首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Chub Squalius torgalensis and nase Chondrostoma lusitanicum , in a Mediterranean stream, showed important differences in life-history traits and population dynamics. Both species reached mean maturity at age 2 years. Chub lived up to age 5 years, spawned in March to June, grew at a maximum rate of 0·59 mm mm−1 year−1 and showed a low reproductive allocation, with fecundity and egg size increasing with body size. Nase lived up to age 4 years, spawned in January to April, grew at a maximum rate of 0·46 mm mm−1 year−1 and showed a high reproductive allocation, with egg size independent of body size. Both chub and nase showed moderate fluctuations in population size during 1991–1998, but differed in factors driving density at age. Density of age 1 year juvenile chub decreased following severe summer droughts and proportionate survival prevailed thereafter. Density of age 2 year adult nase decreased following severe spring floods, but neither environmental nor parental stock effects were detected for juveniles and older fishes. The results illustrated the interplay between life history and environmental variability in driving fish population dynamics, with impacts of both summer droughts and spring floods being contingent on species-specific patterns of spawning and reproductive investment.  相似文献   

2.
Western mosquitofish (Gambusia affinis) are one of the most destructive introduced species in the American West. The negative impact of introduced species on native taxa depends on their spatio-temporal overlap, which will determine the availability of refugia for native species. Experiments on the mechanisms underlying the interactions between introduced and native species rarely address habitat use, overlap, and refugia because individuals are confined to enclosures. In a previous study we used cages, microcosms, and aquaria to show that mosquitofish could prey on and out-compete native least chub (Iotichthys phlegethontis). In this study, we examined the spatio-temporal overlap between mosquitofish and least chub under natural conditions. We found periods of overlap and partitioning in the seasonal and diel habitat use of these species. Both species used shallow habitats during the day and night throughout the spring when least chub were spawning. Predation by adult mosquitofish on young least chub during the spring likely explains the reduction in least chub recruitment in the presence of mosquitofish. During the summer least chub avoided mosquitofish by exclusively using cooler habitats, or by occupying deeper, cooler habitats during the day when mosquitofish were active, and shallower, warmer habitats at night when mosquitofish were inactive. A shift to cooler habitats in the presence of mosquitofish may result in decreased growth and fecundity of least chub. However, we suggest that a reduction of warm shallow habitat may have a disproportionately greater negative impact on mosquitofish than species native to temperate regions, such as least chub. Habitat manipulations that reduce or eliminate warm habitats may ameliorate the harmful effects of mosquitofish and promote the long-term persistence of native taxa.  相似文献   

3.
1. Animals exploiting different resources may nevertheless interact if one species indirectly alters the abundance and distribution of the food of the other. To analyse this indirect effect, we conducted experiments in artificial pools and in the field to investigate the influence of the algivorous fish Plecoglossus altivelis altivelis (known as the ayu) on two species of insectivorous benthic fish, Pseudogobio esocinus esocinus and the goby Gymnogobius petschiliensis .
2. In the pool experiments, algal biomass was not correlated with the number of ayu, but the percentage of blue-green bacteria rose as the number increased. The number of aquatic macroinvertebrates on the upper surface of ceramic tiles placed in the pool bed decreased as the number of ayu increased.
3. Although ayu and the benthic species did not interact directly, the reduction in invertebrate abundance on the upper surface of tiles in the pool reduced the growth rate of the benthic insectivores.
4. In field experiments, the introduction of ayu into habitats with P. esocinus esocinus or G. petschiliensis reduced the growth rate of these benthic fish. In the field experiment that was carried out over 5 years in the G. petschiliensis habitat, the population density of the goby decreased when ayu were stocked.
5. The ayu is a strong interactor or bioengineer in streams, affecting not only benthic algae but also aquatic invertebrates and fishes. We conclude that to predict the outcome of interspecific interactions amongst fishes in streams with high algal production, possible indirect effects must be considered alongside better known direct effects.  相似文献   

4.
1. The effects of predation risk, fish density and discharge on habitat use by juvenile brown trout, Salmo trutta, in four artificial streams were studied. Each stream contained three habitats, riffles, runs and pools, the latter two each being further divided into shallow margins and deeper mid-regions. 2. The presence of northern pike, Esox Indus, caused trout to decrease use of pool midregions, where pike also occurred, and to increase use of other habitats. Increasing the number of trout caused trout to increase use of pools and the shallow margins of runs. Decreasing discharge reduced the area of the run and pool margins covered by water, thereby reducing use of these areas by trout. 3. Habitat selection indices for the different treatments were calculated. The data indicated that riffles and the mid-regions of runs were preferred habitats, whereas run margins and pools were inferior habitats used when intraspecific fish densities were high. 4. Despite density- and discharge-dependent habitat use by trout, the number of trout consumed by pike was independent of trout density and discharge. 5. The results reveal the flexibility of habitat use by trout and illustrate the potential danger of applying data on habitat use in one stream to others where habitat availability and bioric interactions may differ.  相似文献   

5.
Droughts and summer drying create unusual temporary aquatic habitats in the form of isolated pools in many small streams around the world. To examine spatial and temporal variation in fish community structure of drying stream pools, their relation to abiotic environmental variables, and associations among species, fish were sampled during summer 1995 and 1996 from pools of four streams in the Ozark mountains, Arkansas, USA. Redundancy analysis of physical-chemical variables showed significant differences among stream sites, but no significant difference between years or stream site by year interaction. Stream sites separated consistently along axes one (habitat heterogeneity) and two (temperature/canopy cover) in both years. Redundancy analysis of fish species-size class densities showed a significant stream site by year interaction. Groupings of stream sites based on fish assemblages were not well explained by physical-chemical variables measured at the pool scale, but were related to location within the drainage basin, and these groupings differed between years. There were 27 (15.8%) and 10 (5.8%) significant associations found among fish species-size classes in 1995 and 1996, respectively, and all but two significant associations in 1995 were positive. Pool depth, habitat heterogeneity, pool size and dissolved oxygen/canopy cover were important local abiotic factors depending on response variables examined. In both years, large fish total density, large central stoneroller density (80 mm TL), and small sunfish (<80 mm TL) density were positively related to pool depth. Otherwise, there was no consistent relationship between physical-chemical variables and dependent variables (fish density and species richness) within a year or between years for a given dependent variable. These results support the hypothesis that local abiotic factors are important in structuring fish assemblages in harsh environments, but the importance of those factors varies temporally, and regional influences appear to override local abiotic conditions as factors structuring fish assemblages in drying stream pools. Predation by terrestrial vertebrates may also be an important factor structuring these fish assemblages that has been largely overlooked.  相似文献   

6.
Fish size and habitat depth relationships in headwater streams   总被引:5,自引:0,他引:5  
Summary Surveys of 262 pools in 3 small streams in eastern Tennessee demonstrated a strong positive relationship between pool depth and the size of the largest fish within a pool (P<0.001). Similarly, the largest colonizers of newly-created deep pools were larger than the colonizers of shallow pools. We explored the role of predation risk in contributing to the bigger fish — deeper habitat pattern, which has been noted by others, by conducting five manipulative field experiments in two streams. Three experiments used stoneroller minnows (Campostoma anomalum); one used creek chubs (Semotilus atromaculatus); and one used striped shiners (Notropis chrysocephalus). The stoneroller experiments showed that survival of fish approximately 100 mm in total length (TL) was much lower in shallow pools (10 cm deep) than in deep (40 cm maximum) pools (19% versus 80% survival over 12 d in one experiment) and added cover markedly increased stoneroller survival in shallow pools (from 49% to 96% in an 11-d experiment). The creek chub experiment showed that, as for stonerollers, pool depth markedly influenced survival: the chubs survived an average of 4.9 d in shallow pools and >10.8 d in deep pools. In the striped shiner experiment in shallow artificial streamside troughs, no individuals 75–100 mm TL survived as long as 13 d, where-as smaller (20–25 mm) fish had 100% survival over 13 d. The results of the experiments show that predation risk from wading/diving animals (e.g., herons and raccoons) is much higher for larger fishes in shallow water than for these fishes in deeper water or for smaller fish in shallow water. We discuss the role of predation risk from two sources (piscivorous fish, which are more effective in deeper habitats, and diving/wading predators, which are more effective in shallow habitats) in contributing to the bigger fish — deeper habitat pattern in streams.  相似文献   

7.
The intestinal helminth communities of creek chub (Semotilus atromaculatus) were studied in the streams of southeastern Nebraska to characterize spatial variation, to determine whether drainages act as regional species pools, and to examine the spatial patterning of individual parasite species within and among drainages. Creek chub were sampled in the summer of 2003 and the spring of 2004 at each of 12 sites distributed evenly among 3 drainages in the Big Nemaha River watershed. Four intestinal helminths were recovered: Allocreadium lobatum, Proteocephalus sp., Rhabdochona canadensis, and Paulisentis missouriensis. Host size had little or no effect on the composition of the parasite communities of creek chub, either among individual fish or among samples. In contrast, drainage and sample date explained 82% of the variation in mean infracommunity species richness among samples, and 62% of the variation in mean infracommunity abundance among samples. Drainage differences were determined by the distributions of P. missouriensis and R. canadensis; whereas, A. lobatum and Proteocephalus sp. were more uniformly distributed among drainages. Each drainage was characterized by a unique pattern of species diversity at infracommunity, component community, and drainage levels of organization.  相似文献   

8.
1. To examine the strength and role of indirect effects through trophic cascades by omnivorous fish on algal biomass in streams, we introduced one of four fish species (ayu Plecoglossus altivelis altivelis, pike gudgeon Pseudogobio esocinus esocinus, Japanese dace Tribolodon hakonensis and pale chub Zacco platypus) in experimental pools. We also investigated the indirect effects of gudgeon, dace and chub on the growth of ayu. 2. We chose the four fish species across a continuum of omnivory. Ayu fed mainly on benthic algae, and gudgeon predominantly on invertebrates. Dace and chub fed on both algae and invertebrates, but dace preyed on invertebrates more than chub. 3. The presence of gudgeon, dace and chub reduced the number of algal-feeding invertebrates and increased the algal biomass through trophic cascades. Consequently, ayu growth rate over the experimental period in pools with one of the three fish species was 25.9-44.1 times greater than the growth rate in pools with only ayu. 4. The positive indirect effect on ayu growth was large for gudgeon and dace and small for chub, whereas the addition of ayu reduced ayu growth considerably due to intraspecific competition. 5. The relative intensity of indirect effects on ayu growth through trophic cascades was predictable from the food overlap between ayu and the other fishes. However, the similar strength of indirect effects by gudgeon and dace that fed differently on algae and invertebrates suggests that feeding behaviour, prey preference and trait-mediated indirect interactions were also important in the prediction.  相似文献   

9.
10.
SUMMARY 1. There is little information on the impacts of deforestation on the fish fauna in neotropical streams, and on parameters influencing species diversity and community structure of fish. We analysed these aspects in 12 stream sites in the Ecuadorian Amazon. The stream sites represented a large gradient in canopy cover and were located in an area of fragmented forest. While some streams had been deforested, they had not suffered gross degradation of the habitat.
2. The species richness of stream fish was not related to deforestation. Local fish diversity (Fisher's Alpha) was positively related to the surface area of stream pools (m2). Beta diversity was higher among forested than deforested sites, indicating greater heterogeneity in species composition among forested than deforested sites. The percentage of rare species was positively correlated with canopy cover.
3. Total fish density increased with deforestation, and the fish community changed from dominance by omnivorous and insectivorous Characiformes at forested sites to dominance of periphyton-feeding loricariids at deforested sites.
4. Multidimensional statistical analysis of fish community structure showed that six environmental variables (the area of stream bottom covered by leaves, relative pool area, particulate organic matter, mean depth, conductivity and suspended solids) were related to the ordination axes. The presence of leaves, which was strongly correlated to canopy cover, was the variable most closely related to fish community structure, while relative pool area was the second strongest variable. Thus, fish community structure was strongly affected by deforestation.  相似文献   

11.
In this study, we focused on the drivers of micro- and mesohabitat variation of drift in a small trout stream with the goal of understanding the factors that influence the abundance of prey for drift-feeding fish. We hypothesized that there would be a positive relationship between velocity and drift abundance (biomass concentration, mg/m3) across multiple spatial scales, and compared seasonal variation in abundance of drifting terrestrial and aquatic invertebrates in habitats that represent the fundamental constituents of stream channels (pools, glides, runs, and riffles). We also examined how drift abundance varied spatially within the water column. We found no relationship between drift concentration and velocity at the microhabitat scale within individual pools or riffles, suggesting that turbulence and short distances between high- and low-velocity microhabitats minimize changes in drift concentration through settlement in slower velocity microhabitats. There were also minimal differences in summer low-flow drift abundance at the mesohabitat scale, although drift concentration was highest in riffle habitats. Similarly, there was no differentiation of drifting invertebrate community structure among summer samples collected from pools, glides, runs, and riffles. Drift concentration was significantly higher in winter than in summer, and variation in drift within individual mesohabitat types (e.g., pools or riffles) was lower during winter high flows. As expected, summer surface samples also had a significantly higher proportion of terrestrial invertebrates and higher overall biomass than samples collected from within the water column. Our results suggest that turbulence and the short length of different habitat types in small streams tend to homogenize drift concentration, and that spatial variation in drift concentrations may be affected as much by fish predation as by entrainment rates from the benthos. Handling editor: Robert Bailey  相似文献   

12.
Spawning salmon create patches of disturbance through redd digging which can reduce macroinvertebrate abundance and biomass in spawning habitat. We asked whether displaced invertebrates use non-spawning habitats as refugia in streams. Our study explored how the spatial and temporal distribution of macroinvertebrates changed during a pink salmon (Oncorhynchus gorbuscha) spawning run and compared macroinvertebrates in spawning (riffle) and non-spawning (refugia) habitats in an Alaskan stream. Potential refugia included: pools, stream margins and the hyporheic zone, and we also sampled invertebrate drift. We predicted that macroinvertebrates would decline in riffles and increase in drift and refugia habitats during salmon spawning. We observed a reduction in the density, biomass and taxonomic richness of macroinvertebrates in riffles during spawning. There was no change in pool and margin invertebrate communities, except insect biomass declined in pools during the spawning period. Macroinvertebrate density was greater in the hyporheic zone and macroinvertebrate density and richness increased in the drift during spawning. We observed significant invertebrate declines within spawning habitat; however in non-spawning habitat, there were less pronounced changes in invertebrate density and richness. The results observed may be due to spawning-related disturbances, insect phenology, or other variables. We propose that certain in-stream habitats could be important for the persistence of macroinvertebrates during salmon spawning in a Southeast Alaskan stream.  相似文献   

13.
The number of fish habitat improvement schemes has greatly increased in response to the widespread degradation of aquatic ecosystems. However, many of these enhancement projects often fail to create expected habitat conditions, because they are rarely planned and executed with inputs from the species’ habitat requirements throughout their life histories, and it is frequently assumed that the implementation of a specific instream structure for habitat improvement will always benefit all species present. Using a 2D hydraulic model, the present study evaluates the potential habitat improvement for two critically endangered fish species—the Southwestern arched-mouth nase Iberochondrostoma almacai and the Arade chub Squalius aradensis—resulting from simulating the introduction of different instream structures (islands, lateral bays, and deflectors) in a modified Mediterranean river reach. The introduction of islands in the river channel was found to be the best improvement measure for YOY and juvenile nase and chub, as shown by increases in the mean annual Weighted Usable Area (WUA) of more than 100 and 50%, respectively, compared to the present conditions. On the other hand, the simulation with current deflectors proved to be the worst scenario, particularly for nase, with mean annual WUA decreasing by 3.6, 17.8 and 22.7% for YOY, juveniles and adults, respectively. The findings of this study point to the need to account for different species life-history stages when modelling the implementation of instream structures for habitat improvement and also provide a sound basis for future conservation-related studies conducted in Mediterranean rivers that harbour other threatened “sister” species.  相似文献   

14.
1. Analysis of drainage networks provides a framework to evaluate the densities and distributions of prey species relative to locations of their predators. Upstream migration by diadromous shrimp (Atya lanipes and Xiphocaris elongata) during their life cycle provides access to headwater refugia from fish predation, which is intense in estuaries and coastal rivers. 2. We postulate that geomorphic barriers (such as large, steep waterfalls >3.5 m in height), can directly limit the distribution of predatory fishes and, indirectly, affect the densities of their prey (freshwater shrimps) in headwater streams. 3. We compared densities of shrimp in pools above and below waterfalls, in four headwater tributaries in two river basins of the Luquillo Mountains of northeastern Puerto Rico. We measured shrimp densities twice a year over 8 years (1998–2005) in Prieta, Toronja, Bisley 3 and Bisley 5 streams, which differ in drainage network positions relative to steep waterfalls in Río Espíritu Santo and Río Mameyes. 4. Predatory fishes are absent in the Prieta and Toronja pools and present in Bisely 3 and in lower Bisley 5 pools. Atya lanipes and X. elongata rarely occur in the Bisley streams where predatory fishes are present but these shrimps are abundant in Prieta and Toronja, streams lacking predatory fishes. 5. The mean carapace length of X. elongata is longer in pools where fish are present (Bisley 3 and lower Bisley 5) than in pools lacking fish (Prieta, Toronja, Upper Bisley 5). The increased body size is primarily due to significantly longer rostrums of individuals in stream reaches with fish (below waterfall barriers) than in those reaches lacking fish (above waterfall barriers). Rostrum length may be an adaptation to avoid predation by visually feeding fishes. 6. Atya lanipes and X. elongata distributions and densities were predicted primarily by drainage network position relative to the presence or absence of predatory fishes. High, steep waterfalls effectively impeded fish from moving upstream and created a spatial refuge. Xiphocaris elongata may rely on size refugia (longer rostrum) to minimize predation where spatial refugia are lacking.  相似文献   

15.
1. Demand for water is increasing and water managers need to know how much they can remove from a stream before there are significant detrimental effects on its biological integrity. Flow reduction alters a number of habitat variables known to be important to aquatic invertebrates such as depth, velocity, temperature and fine sediment accumulation. Some taxa may attempt to use instream refugia to mitigate the effects of flow reduction.
2. We experimentally manipulated flows by constructing weirs and diversions in three small New Zealand streams. Discharge was reduced by 88–96%. We tested the hypothesis that macroinvertebrates would use pools and the hyporheic zone as refugia during short-term (1-month) periods of reduced flow.
3. We sampled hyporheic invertebrates with colonization chambers and pool invertebrates with kick nets within a before-after, control-impact (BACI) experimental design. A suite of physicochemical parameters was measured concurrently including surface and hyporheic temperatures.
4. Flow reduction significantly decreased velocity (60–69%) in all streams. Depth (18–61%) and wetted width (24–31%) tended to decrease but these changes were not always significant. Sediment cover increased the most in farmland streams (10–80%). Apart from decreasing temperature range (18–26%), flow reduction had little impact on the surface water temperatures.
5. Flow reduction had no impact on the abundance of common pool macroinvertebrates or on the abundance, vertical distribution or community composition of hyporheic macroinvertebrates.
6. Our results suggest that aquatic macroinvertebrates are resistant to short-term, severe flow reduction as long as some water remains.  相似文献   

16.
1. We hypothesised that adult insects actively monitor potential habitats for the presence of fish by means of chemical cues and avoid sites that pose significant risks. This was examined by quantifying colonisation of insects in outdoor pools with no fish (controls), fish (direct predation effect) or caged fish (chemical predator cues).
2. A significant direct effect of predation was found, but no indirect effect (avoidance of chemical cue pools), on the total biomass of colonising insects. However, predatory insects avoided fish-cue pools, thus releasing non-predatory insects from predation. This resulted in significantly greater biomass of non-predatory insects in fish-cue pools than control pools.
3. Fish reduced the number of species of colonising insects in pools through predation. This negative influence of fish implies that caution is necessary when stocking wetlands and ponds with fish if the goal is to maximise biodiversity.
4. Our data suggest that although predatory aquatic insects may use chemical signals to assess the quality of potential habitats with respect to predation risk, direct predation is the main method by which fish affect insect assemblages in ponds. Because fish and invertebrate predators may both have strong effects on prey mortality, behavioural adjustment by insects to the actual predator regime within a habitat should be more important than avoiding colonisation of habitats with fish.  相似文献   

17.
Summary 1. Natural aquatic communities or habitats cannot be fully replicated in the wild, so little is known about how initially identical communities might change over time, or the extent to which observed changes in community structure are caused by internal factors (such as interspecific interactions or traits of individual species) versus factors external to the local community (such as abiotic disturbances or invasions of new species).
2. We quantified changes in seven initially identical fish assemblages, in habitats that were as similar as possible, in seminatural artificial streams in a 388-day trial (May 1998 to May 1999), and compared the change to that in fish assemblages in small pools of a natural stream during a year. The experimental design excluded floods, droughts, immigration or emigration. The experimental fish communities diverged significantly in composition and exhibited dissimilar trajectories in multivariate species space. Divergence among the assemblages increased from May through August, but not thereafter.
3. Differences among the experimental assemblages were influenced by differences that developed during the year in algae cover and in potential predation (due to differential survival of sunfish among units).
4. In the natural stream, fish assemblages in small pools changed more than those in the experimental units, suggesting that in natural assemblages external factors exacerbated temporal variation.
5. Our finding that initially identical assemblages, isolated from most external factors, would diverge in the structure of fish assemblages over time suggests a lack of strong internal, deterministic controls in the assemblages, and that idiosyncratic or stochastic components (chance encounters among species; vagaries in changes in the local habitat) even within habitat patches can play an important role in assemblage structure in natural systems.  相似文献   

18.
Seven sites on three tributaries with intermittent flow regimes in the middle reaches of the Guadiana, i.e. Xévora, Caia and Degebe, were sampled approximately every 3 months from April 1995 to April 1997. The density and biomass of fish were greater in downstream rivers and sites. Along the Xévora River, a series of point abundance samples showed evidence of fish zonation along the river. Canonical correspondence analysis (CCA) suggested a simple relationship between the different species and their preferred habitat. The small-sized Rutilus alburnoides and Leuciscus pyrenaicus used most or all of the habitats with some cover and flowing water. Greater concentrations of larger fish were found in downstream reaches which generally had greater depths as stream width increased: large Barbus microcephalus , B. steindachneri and B. comiza preferred such sites on the Degebe River. Droughts in seasonal Mediterranean streams such as the Guadiana River are a predictable natural disturbance. In the summer, flow ceases and some stretches of river consist of isolated pools. This results in intense aggregations of fish and possible competition for food and/or space. Although some species are well adapted to natural droughts, habitat degradation and possibly the introduction of exotic species contribute to marked variability in species composition.  相似文献   

19.
  1. The hyporheic zone is an important habitat for benthic invertebrates and early-developmental stages of gravel spawning fish. However, the eutrophication of running waters and, in turn, the excessive periphyton biomass leads to its biological clogging. The result of these processes is oxygen depletion and a reduction in the habitat quality of the hyporheic zone.
  2. This study assessed whether top-down effects of two important European river fish species, the large herbivorous cypriniform common nase (Chondrostoma nasus, L.) and the large omnivorous cypriniform European chub (Squalius cephalus, L.), can reduce eutrophication effects in the hyporheic zone. A 4-week mesocosm-based field experiment in a eutrophic river was conducted using cage enclosures stocked or not with either nase or chub.
  3. The top-down control of periphyton was expected to reduce biological clogging and thereby increase oxygen availability in the hyporheic zone. Accordingly, we hypothesised that in enclosures stocked with either fish the concentrations of dissolved oxygen in the hyporheic zone would be higher and the periphyton biomass would be lower than in enclosures without fish stocking.
  4. Hyporheic oxygen concentrations were significantly higher in enclosures stocked with either nase or chub than in enclosures without fish stocking. However, periphyton ash-free dry mass was significantly reduced only in enclosures stocked with nase, not in those stocked with chub. Thus, the positive effects of nase and chub on hyporheic oxygen availability were caused by different mechanisms.
  5. Our results demonstrate that nase and chub can reduce eutrophication effects in the hyporheic zone of running waters. Hence, protecting and enhancing stocks of herbivorous and omnivorous fish will contribute to restoring the hyporheic zone in efforts to preserve biodiversity in eutrophic rivers.
  相似文献   

20.
1. Understanding factors that regulate the assembly of communities is a main focus of ecology. Human‐engineered habitats, such as reservoirs, may provide insight into these assembly processes because they represent novel habitats that are subjected to colonization by fishes from the surrounding river basin or transported by humans. By contrasting community similarity within and among reservoirs from different drainage basins to nearby stream communities, we can test the relative constraints of reservoir habitats and regional species pools in determining species composition of reservoirs. 2. We used a large spatial database that included intensive collections from 143 stream and 28 reservoir sites within three major river basins in the Great Plains, U.S.A., to compare patterns of species diversity and community structure between streams and reservoirs and to characterize variation in fish community structure within and among major drainage basins. We expected reservoir fish faunas to reflect the regional species pool, but would be more homogeneous that stream communities because similar species are stocked and thrive in reservoirs (e.g. planktivores and piscivores), and they lack obligate stream organisms that are not shared among regional species pools. 3. We found that fish communities from reservoirs were a subset of fishes collected from streams and dominant taxa had ecological traits that would be favoured in lentic environments. Although there were regional differences in reservoir fish communities, species richness, patterns of rank abundance and community structure in reservoir communities were more homogonous across three major drainage basins than for stream communities. 4. The general pattern of convergence of reservoir fish community structure suggests their assembly is constrained by local factors such as habitat and biotic interactions, and facilitated by the introduction of species among basins. Because there is a reciprocal transfer of biota between reservoirs and streams, understanding factors structuring both habitats is necessary to evaluate the long‐term dynamics of impounded river networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号