首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用非甲羟戊酸途径抑制剂磷甘霉素和甲羟戊酸途径抑制剂洛伐它汀对中国红豆杉悬浮细胞培养物进行处理.在添加和未添加茉莉酸甲酯诱导的情况下,前者使紫杉醇产量减少了2/5和1/5,后者使紫杉醇产量减少了1/6和1/10,表明两种途径对紫杉醇的生物合成都具有贡献,其中非甲羟戊酸途径贡献较大;通过定量PCR技术分别检测两条途径的关键酶5-磷酸脱氧木酮糖还原异构酶(DXR)和3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)mRNA水平的变化,发现两种抑制剂都能够激活hmgr和dxr的转录,表明两种代谢途径之间存在协同作用,共同为紫杉醇的生物合成提供前体.  相似文献   

2.
The transient growth of Artemisia annua hairy roots was compared for cultures grown in shake flasks and in bubble column and mist reactors. Instantaneous growth rates were obtained by numerically differentiating the transient biomass measurements. Specific sugar consumption rates showed good agreement with literature values. From the growth rate and sugar consumption rate, the specific yield and maintenance coefficient for sugar were determined for all three culture systems. These values were statistically indistinguishable for roots grown in shake flasks and bubble columns. In contrast, the values for roots grown in bubble columns and mist reactors were statistically different, suggesting that sugar utilization by roots grown in these two systems may be different. By measuring respiration rates in the bubble column reactor we also determined the actual biomass yield and maintenance coefficient for O(2) and CO(2). Together with an elemental analysis of the roots, this allowed us to obtain a reasonable carbon balance.  相似文献   

3.
Suspension cells of Taxus chinensis were cultivated in both shake flasks and bioreactors. The production of taxuyunnanine C (TC) was greatly reduced when the cell cultures were transferred from shake flasks to bioreactors. Oxygen supply, shear stress and stripping-off of gaseous metabolites were considered as potential factors affecting the taxane accumulation in bioreactors. The effects of oxygen supply on the cell growth and metabolism were investigated in a stirred tank bioreactor by altering its oxygen transfer rate (OTR). It was found that both the pattern and amount of TC accumulation were not much changed within the range of OTR as investigated. Comparative studies on the cell cultivation in low shear and high shear generating bioreactors suggest that the decrease of TC formation in bioreactors was not due to the different shear environments in different cultivation vessels. An incorporation of 2% CO(2) in the inlet air was beneficial for the cell growth, but did not improve the TC production in bioreactors. Furthermore, the effects of different levels of ethylene addition into the inlet air on the cell growth and TC production were investigated in a bubble column reactor. The average cell growth rate increased from 0.146 to 0.204 d(-1) as the ethylene concentration was raised from 0 to 50 ppm, and both the content and production of TC were also greatly improved by ethylene addition. At an ethylene concentration of 18 ppm, the highest TC content and volumetric production in the reactor reached 13.28 mg/(g DW) and 163.7 mg/L, respectively, which were almost the same as those in shake flasks. Compared with the control reactor (bubble column without ethylene supplementation), the maximum TC content was increased by 82% and the total production of TC was doubled. The results indicate that ethylene is a key factor in scaling up the process of the suspension cultures of T. chinensis from a shake flask to a bioreactor.  相似文献   

4.
Summary The efficient exchange of gases between roots and their environment is one of the biggest challenges in bioreactor design for transformed root cultures. Gas-phase reactors can alleviate this problem as well as provide a new tool for studying the biological response of roots and other differentiated tissues to changes in the gas phase composition. In our comparison of liquid- and gas-phase reactors, roots grown in liquid (shake flasks or bubble column reactors) are shown to be under hypoxic stress. Roots grown in a gas-phase reactor (nutrient mist), while not hypoxic, produced 50% less biomass. These results suggest that the response of the tissues to gas phase composition are complex and need further study.  相似文献   

5.
Batch cultivations of the nikkomycin Z producer Streptomyces tendae were performed in three different parallel bioreactor systems (milliliter-scale stirred-tank reactors, shake flasks and shaken microtiter plate) in comparison to a standard liter-scale stirred-tank reactor as reference. Similar dry cell weight concentrations were measured as function of process time in stirred-tank reactors and shake flasks, whereas only poor growth was observed in the shaken microtiter plate. In contrast, the nikkomycin Z production differed significantly between the stirred and shaken bioreactors. The measured product concentrations and product formation kinetics were almost the same in the stirred-tank bioreactors of different scale. Much less nikkomycin Z was formed in the shake flasks and MTP cultivations, most probably due to oxygen limitations. To investigate the non-Newtonian shear-thinning behavior of the culture broth in small-scale bioreactors, a new and simple method was applied to estimate the rheological behavior. The apparent viscosities were found to be very similar in the stirred-tank bioreactors, whereas the apparent viscosity was up to two times increased in the shake flask cultivations due to a lower average shear rate of this reactor system. These data illustrate that different engineering characteristics of parallel bioreactors applied for process development can have major implications for scale-up of bioprocesses with non-Newtonian viscous culture broths.  相似文献   

6.
以‘西伯利亚’百合(Lilium ‘Siberia’)花蕾期、半开期、盛开期、衰败期的花瓣为材料,利用RNA-seq技术对其转录组进行高通量测序,分析单萜合成途径中差异表达的基因并阐明其分子机制。结果显示,‘西伯利亚’百合通过转录组测序分析共得到56.28 Gb clean base,223.40 Mb clean reads和124 233个unigene,其中35 749个基因得到注释。萜骨架合成途径中的基因表达水平在不同花期表现出显著差异。其中,甲基赤藓糖醇磷酸(MEP)中的1-脱氧-D-木酮糖-5-磷酸合成酶(DXS)、1-脱氧-D-木酮糖-5-磷酸还原异构酶(DXR)、4-羟基-3-甲丁-2-烯基二磷酸合成酶(HDS)、4-羟基-3-甲丁-2烯基二磷酸还原酶(HDR)、牻牛儿基二磷酸合成酶(GPS)基因的表达水平随花期变化呈先升高后降低的趋势。罗勒烯合成酶(OCS)基因表现出相似变化规律,在盛开期表达量最高。甲羟戊酸(MVA)途径中的3-羟基-3-甲基戊二酸单酰辅酶A还原酶(HMGR)的基因表达同样出现先升高后降低的趋势。单萜合成下游的分支途径中,茄尼基二磷酸合成酶(SDS)、牻牛儿基牻牛儿基二磷酸合成酶(GGDR)基因的表达则出现相反的趋势,在盛开期的表达量最低。研究结果表明MEP途径中的关键基因可随花期变化规律性的表达,以调控单萜的生物合成,在盛开期有较高释放量,且盛开期MVA途径的活化以及泛醌和萜醌代谢支路基因的低表达也促进了单萜的生物合成。  相似文献   

7.
8.
Somatic embryo suspension cultures of Picea sitchensis (Sitka spruce) derived from two cell lines, SS03 and SS10, were grown in shake flasks, air-lift, bubble, stirred tank and hanging stirrer bar bioreactors. Cell line SS03 yielded freely suspended and individual stage 1 embryos, while the embryos of SS10 were present in large aggregates. Compared to shake flasks, proliferation in bioreactors resulted in increased biomass; however, cell line morphology influenced the effect of different bioreactor configurations on growth and maturation of embryo cultures. Somatic embryos grown in shake flasks and bioreactors were matured on gelled solid medium and in submerged culture where gelled solid medium was covered with a layer of liquid medium. The number of stage 3 (mature) embryos produced from SS03 in the bubble bioreactor was significantly higher than those from stirred tank and hanging stirrer bar bioreactors with both solid medium and submerged culture. Submerged culture was unsuitable for SS10 embryo maturation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
10.
A Panax notoginseng cell culture was successfully scaled up from shake flask to 1.0-L bubble column reactor and concentric-tube airlift reactor. High-density bioreactor batch cultivation was carried out using a modified MS medium. The maximum cell density in batch cultures reached 20.1, 21.0 and 24.1 g/L in the shake flask, bubble column and airlift reactors, respectively, and their corresponding biomass productivity was 950, 1140 and 1350 mg/(L x d) for each. The productivity of ginseng saponin was 70, 96 and 99 mg/(L x d) in the flask, bubble column and airlift reactors, respectively; and the polysaccharide productivity reached 104, 119 and 151 mg/(L x d) for each. Furthermore, a fed-batch cultivation strategy was developed on the basis of specific oxygen uptake rate (SOUR), i.e., sucrose feeding before a sharp decrease of SOUR, and the highest cell density of 29.7 g/L was successfully achieved in the airlift bioreactor on day 17 with a very high biomass productivity of 1520 mg/(L x d). The concentrations of ginseng saponin and polysaccharide reached about 2.1 and 3.0 g/L, respectively, and their productivity was 106 (saponin) and 158 mg/(L x d) (polysaccharide). This work successfully demonstrated the high-density bioreactor cultivation of P. notoginseng cells in pneumatically agitated bioreactors and the reproduction of the shake flask culture results in bioreactors. The cell density, biomass productivity, production titer and productivity of both ginseng saponin and polysaccharide obtained here were the highest that have been reported on a reactor scale for all the ginseng species.  相似文献   

11.
12.
Yang D  Ma P  Liang X  Wei Z  Liang Z  Liu Y  Liu F 《Physiologia plantarum》2012,146(2):173-183
Tanshinones, a group of active ingredients in Salvia miltiorrhiza, are derived from at least two biosynthetic pathways, which are the mevalonate (MVA) pathway in the cytosol and the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the plastids. Abscisic acid (ABA) and methyl jasmonate (MJ) are two well-known plant hormones induced by water stress. In this study, effects of polyethylene glycol (PEG), ABA and MJ on tanshinone production in S. miltiorrhiza hairy roots were investigated, and the role of MJ in PEG- and ABA-induced tanshinone production was further elucidated. The results showed that tanshinone production was significantly enhanced by treatments with PEG, ABA and MJ. The mRNA levels of 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS), as well as the enzyme activities of HMGR and DXS were stimulated by all three treatments. PEG and ABA triggered MJ accumulation. Effects of PEG and ABA on tanshinone production were completely abolished by the ABA biosynthesis inhibitor [tungstate (TUN)] and the MJ biosynthesis inhibitor [ibuprofen (IBU)], while effects of MJ were almost unaffected by TUN. In addition, MJ-induced tanshinone production was completely abolished by the MEP pathway inhibitor [fosmidomycin (FOS)], but was just partially arrested by the MVA pathway inhibitor [mevinolin (MEV)]. In conclusion, a signal transduction model was proposed that exogenous applications of PEG and ABA triggered endogenous MJ accumulation by activating ABA signaling pathway to stimulate tanshinone production, while exogenous MJ could directly induce tanshinone production mainly via the MEP pathway in S. miltiorrhiza hairy roots.  相似文献   

13.
Kai G  Xu H  Zhou C  Liao P  Xiao J  Luo X  You L  Zhang L 《Metabolic engineering》2011,13(3):319-327
Tanshinone is a group of active diterpenes widely used in treatment of cardiovascular diseases. Here, we report the introduction of genes encoding 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and geranylgeranyl diphosphate synthase (GGPPS) involved in tanshinone biosynthesis into Salvia miltiorrhiza hairy roots by Agrobacterium-mediated gene transfer technology. Overexpression of SmGGPPS and/or SmHMGR as well as SmDXS in transgenic hairy root lines can significantly enhance the production of tanshinone to levels higher than that of the control (P<0.05). SmDXS showed much more powerful pushing effect than SmHMGR in tanshinone production, while SmGGPPS plays a more important role in stimulating tanshinone accumulation than the upstream enzyme SmHMGR or SmDXS in S. miltiorrhiza. Co-expression of SmHMGR and SmGGPPS resulted in highest production of tanshinone (about 2.727 mg/g dw) in line HG9, which was about 4.74-fold higher than that of the control (0.475 mg/g dw). All the tested transgenic hairy root lines showed higher antioxidant activity than the control. To our knowledge, this is the first report on enhancement of tanshinone content and antioxidant activity achieved through metabolic engineering of hairy roots by push-pull strategy in S. miltiorrhiza.  相似文献   

14.
Strains of a Stephania glabra suspension culture grown in flasks and two types of bioreactors (laboratory-scale bubble and pilot-scale stirred reactors) have been compared according to their growth characteristics and accumulation of the alkaloid stepharine. The best characteristics have been recorded for strains 113 and 261. In the case of batch cultivation in flasks, the maximal accumulation of dry biomass by these strains reaches 19–21 g/l; that of the alkaloid stepharine, 0.30–0.35% of dry biomass. The used strains differ in their response to cultivation scale-up from flasks to bioreactors, strain 254 displaying the lowest adaptation to such changes. A bubble reactor is the most beneficial system for submerged cultivation of S. glabra. The absence of detectable stepharine synthesis on the background of a considerable decrease in all growth characteristics of the cultures has been observed when using a pilot stirred bioreactor. The batch cultures of strains 113 and 261 in a bubble bioreactor accumulate 11–16 g/l of dry biomass containing 0.05–0.16% of the alkaloid. It has been shown that strains 113 and 261 retain satisfactory physiological characteristics in a semi-flow regime of a bubble bioreactor. This scale-up scheme can be used for further industrial cultivation.  相似文献   

15.
16.
Artemisinin, a sesquiterpene lactone endoperoxide derived from Artemisia annua L., is the most effective antimalarial drug. In an effort to increase the artemisinin production, abscisic acid (ABA) with different concentrations (1, 10 and 100 μM) was tested by treating A. annua plants. As a result, the artemisinin content in ABA-treated plants was significantly increased. Especially, artemisinin content in plants treated by 10 μM ABA was 65% higher than that in the control plants, up to an average of 1.84% dry weight. Gene expression analysis showed that in both the ABA-treated plants and cell suspension cultures, HMGR, FPS, CYP71AV1 and CPR, the important genes in the artemisinin biosynthetic pathway, were significantly induced. While only a slight increase of ADS expression was observed in ABA-treated plants, no expression of ADS was detected in cell suspension cultures. This study suggests that there is probably a crosstalk between the ABA signaling pathway and artemisinin biosynthetic pathway and that CYP71AV1, which was induced most significantly, may play a key regulatory role in the artemisinin biosynthetic pathway.  相似文献   

17.
Novel cross-species coculture systems using Linum flavum hairy roots and Podophyllum hexandrum cell suspensions were applied for in vitro production of podophyllotoxin. The hairy roots and suspensions were cocultured in Linsmaier and Skoog medium in dual shake flasks and dual bioreactors. In separate experiments, coniferin feeding was shown to be an effective strategy for increasing the accumulation of podophyllotoxin in P. hexandrum suspensions. Because roots of L. flavum are a natural source of coniferin, hairy roots of this species were used in coculture with P. hexandrum to provide an in situ supply of coniferin. Compared with P. hexandrum suspensions cultured alone in shake flasks or bioreactors, podophyllotoxin concentrations in cocultured P. hexandrum cells were increased by 240% and 72% in dual shake flask and dual bioreactor systems, respectively. The availability and stability of coniferin in the medium are the most likely factors limiting podophyllotoxin synthesis in coculture. Intensification of the coculture process is required to further improve total podophyllotoxin accumulation on a volumetric basis.  相似文献   

18.
The feasibility of using shake flasks to culture animal cells was evaluated using various sizes of cylindrical shaped vessels as bioreactors. It was found that conditions can be optimized so that hybridoma, Chinese Hamster Ovary cells, and insect cells can be efficiently cultured in the shaking reactors to cell densities comparable to that obtained with stirred-jar bioreactors, and the system is scalable to larger volumes for the production of recombinant proteins or cell mass production in the laboratory.  相似文献   

19.
Beet hairy root cultures established from red and yellow varieties were grown in a 2 L bubble column reactor. The yellow clone showed profuse root hairs and a predominance of betaxanthin pigment with the red clone showed fewer root hairs and both betaxanthin and betacyanin pigments. The cultures displayed different ionic and sugar yields: 2.1 mg dry wt / mS.mL and 0.361 g dry wt / g sugar for the yellow clone and 2.3 mg dry wt / mS.mL and 0.375 g dry wt / g sugar for the red one. Both cultures grew at the same specific growth rate of 0.22 d-1in the bubble column, as compared to 0.32 d-1in shake flasks, indicating mass transfer limitations for growth in reactors.  相似文献   

20.
This review is concerned with the application of hairy roots, i.e. plant roots formed from plant cells after transformation by Agrobacterium rhizogenes for the production of bioactive compounds. Transformed root cultures have been established from numerous species of dicotyledonous plants. The plants, as well as the main products accumulated in hairy root cultures derived from these plants, are listed in this paper. Data are presented on novel compounds, hitherto detected only in transformed roots but not occurring in the corresponding intact plants. The possible use of hairy root cultures for the over-production of secondary metabolites and biotransformation of chemicals is discussed. In order to enhance the productivity of hairy root cultures, various methods have been derived, and optimized procedures are proposed. They include selection of high-producing clones, elicitation, composition of growth media, culture conditions and genetic approach. Hairy roots usually store secondary metabolites in vacuoles inside the cells. Therefore, several methods have been used to increase the amount of products released into the medium. Unfortunately, no general procedure is known that works in all cases, and the excretion behaviour of hairy root cultures varies from one species to another and even within one species from one clone to another. Special attention is given to the cultivation methods and bioreactor systems for hairy root cultures. Hairy roots are cultivated usually in shake flasks; however, shake flask culture is not suitable for the complex optimization and continuous control of the culture conditions. In this paper, we are going to present bioreactors proposed for the cultivation of hairy roots under more or less controlled conditions. Modifications of typical bacterial bioreactors, i.e. stirred tanks, airlift loop reactors and other constructions, are presented. A very special type of bioreactor providing good conditions for loose root mass multiplication without oxygen or substrate limitations, is the mist bioreactor. Nowadays, it is practically impossible to select the one best bioreactor type for hairy root culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号