media containing [14C]isoleucine and [3H]tryptophan and incubated for an additional 8 h under otherwise identical conditions. Culture samples (cells plus media) were extracted, desalted, and gel filtered to identify and quantitate [14C]insulin, [3H]glucagon(s) plus [3H]somatostatin-28, and [3H]somatostatin-14 were In some experiments, [14C]insulin, [3H]glucagon(s), [3H]somatostatin-28, and [3H]somatostatin-14 were separated by high performance liquid chromatography. Raising the medium glucose from 0.56 (control) to 5.6 mM resulted in an augmentation in incorporation of [14C]isoleucine into insulin and an augmentation of [3H]tryptophan into glucagon(s) and somatostatin-14, but no change in incorporation of [3H]tryptophan into somatostatin-28. Raising the concentration of arginine from 0.1 to 1.15 or 10 mM resulted in a dose-dependent inhibition of labeled amino acid incorporation into all hormones except somatostatin-28. The results demonstrate the usefulness of the culture system for studying the modulation of hormone biosynthesis in anglerfish islet cells. This work was supported by Grants AM 16921 and AM 26378 from the National Institutes of Health, Bethesda, MD.  相似文献   

13.
Abstract— A 100,000 g supernatant fraction from rat brain that was passed through a column of Sephadex G-25-40 was able, after addition of some factors, to incorporate [I4C]arginine (apparent Km= 5 μM) and [14C]tyrosine (apparent Km= 20 μM) into its own proteins. The factors required for the incorporation of [14C]arginine were: ATP (optimal concentration = 0-25-2 μM) and Mg2+ (optimal concentration 5 mM). For the incorporation of [I4C]tyrosine the required factors were: ATP (apparent Km= 0-75 μM), Mg2+ (optimalconcentration 8-16 mM) and K+ (apparent Km= 16 mM). Addition of 19 amino acids did not enhance these incorporations. Optimal pHs were: for [14C]arginine and [14C]tyrosine, respectively, 7-4 and 7-0 in phosphate buffer and 7–9 and 7-3-8-1 in tris-HCl buffer. Pancreatic ribonuclease abolished the incorporation of [14C]arginine but had practically no effect in the incorporation of [14C]tyrosine. Furthermore, [14C]arginyl-tRNA was a more effective donor of arginyl groups than [14C]arginine, whereas [14C]tyrosyl-tRNA was considerably less effective than [14C]tyrosine. The incorporations of [14C]arginine and [14C]tyrosine into brain proteins were from 25- to 2000-fold higher than for any other amino acid tested (12 in total). In brain [14C]arginine incorporation was higher than in liver and thyroid but somewhat lower than in kidney. In comparison to brain, the incorporation of [14C]tyrosine was negligible in liver, thyroid or kidney. Kinetic studies showed that the macromolecular factor in the brain preparation was complex. The protein nature of the products was inferred from their insolubilities in hot TCA and from the action of pronase that rendered them soluble. [14C]Arginine was bound so that its a-amino group remained free. Maximal incorporation of [14C]tyrosine in brain of 30-day-old rats was about one-third of that in the 5-day-old rat. The changes with postnatal age in the incorporation of [14C]arginine were not statistically significant.  相似文献   

14.
The effect of cell turgor on sugar uptake in strawberry fruit cortex tissue   总被引:1,自引:0,他引:1  
A reduction in cell turgor has been shown to stimulate sugar uptake in several plant sink tissues and it may regulate the import of assimilate into the sink apoplast, as well as maintain cell turgor. To determine whether cell turgor influences sugar uptake by strawberry (Fragaria x ananassa Duch. cv. Brighton) fruit cortex tissue, disks were cut from greenhouse-grown primary fruit at the green-white stage of development and placed in buffered incubation solutions containing either mannitol or ethylene glycol as an osmoticum. Cell turgor of fruit disks was calculated from the difference between the water potential of bathing solution and tissue solute potential after incubation at various osmolarities. Cell turgor increased when tissue disks were placed into mannitol incubation solutions more dilute than the water potential of fresh tissue (about 415 mOsmol kg?1). The rate of uptake of [14C]-sucrose or [14C]-glucose decreased as osmolarity of the incubation solution increased, i.e. as cell turgor declined. Cell turgor and the rate of [14C]-sucrose uptake were unaffected when rapidly permeating ethylene glycol was used as an osmoticum. A decrease in cell turgor reduced both the Vmax of the saturable (carrier mediated) kinetic component of sucrose uptake, and the slope of the linear (diffusional) component. The sulfhydryl binding reagent p-chloromercuibenzenesulfonic acid, an inhibitor of the plasma membrane sucrose carrier, strongly inhibited only the saturable component of sucrose uptake. Increased uptake of the nonmetabolizable sugar, O-methyl-glucose, at high turgor was similar to that of glucose, indicating that carrier activity was influenced by cell turgor, not cell metabolism. Turgor did not influence efflux of [14C]-sucrose from disks and had no effect on cell viability. Strawberry fruit cells do not possess a sugar uptake system that is stimulated by a reduction in turgor.  相似文献   

15.
[14C]5,6-Dihydroxytryptamine ([14C] 5,6-DHT) and [14C]5,7-dihydroxytryptamine ([14C]5,7-DHT) were deaminated to toluene-isoamylalcohol extractable products when incubated with homogenates of rat hypothalamus or pons-medulla oblongata. [14C]5,6-Dihydroxyindole acetic acid ([14C]5.6-DHIAA) and [14C]5,7-dihydroxyindole acetic acid ([14C]5,7-DHIAA) were detected as MAO metabolites by TLC besides non-identified components. The conversion of [14C]5,6-DHT and [14C]5,7-DHT obeyed, at least initially, Michaelis-Menten kinetics (Km 5,7-DHT: 0.5 × 10?3M; Km 5,6-DHT: 1.25 × 10?3M). Inhibition of the reaction by the MAO A inhibitor, clorgyline, resulted in a typical double sigmoidal inhibition curve indicating that both amines are metabolized by both types of MAO (A and B). In deprenyl inhibition studies, however, 5,7- and 5,6-DHT seemed to be preferred substrates of MAO A. Incubation of rat brain homogenates with [14C]5,6-DHT and [14C]5,7-DHT or with the MAO metabolites [14C]5,6-DHIAA and [14C]5,7-DHIAA caused a time-dependent break-down of the dihydroxylated indole compounds with subsequent binding of radioactivity to perchloric acid insoluble tissue components. 5,6-DHT inactivated MAO in rat brain homogenates parallel to its decomposition and extensive protein binding. The inactivation of MAO by 5,6-DHT and the extensive binding of radioactivity to protein were antagonized by dithiothreitol (DTT), glutathione (GSH) and L-ascorbic acid. Reduction of [O2] in the incubation medium slightly attenuated the inactivation of MAO by 5,6-DHT. Catalase or superoxide dismutase failed to prevent MAO from being inactivated by 5,6-DHT. The results suggest that oxidation products of 5,6-DHT, e.g. its corresponding o-quinone, are involved in the inactivation of MAO in vitro and mainly responsible for the binding of radioactivity to brain proteins in vitro. Similar mechanisms may also be operative in the in vivo neurotoxicity of 5,6-DHT. The lack of inactivation of MAO by 5,7-DHT in vitro correlated with a low degree of radioactivity binding (from [14C]5,7-DHT) to homogenate protein pellets; the binding to proteins was barely influenced by GSH, cysteine, DTT and l -ascorbic acid. These latter findings do not provide a plausible explanation for the mechanism(s) involved in the well known in vivo neurotoxicity of 5,7-DHT.  相似文献   

16.
Albino rabbits of either sex were anesthetized, and a cannula was implanted permanently into the lateral ventricle. About 1 week later, the distribution of [14C]mescaline and its deaminated metabolite, [14C]trimethoxyphenylacetic acid ([14C]TMPA) in 12 brain regions was examined at 15, 60, and 180 min after the intraventricular injection of [14C]mescaline (0.5 mol in 0.05 ml saline).14C-radioactivity was rapidly distributed in all regions, reaching peak levels within 15 min. The spinal cord, superior colliculus, pons, hypothalamus, caudate, medulla oblongata, and inferior colliculus contained 23–57 nmol/g of mescaline; the thalamus, tegmentum, and cerebellum, 12–15 nmol/g; and the cerebrum and hippocampus, less than 10 nmol/g; the levels of [14C]TMPA ranged from 0.5 to 5 nmol/g. The levels of [14C]mescaline and of [14]TMPA in all brain areas were considerably decreased 180 min after its injection. Pretreatment with chlorpromazine (15 mg/kg, i.p., 30 min) lowered [14C]mescaline concentrations in the hippocampus, caudate, thalamus, and cerebrum and elevated them in the spinal cord, medulla oblongata, pons, and tegmentum; [14C]TMPA levels as the percentage of total radioactivity were not affected. Pretreatment with iproniazid (150 mg/kg, i.p., 18 h), on the other hand, uniformly reduced the TMPA levels in all brain areas, with the resultant increases in mescaline levels. The CPZ-effect in lowering the mescaline concentrations in the areas belonging to the limbic system may have significance in explaining its antihallucinogenic effect in humans and its ability to block the altered behavior induced by the latter drug in laboratory animals.  相似文献   

17.
Stems of Vicia faba plants were used to study phloem unloading because they are hollow and have a simple anatomical structure that facilitates access to the unloading site. After pulse labeling of a source leaf with 14CO2, stem sections were cut and the efflux characteristics of 14C-labeled sugars into various buffered solutions were determined. Radiolabeled sucrose was shown to remain localized in the phloem and adjacent phloem parenchyma tissues after a 2-hour chase. Therefore, sucrose leakage from stem segments prepared following a 75-minute chase period was assumed to be characteristic of phloem unloading. The efflux of 14C assimilates from the phloem was enhanced by 1 millimolar p-chloromercuribenzene sulfonic acid (PCMBS) and by 5 micromolar carbonyl cyanide m-chlorophenly hydrazone (CCCP). However, PCMBS inhibited and CCCP enhanced general leakage of nonradioactive sugars from the stem segments. Sucrose at concentrations of 50 millimolar in the free space increased efflux of [14C]sucrose, presumably through an exchange mechanism. This exchange was inhibited by PCMBS and abolished by 0.2 molar mannitol. Increasing the osmotic concentration of the efflux medium with mannitol reduced [14C]sucrose efflux. However, this inhibition seems not to be specific to sucrose unloading since leakage of total sugars, nonlabeled sucrose, glucose, and amino acids from the bulk of the tissue was reduced in a similar manner. The data suggest that phloem unloading in cut stem segments is consistent with passive efflux of sucrose from the phloem to the apoplast and that sucrose exchange via a membrane carrier may be involved. This is consistent with the known conductive function of the stem tissues, and contrasts with the apparent nature and function of unloading in developing seeds.  相似文献   

18.
Fry SC  Willis SC  Paterson AE 《Planta》2000,211(5):679-692
Maize (Zea mays L.) cell cultures incorporated radioactivity from [14C]cinnamate into hydroxycinnamoyl-CoA derivatives and then into polysaccharide-bound feruloyl residues. Within 5–20 min, the CoA pool had lost its 14C by turnover and little or no further incorporation into polysaccharides then occurred. The system was thus effectively a pulse–chase experiment. Kinetics of radiolabelling of diferulates (also known as dehydrodiferulates) varied with culture age. In young (1–3 d) cultures, polysaccharide-bound [14C]feruloyl- and [14C]diferuloyl residues were both detectable within 1 min of [14C]cinnamate feeding. Thus, feruloyl residues were dimerised <1 min after their attachment to polysaccharides. For at least the first 2.3 h after [14C]cinnamate feeding, polysaccharide-bound [14C]diferuloyl residues remained almost constant at ≈7% of the total polysaccharide-bound [14C]ferulate derivatives. Since feruloyl residues are attached to polysaccharides <1 min after the biosynthesis of the latter, and >10 min before secretion, the data show that extensive feruloyl coupling occurred intra-protoplasmically. Exogenous H2O2 (1 mM) caused little additional feruloyl coupling; therefore, wall-localised coupling may have been peroxidase-limited. In older (e.g. 4 d) cultures, less intraprotoplasmic coupling occurred: during the first 2.5 h, polysaccharide-bound [14C]diferuloyl residues were a steady 1.4% of the total polysaccharide-bound [14C]ferulate derivatives. In contrast to the situation in younger cultures, exogenous H2O2 induced a rapid 4- to 6-fold increase in all coupling products, indicating that coupling in the walls was H2O2-limited. In both 2- and 4-d-old cultures, polysaccharide-bound 14C-trimers and larger coupling products exceeded [14C]diferulates 3- to 4-fold, but followed similar kinetics. Thus, although all known dimers of ferulate can now be individually quantified, it appears to be trimers and larger products that make the major contribution to cross-linking of wall polysaccharides in cultured maize cells. We argue that feruloyl arabinoxylans that are cross-linked before and after secretion are likely to loosen and tighten the cell wall, respectively. The consequences for the control of cell expansion and for the response of cell walls to an oxidative burst are discussed. Received: 19 January 2000 / Accepted: 13 April 2000  相似文献   

19.
The purpose of the present study was to assess atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) mineralization by indigenous microbial communities and to investigate constraints associated with atrazine biodegradation in environmental samples collected from surface soil and subsurface zones at an agricultural site in Ohio. Atrazine mineralization in soil and sediment samples was monitored as 14CO2 evolution in biometers which were amended with 14C-labeled atrazine. Variables of interest were the position of the label ([U-14C-ring]-atrazine and [2-14C-ethyl]-atrazine), incubation temperature (25°C and 10°C), inoculation with a previously characterized atrazine-mineralizing bacterial isolate (M91-3), and the effect of sterilization prior to inoculation. In uninoculated biometers, mineralization rate constants declined with increasing sample depth. First-order mineralization rate constants were somewhat lower for [2-14C-ethyl]-atrazine when compared to those of [U-14C-ring]-atrazine. Moreover, the total amount of 14CO2 released was less with [2-14C-ethyl]-atrazine. Mineralization at 10°C was slow and linear. In inoculated biometers, less 14CO2 was released in [2-14C-ethyl]-atrazine experiments as compared with [U-14C-ring]-atrazine probably as a result of assimilatory incorporation of 14C into biomass. The mineralization rate constants (k) and overall extents of mineralization (P max ) were higher in biometers that were not sterilized prior to inoculation, suggesting that the native microbial populations in the sediments were contributing to the overall release of 14CO2 from [U-14C-ring]-atrazine and [2-14C-ethyl]-atrazine. A positive correlation between k and aqueous phase atrazine concentrations (C eq ) in the biometers was observed at 25°C, suggesting that sorption of atrazine influenced mineralization rates. The sorption effect on atrazine mineralization was greatly diminished at 10°C. It was concluded that sorption can limit biodegradation rates of weakly-sorbing solutes at high solid-to-solution ratios and at ambient surface temperatures if an active degrading population is present. Under vadose zone and subsurface aquifer conditions, however, low temperatures and the lack of degrading organisms are likely to be primary factors limiting the biodegradation of atrazine.Abbreviations C eq solution phase atrazine concentration at equilibrium - C s amount of atrazine sorbed - CLA [2-14C-ethyl]-atrazine - k first-order mineralization rate constant - K d sorption coefficient - m slope - P max maximum amount of CO2 released - RLA [U-14C-ring]-atrazine  相似文献   

20.
Specifically radiolabeled [14C-lignin]lignocelluloses were prepared from the aquatic macrophytes Spartina alterniflora, Juncus roemerianus, Rhizophora mangle, and Carex walteriana by using [14C]phenylalanine, [14C]tyrosine, and [14C]cinnamic acid as precursors. Specifically radiolabeled [14C-polysaccharide]lignocelluloses were prepared by using [14C]glucose as precursor. The rates of microbial degradation varied among [14C-lignin]lignocelluloses labeled with different lignin precursors within the same plant species. To determine the causes of these differential rates, [14C-lignin]lignocelluloses were thoroughly characterized for the distribution of radioactivity in nonlignin contaminants and within the lignin macromolecule. In herbaceous plants, significant amounts (8 to 24%) of radioactivity from [14C]phenylalanine and [14C]tyrosine were found associated with protein, although very little (3%) radioactivity from [14C]cinnamic acid was associated with protein. Microbial degradation of radiolabeled protein resulted in overestimation of lignin degradation rates in lignocelluloses derived from herbaceous aquatic plants. Other differences in degradation rates among [14C-lignin]lignocelluloses from the same plant species were attributable to differences in the amount of label being associated with ester-linked subunits of peripheral lignin. After acid hydrolysis of [14C-polysaccharide]lignocelluloses, radioactivity was detected in several sugars, although most of the radioactivity was distributed between glucose and xylose. After 576 h of incubation with salt marsh sediments, 38% of the polysaccharide component and between 6 and 16% of the lignin component (depending on the precursor) of J. roemerianus lignocellulose was mineralized to 14CO2; during the same incubation period, 30% of the polysaccharide component and between 12 and 18% of the lignin component of S. alterniflora lignocellulose was mineralized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号