首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial arrangement of tight junctions in choroid plexus and ciliary body rabbit epithelia has been determined by studying freeze-fracture complementary replicas. In the choroid plexus epithelium, the interruptions of the junctional P-face fibrils were measured to be 14% of their total length. In the ciliary body epithelium, where the fibrils were found to be more fragmented than in the choroid plexus, the P-face fibril interruptions accounted for 12 % of the total length of the zonulae occludentes sealing the non-pigmented cells and 30% in the focal linear tight junctions connecting the non-pigmented and pigmented cells at their apices. In both epithelia, the interruptions of the ridges are precisely complemented by particles or short bars of similar length found in the E-face furrows. Consequently, it is possible to conclude that the junctional fibrils are continuous in these two epithelia. For the zonulae occludentes, this continuity appears to be inconsistent with the ‘leaky’ properties of these epithelia shown by some physiological investigations.  相似文献   

2.
The stigmatal cells in the branchial basket of ascidians from a number of genera have been examined as to the nature and distribution of their intercellular junctions. The branchial wall consists of ciliated and parietal cells; the ciliated cells are arranged in seven rows and are associated by junctions with other cells in the same row as well as with those in adjacent rows. They are also associated by junctions with peripheral parietal cells. Junctions between adjacent ciliated cells in all cases exhibit tight junctions or zonulae occludentes. However, these cell borders also possess fasciae or zonulae adhaerentes if they are in the same row and the ciliary rootlets insert-into these junctions. If the cells are in adjacent rows they exhibit adhaerentes junctions only in species belonging to the orders Phlebobranchiata and Aplousobranchiata. In contrast, if the cells in adjacent rows belong to the order Stolidobranchiata. they never exhibit any adhaerentes junctions and the ciliary rootlets of the basal bodies from the cilia insert instead into the tight junctions and the non-junctional membrane below them. At the homologous junctional borders between adjacent parietal cells and also at heterologous junctional borders between parietal and ciliated cells, tight junctions alone occur, with no co-existing adhaerentes junctions along their lateral borders. Again, fibrils from ciliary rootlets insert into zonulae occludentes. This shows that tight junctions are capable both of forming permeability barriers, in that they can be seen to prevent the entry of exogenous tracers such as lanthanum, and of acting as adhesive devices.  相似文献   

3.
Application of carbon tetrachloride produced a progressive proliferation of tight junctions in the rat liver. This system proved to be rapid and highly reproducable and affords the opportunity for tracing the fate of tight junctions in freeze-fracture replicas, facilitating investigations on their formation and function. Beginning on day one carbon tetrachloride treatments resulted in the progressive loosening and fragmentation of the junctional meshwork. After three to four days the membrane outside the zonulae occludentes was extensively filled with proliferated discrete junctional elements often forming complex configurations. From the fifth day on the zonulae occludentes were restricted again predominantly around the bile canaliculus margins. But the junctional meshwork of the zonulae occludentes remained loosened in comparison to those in the control rats. It could be shown that tight junction proliferation on the lateral surface of the plasmalemma occurred both through de novo formation from discrete centers of growth by addition of intramembranous particles and through reorganization of preexistent junctional strands of the fragmented zonulae occludentes bodies. Whereas the large gap junctions close associated with the zonulae occludentes remained more or less unaffected during the experiments, small gap junctions increased in number after five days and were located at the margin or in the tight junction domain. It is assumed that the degeneration of the tight junctions served as a pool for intramembranous particles which form the gap junctions. The results of these observations are discussed in relation to those obtained in other systems.  相似文献   

4.
Human fetal primary tooth germs in the cap stage were fixed with a glutaraldehyde-formaldehyde mixture, and formative processes of tight and gap junctions of the inner enamel epithelium and preameloblasts were examined by means of freeze-fracture replication. Chains of small clusters of particles on the plasma membrane P-face of the inner enamel epithelium and preameloblasts were the initial sign of tight junction formation. After arranging themselves in discontinuous, linear arrays in association with preexisting or forming gap junctions, these particles later began revealing smooth, continuous tight junctional strands on the plasma membrane P-face and corresponding shallow grooves of a similar pattern on the E-face. Although they exhibited evident meshwork structures of various extents at both the proximal and distal ends of cell bodies, they formed no zonulae occludentes. Small assemblies of particles resembling gap junctions were noted at points of cross linkage of tight junctional strands; but large, mature gap junctions no longer continued into the tight junction meshwork structure. Gap junctions first appeared as very small particle clusters on the plasma membrane P-face of the inner enamel epithelium. Later two types of gap junctions were recognized: one consisted of quite densely aggregated particles with occasional particle-free areas, and the other consisted of relatively loosely aggregated particles with particle-free areas and aisles. Gap junction maturation seemed to consist in an increase of particle numbers. Fusion of gap junctions in the forming stage too was recognized. The results of this investigation suggest that, from an early stage in their development, human fetal ameloblasts possess highly differentiated cell-to-cell interrelations.  相似文献   

5.
Summary The intercellular connections between the epithelial cells of Bowman's capsule were investigated. It could be demonstrated that typical zonulae occludentes (tight junctions) are present in the species (rat, hamster, and Tupaia) studied. Freeze-fracturing shows a network of anastomizing strands; some species variations are described. In the rat two strands are common. In the golden hamster mostly two to four and occasionally five strands occur. In Tupaia regularly three tight junction strands are found and also gap junctions associated with the zonulae occludentes. In thin sections the goniometric analysis confirms the freeze-fracturing results and reveals attachment zones of macular shape, which are classified as intermediate junctions and desmosomes. The functional role of these cell junctions observed in the epithelium of Bowman's capsule is discussed.  相似文献   

6.
The Onychophora are a rare group of primitive invertebrates, relatively little investigated. Tissues from a range of their digestive, secretory and excretory organs have been examined to establish the features of their intercellular junctions. Glutaraldehyde-fixed cells from the midgut and rectum, as well as the renal organ, mucous gland, salivary gland, epidermis, CNS and testis from specimens of Peripatus acacioi, have been studied by thin section and freeze-fracture electron microscopy. Adjacent cells in the epithelia of all these tissues are joined by apical zonulae adhaerentes, associated with a thick band of cytoskeletal fibrils. These are followed by regular intercellular junctional clefts, which, in thin sections, have the dense, relatively unstriated, appearance of smooth septate junctions (SSJ). However, freeze-fracture reveals that only the midgut has what appear to be characteristic SSJs with parallel alignments of closely-packed rows of intramembranous particles (IMPs); these IMPs are much lower in profile than is common in such junctions elsewhere. The mucous gland, testis, rectal and renal tissues exhibit, after freeze-fracture, the characteristic features of pleated septate junctions (PSJ) with undulating rows of aligned but separated junctional particles. Suggestions of tricellular septate junctions are found in replicas at the interfaces between 3 cells. In addition, renal tissues exhibit scalariform junctions in the basal regions of their cells. Between these basal scalariform and apical septate junctions, other junctions with reduced intercellular clefts are observed in these renal tissues as well as the rectum, but these appear not to be gap junctions. Such have not been unequivocally observed in any of the tissues studied from this primitive organism; the same is true of tight junctions.  相似文献   

7.
In sea urchin embryos, blastula formation occurs between the seventh and tenth cleavage and is associated with changes in the permeability properties of the epithelium although the structures responsible for mediating these changes are not known. Tight junctions regulate the barrier to paracellular permeability in chordate epithelia; however, the sea urchin blastula epithelium lacks tight junctions and instead possesses septate junctions. Septate junctions are unique to non-chordate invertebrate cell layers and have a characteristic ladder-like appearance whereby adjacent cells are connected by septa. To determine the function of septate junctions in sea urchin embryos, the permeability characteristics of the embryonic sea urchin epithelia were assessed. First, the developmental stage at which a barrier to paracellular permeability arises was examined and found to be in place after the eighth cleavage division. The mature blastula epithelium is impermeable to macromolecules; however, brief depletion of divalent cations renders the epithelium permeable. The ability of the blastula epithelium to recover from depletion of divalent cations and re-establish a barrier to paracellular permeability using fluorescently labelled lectins was also examined. Finally, septate junction structure was examined in embryos in which the permeability status of the epithelium was known. The results provide evidence that septate junctions mediate the barrier to paracellular permeability in sea urchin embryos.  相似文献   

8.
Transport of metabolites is demonstrated between compartments of the adult mouse lens by freeze-substitution autoradiography. In vivo patterns of lysine incorporation are compared with in vitro patterns of lysine, glucose, uridine, and deoxyglucose incorporation. Intracellular and extracellular distributions of tritiated metabolites are determined by comparison of transported substrates with the nontransported molecules of similar molecular size: mannitol and sucrose. The permeability of the lens intercellular spaces is probed with Procion Yellow at the level of fluorescence microscopy, and with horseradish peroxidase at the electron microscope level. Freeze-fracture electron microscopy reveals gap junctions between epithelial cells, between lens fibers, and between epithelial cells and lens fibers. Zonulae occludentes (tight junctions) are not routinely observed between epithelial cells in the mouse. This latter result is subject to species variation, however, since zonulae occludentes are abundant between chicken epithelial cells. The permeability results suggest that the lens cells are capable of metabolic cooperation, mediated by an extensive gap junction network.  相似文献   

9.
The permeability of the alveolar-capillary membrane to a small molecular weight protein, horseradish peroxidase (HRP), was investigated by means of ultrastructural cytochemistry. Mice were injected intravenously with HRP and sacrificed at varying intervals. Experiments with intranasally instilled HRP were also carried out. The tissue was fixed in formaldehyde-glutaraldehyde fixative. Frozen sections were cut, incubated in Graham and Karnovsky's medium for demonstrating HRP activity, postfixed in OsO4, and processed for electron microscopy. 90 sec after injection, HRP had passed through endothelial junctions into underlying basement membranes, but was stopped from entering the alveolar space by zonulae occludentes between epithelial cells. HRP was demonstrated in pinocytotic vesicles of both endothelial and epithelial cells, but the role of these vesicles in net protein transport appeared to be minimal. Intranasally instilled HRP was similarly prevented from permeating the underlying basement membrane by epithelial zonulae occludentes. Pulmonary endothelial intercellular clefts stained with uranyl acetate appeared to contain maculae occludentes rather than zonulae occludentes. HRP did not alter the ultrastructure of these junctions.  相似文献   

10.
Loss and reappearance of gap junctions in regenerating liver   总被引:14,自引:7,他引:7       下载免费PDF全文
Changes in intercellular junctional morphology associated with rat liver regeneration were examined in a freeze-fracture study. After a two-thirds partial hepatectomy, both gap junctions and zonulae occludentes were drastically altered. Between 0 and 20 h after partial hepatectomy, the junctions appeared virtually unchanged. 28 h after partial hepatectomy, however, the large gap junctions usually located close to the bile canaliculi and the small gap junctions enmeshed within the strands of the zonulae occudentes completely disappeared. Although the zonulae occludentes bordering the bile canaliculi apparently remained intact, numerous strands could now be found oriented perpendicular to the canaliculi. In some instances, the membrane outside the canaliculi was extensively filled with isolated junctional strands, often forming very complex configurations. About 40 h after partial hepatectomy, very many small gap junctions reappeared in close association with the zonulae occludentes. Subsequently, gap junctions increased in size and decreased in number until about 48 h after partial hepatectomy when gap junctions were indistinguishable in size and number from those of control animals. The zonulae occludentes were again predominantly located around the canalicular margins. These studies provide further evidence for the growth of gap junctions by the accretion of particles and of small gap junctions to form large maculae.  相似文献   

11.
A brief survey is given of current views correlating the ultrastructural and permeability characteristics of capillaries. Observations based on the use of peroxidase (mol wt 40,000), as an in vivo, and colloidal lanthanum, as an in vitro, ultrastructural tracer, are presented. In capillaries with "continuous" endothelium, the endothelial intercellular junctions are thought to be permeable to the tracers, and are regarded as maculae occludentes rather than zonulae occludentes, with a gap of about 40 A in width between the maculae. Some evidence for vesicular transport is also presented. It is inferred that the cell junctions are the morphological equivalent of the small-pore system, and the vesicles the equivalent of the large-pore system. Peroxidase does not apparently cross brain capillaries: the endothelial cell junctions are regarded as zonulae occludentes, and vesicles do not appear to transport across the endothelium. This is regarded as the morphological equivalent of the blood-brain barrier for relatively large molecules. The tracers appear to permeate the fenestrae of fenestrated capillaries, and the high permeability of these capillaries to large molecules is attributed to the fenestrae. Capillaries with discontinuous endothelium readily allow passage of the tracers through the intercellular gaps. A continuous basement membrane may act as a relatively coarse filter for large molecules. In general, the morphology of capillaries correlates well with physiological observations.  相似文献   

12.
The guinea pig mesentery is a uniform, continuous, thin (18 micron) sheet of connective tissue covered by a single layer of flattened mesothelial cells on both surfaces. Tight and gap junctions provide for cell-to-cell adhesion among mesothelial cells. These cells possess numerous micropinocytotic vesicles; a conspicuous basal lamina separates the mesothelium from the underlying connective tissue. Most of the material found between the two serous coverings consisted of a three-dimensional meshwork of abundant collagenous fibers intermingled with a sparse net of very thin (0.4 micron) elastic fibers. Two distinct populations of collagen fibrils are segregated into different compartments of the mesentery. One population is formed of thick (56 nm) fibrils which associate to form closely packed fibers. The second population, composed of loosely arranged thin (38 nm) fibrils which do not become assembled into fibers, is found underlying the basal lamina that separates the mesothelium from the connective tissue. These observations strongly suggest that the mesentery contains both collagens type I and type III. The guinea pig mesentery contains 6.8 mg of sulfated glycosaminoglycans/g dry weight. Most of these glycosaminoglycans (78%) were identified as dermatan sulfate, whilst the rest (22%) corresponded to heparan sulfate.  相似文献   

13.
The ultrastructure of the adult frog ciliary epithelium cells has definite regional differences. Cells of ciliary epithelium folds near the iris display morphological features characterizing its barrier and secretory functions which lead to the formation of aqueous humor. These are junctional complexes with tight junctions (zonula occludents) in the apical parts of contacting sides of cells of the inner leaf: a great quantity of mitochondria, ribosomes and various vesicles, well developed endoplasmic reticulum in the cytoplasm, much folded basal surface, gap junctions between cells of external and internal leaflets. In the mammalian inner epithelial layer different cell junctions are known to be arranged in a fixed spatial fashion. Unlike, in the frog's epithelium both zonula adherent and desmosomes may be found in any sequence. Tight junctions are formed during metamorphosis, on the place of focal junctions, whereas gap junctions, referred to earlier as "extended", start functioning between cells just on the very early stages of eye morphogenesis (Dabagyan et al., 1979). The epithelium of the posterior part of the ciliary fold and pars plana of the ciliary body have, in addition, the number of morphological sign indicating the cell involvement in the accomodational function of any eye (i. e. a majority of desmosomes binding all cells together and of zonulae adherentes, well developed intracellular skeleton of tonofilament bundles). These features are characteristic of the whole distal part of ciliary epithelium rather than of the place of attachment of zonula fiber only.  相似文献   

14.
The structure and function of intercellular tight (occluding) junctions, which constitute the anatomical basis for highly regulated interfaces between tissue compartments such as the blood-testis and blood-brain barriers, are well known. Details of the synthesis and assembly of tight junctions, however, have been difficult to determine primarily because no model for study of these processes has been recognized. Primary cultures of brain capillary endothelial cells are proposed as a model in which events of the synthesis and assembly of tight junctions can be examined by monitoring morphological features of each step in freeze-fracture replicas of the endothelial cell plasma membrane. Examination of replicas of non-confluent monolayers of endothelial cells reveals the following intramembrane structures proposed as 'markers' for the sequential events of synthesis and assembly of zonulae occludentes: development of surface contours consisting of elongate terraces and furrows (valleys) orientated parallel to the axis of cytoplasmic extensions of spreading endothelial cells, appearance of small circular PF face depressions (or volcano-like protrusions on the EF face) that represent cytoplasmic vesicle-plasma membrane fusion sites, which are positioned in linear arrays along the contour furrows, appearance of 13-15 nm intramembrane particles at the perimeter of the vesicle fusion sites, and alignment of these intramembrane particles into the long, parallel, anastomosed strands characteristic of mature tight junctions. These structural features of brain endothelial cells in monolayer culture constitute the morphological expression of: reshaping the cell surface to align future junction-containing regions with those of adjacent cells, delivery and insertion of newly synthesized junctional intramembrane particles into regions of the plasma membrane where tight junctions will form, and aggregation and alignment of tight junction intramembrane particles into the complex interconnected strands of mature zonulae occludentes. The distribution of filipin-sterol complex-free regions on the PF intramembrane fracture face of junction-forming endothelial plasmalemmae corresponds precisely to the furrows, aligned vesicle fusion sites and anastomosed strands of tight junctional elements.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Summary In the pelagic larvacean Oikopleura dioica, the epithelium lining the alimentary tract consists of ciliated and unciliated cell types. The ciliated cells also exhibit an apical border of long microvilli. Between the microvilli, the cellular membrane often projects deeply down into the cytoplasm; the membranes of these invaginations and those of apicolateral interdigitations may be associated with one another by tight junctions. Some of these junctions may be autocellular. The tight junctions are seen by freeze-fracture to be very simple in construction, composed of a single row of intramembranous particles, which may be fused into a P-face ridge. There is a dense cytoplasmic fuzz associated with these tight junctions which may extend into adjoining zonula adhaerens-like regions. The invaginations of the apical membranes are, in addition, associated by gap junctions which may also be autocellular. More conventional homocellular and heterocellular tight and gap junctions occur along the lateral borders of ciliated cells and between ciliated and unciliated cells. These gap junctions possess a reduced intercellular cleft and typical P-face connexons arranged in macular plaques, with complementary E-face pits. Both cell types exhibit extensive stacks of basal and lateral interdigitations. The tight junctions found here are unusual in that they are associated with a dense cytoplasmic fuzz which is normally more characteristic of zonulae adhaerentes.  相似文献   

16.
Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia   总被引:56,自引:36,他引:20       下载免费PDF全文
Epithelia vary with respect to transepithelial permeability. In those that are considered "leaky", a large fraction of the passive transepithelial flux appears to follow the paracellular route, passing across the zonulae occludentes and moving down the intercellular clefts. In "tight" epithelia, the resistance of the paracellular pathway to passive flux is greatly increased. To see whether differences in the morphology of the zonula occludens could contribute to this variability in leakiness among epithelia, replicas of zonulae occludentes in freeze-fractured material from a variety of tight and leaky epithelia were examined. The junctions appear as a branching and anastomosing network of strands or grooves on the A and B membrane fracture faces, respectively. It was found that the zonula occludens from a "very leaky" epithelium, the proximal convoluted tubule of the mouse kidney, is extremely shallow in the apical-basal direction, consisting in most places of only one junctional strand. In contrast, the "very tight" frog urinary bladder exhibits a zonula occludens that is relatively deep (>0.5 µm) in the apical-basal direction, and consists of five or more interconnected junctional strands interposed between luminal and lateral membrane surfaces. Epithelia of intermediate permeabilities exhibited junctions with intermediate or variable morphology. Toad urinary bladder, mouse stomach, jejunum, and distal tubule, rabbit gallbladder, and Necturus kidney and gallbladder were also examined, and the morphological data from these epithelia were compared to physiological data from the literature.  相似文献   

17.
The structural basis for the permeability of the alveolar-capillary membrane to water-soluble solutes rests in part on the structure and function of its intercellular junctions and the pinocytotic vesicles within its cells. Intercellular junctions between endothelial cells of the pulmonary capillary bed differ both in permeability to enzyme tracers and in their structure. As determined by freeze fracture, the junctions in the arteriolar, capillary, and venular portion of the capillary network vary in complexity, and in the number of rows of particles constituting the junction. Because there are few particles associated with the junctions in the venular end of the capillary bed, these are considered to be the most permeable of the three types of vascular junctions. Epithelial junctions, in contrast, are impermeable to all enzyme tracers studied, and they are composed of a continuous, complex network of junctional fibrils. While intercellular junctions form seals of varying 'tightness,' pinocytotic vesicles provide a means for the transport of water-soluble macromolecules across the alveolar-capillary membrane.  相似文献   

18.
Gap junctions and zonulae occludentes of hepatocytes were examined in thin sections and freeze-fracture replicas from livers of larval and juvenile adult lampreys and during the phase of metamorphosis when bile ducts and bile canaliculi disappear (biliary atresia). Larvae possess zonulae occludentes at the canaliculi which are composed of one to five (mean = 2.81) junctional strands that provide a bile-blood barrier. Morphometry demonstrates that during biliary atresia the decreases in number of junctional strands and apico-basal depth of the zonulae occludentes are accompanied by an increase in the frequency of gaps or interruptions in the strands and in a breakdown of the bile-blood barrier. The zonulae occludentes completely disappear during metamorphosis and are not found in the adult liver. Gap junctions of the larval liver occupy 1% of the surface of the plasma membrane and have a mean area of 0.167 micron 2 but, following an initial decline in these parameters during early biliary atresia, they rise sharply in later stages of metamorphosis and in adults are 3.2% and 0.502 micron 2, respectively. The events of alteration in junctional morphology during lamprey biliary atresia is in many ways comparable to the changes in gap junctions and zonulae occludentes during experimental and pathological intra- and extrahepatic cholestasis in mammals.  相似文献   

19.
Freeze-cleave replicas of small capillaries of rat jejunum have revealed the presence of a new type of junction linking endothelial cells. This new junction reveals tight junctions (zonulae occludentes) in that the adjacent plasma membranes are held closely together along lines of attachment organized in the form of a loose, but frequently discontinuous network. In contrast to tight junctions, the A-face ridges possess a very low profile, and only at low shadowing angles can a repeating, particulate substructure occasionally be resolved. The shallow B-face furrows lack any particulate components. Images of cross-fractured focal points of attachment suggest that the external leaflets of adjacent membranes are closely apposed but not actually fused, as is the case with zonulae occludentes. It appears that this new type of endothelial junction is characteristic of small venules. Thus we propose that it be termed small venule endothelial junction.  相似文献   

20.
Summary A simple continuous epithelium surrounds the body of the pelagic larvacean. It consists of two zones of cells: oikoplast cells and flattened cells. The oikoplast cells are columnar and produce a thick extracellular house that ensheathes the body of the organism. These cells are joined laterally by wide tight junctions (zonulae occludentes). The tail of the animal is surrounded by exceedingly thin cells which are joined by narrow tight junctions under which lie intermediate junctions (zonulae adhaerentes) and gap junctions. A web of fibrous material inserts into the intermediate junctions. The transitional cells between the two epithelial zones have one lateral border with a wide tight junction, and the other lateral border with a narrow tight junction and a wide intermediate junction. In freeze-fracture replicas, the wide tight junction has a number of anastomosing ridges, in comparison with the narrow tight junction, which usually consists of only a single row of intramembranous particles. In replicas, the thin epithelial cells show unusual parallel arrays of particles in clusters on their apical plasma membranes. This simple epithelium, therefore, exhibits striking differences between the two cellular zones, in the structural characteristics of both the lateral borders and the apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号