首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactic acid production from xylose by the fungus Rhizopus oryzae   总被引:1,自引:1,他引:0  
Lignocellulosic biomass is considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid. The filamentous fungus Rhizopus oryzae is able to grow in mineral medium with glucose as sole carbon source and to produce optically pure l(+)-lactic acid. Less is known about the conversion by R. oryzae of pentose sugars such as xylose, which is abundantly present in lignocellulosic hydrolysates. This paper describes the conversion of xylose in synthetic media into lactic acid by ten R. oryzae strains resulting in yields between 0.41 and 0.71 g g−1. By-products were fungal biomass, xylitol, glycerol, ethanol and carbon dioxide. The growth of R. oryzae CBS 112.07 in media with initial xylose concentrations above 40 g l−1 showed inhibition of substrate consumption and lactic acid production rates. In case of mixed substrates, diauxic growth was observed where consumption of glucose and xylose occurred subsequently. Sugar consumption rate and lactic acid production rate were significantly higher during glucose consumption phase compared to xylose consumption phase. Available xylose (10.3 g l−1) and glucose (19.2 g l−1) present in a mild-temperature alkaline treated wheat straw hydrolysate was converted subsequently by R. oryzae with rates of 2.2 g glucose l−1 h−1 and 0.5 g xylose l−1 h−1. This resulted mainly into the product lactic acid (6.8 g l−1) and ethanol (5.7 g l−1).  相似文献   

2.
To achieve direct and efficient lactic acid production from starch, a genetically modified Lactococcus lactis IL 1403 secreting α-amylase, which was obtained from Streptococcus bovis 148, was constructed. Using this strain, the fermentation of soluble starch was achieved, although its rate was far from efficient (0.09 g l−1 h−1 lactate). High-performance liquid chromatography revealed that maltose accumulated during fermentation, and this was thought to lead to inefficient fermentation. To accelerate maltose consumption, starch fermentation was examined using L. lactis cells adapted to maltose instead of glucose. This led to a decrease in the amount of maltose accumulation in the culture, and, as a result, a more rapid fermentation was accomplished (1.31 g l−1 h−1 lactate). Maximum volumetric lactate productivity was further increased (1.57 g l−1 h−1 lactate) using cells adapted to starch, and a high yield of lactate (0.89 g of lactate per gram of consumed sugar) of high optical purity (99.2% of l-lactate) was achieved. In this study, we propose a new approach to lactate production by α-amylase-secreting L. lactis that allows efficient fermentation from starch using cells adapted to maltose or starch before fermentation.  相似文献   

3.
Industrial waste corn cob residue (from xylose manufacturing) without pretreatment was hydrolyzed by cellulase and cellobiase. The cellulosic hydrolysate contained 52.4 g l−1 of glucose and was used as carbon source for lactic acid fermentation by cells of Lactobacillus delbrueckii ZU-S2 immobilized in calcium alginate gel beads. The final concentration of lactic acid and the yield of lactic acid from glucose were 48.7 g l−1 and 95.2%, respectively, which were comparative to the results of pure glucose fermentation. The immobilized cells were quite stable and reusable, and the average yield of lactic acid from glucose in the hydrolysate was 95.0% in 12 repeated batches of fermentation. The suitable dilution rate of continuous fermentation process was 0.13 h−1, and the yield of lactic acid from glucose and the productivity were 92.4% and 5.746 g l−1 h−1, respectively. The production of lactic acid by simultaneous saccharification and fermentation (SSF) process was carried out in a coupling bioreactor, the final concentration of lactic acid was 55.6 g l−1, the conversion efficiency of lactic acid from cellulose was 91.3% and the productivity was 0.927 g l−1 h−1. By using fed-batch technique in the SSF process, the final concentration of lactic acid and the productivity increased to 107.6 g l−1 and 1.345 g l−1 h−1, respectively, while the dosage of cellulase per gram substrate decreased greatly. This research work should advance the bioconversion of renewable cellulosic resources and reduce environmental pollution.  相似文献   

4.
Lactic acid production was investigated for batch and repeated batch cultures of Enterococcus faecalis RKY1, using wood hydrolyzate and corn steep liquor. When wood hydrolyzate (equivalent to 50 g l−1 glucose) supplemented with 15–60 g l−1 corn steep liquor was used as a raw material for fermentation, up to 48.6 g l−1 of lactic acid was produced with, volumetric productivities ranging between 0.8 and 1.4 g l−1 h−1. When a medium containing wood hydrolyzate and 15 g l−1 corn steep liquor was supplemented with 1.5 g l−1 yeast extract, we observed 1.9-fold and 1.6-fold increases in lactic acid productivity and cell growth, respectively. In this case, the nitrogen source cost for producing 1 kg lactic acid can be reduced to 23% of that for fermentation from wood hydrolyzate using 15 g l−1 yeast extract as a single nitrogen source. In addition, lactic acid productivity could be maximized by conducting a cell-recycle repeated batch culture of E. faecalis RKY1. The maximum productivity for this process was determined to be 4.0 g l−1 h−1.  相似文献   

5.
Lactobacillus delbrueckii was grown on sugarcane molasses, sugarcane juice and sugar beet juice in batch fermentation at pH 6 and at 40°C. After 72 h, the lactic acid from 13% (w/v) sugarcane molasses (119 g total sugar l−1) and sugarcane juice (133 g total sugar l−1) was 107 g l−1 and 120 g l−1, respectively. With 10% (w/v) sugar beet juice (105 g total sugar l−1), 84 g lactic acid l−1 was produced. The optical purities of d-lactic acid from the feedstocks ranged from 97.2 to 98.3%.  相似文献   

6.
Instead of the conventional carbon sources used for propionic acid biosynthesis, the utilization of glycerol is considered here, since the metabolic pathway involved in the conversion of glycerol to propionic acid is redox-neutral and energetic. Three strains, Propionibacterium acidipropionici, Propionibacterium acnes and Clostridium propionicum were tested for their ability to convert glycerol to propionic acid during batch fermentation with initially 20 g/l glycerol. P. acidipropionici showed higher efficiency in terms of fermentation time and conversion yield than did the other strains. The fermentation profile of this bacterium consisted in propionic acid as the major product (0.844 mol/mol), and in minimal by-products: succinic (0.055 mol/mol), acetic (0.023 mol/mol) and formic (0.020 mol/mol) acids and n-propanol (0.036 mol/mol). The overall propionic acid productivity was 0.18 g l−1h−1. A comparative study with glucose and lactic acid as carbon sources showed both less diversity in end-product composition and a 17% and 13% lower propionic acid conversion yield respectively than with glycerol. Increasing the initial glycerol concentration resulted in an enhanced productivity up to 0.36 g l−1h−1 and in a maximal propionic acid concentration of 42 g/l, while a slight decrease of the conversion yield was noticed. Such a propionic acid production rate was similar or higher than the values obtained with lactic acid (0.35 g l−1h−1) or glucose (0.28 g l−1h−1). These results demonstrated that glycerol is a carbon source of interest for propionic acid production. Received: 15 July 1996 / Received revision: 11 November 1996 / Accepted: 11 November 1996  相似文献   

7.
A kinetic model of the fermentative production of lactic acid from glucose by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour has been developed. The model consists of terms for substrate and product inhibition as well as for the influence of pH and temperature. Experimental data from fermentation experiments under different physical conditions were used to fit and verify the model. Temperatures above 30 °C and pH levels below 6 enhanced the formation of by-products and d-lactic acid. By-products were formed in the presence of maltose only, whereas d-lactic acid was formed independently of the presence of maltose although the amount formed was greater when maltose was present. The lactic acid productivity was highest between 33 °C and 35 °C and at pH 6. In the concentration interval studied (up to 180 g l−1 glucose and 89  g l−1 lactic acid) simulations showed that both substances were inhibiting. Glucose inhibition was small compared with the inhibition due to lactic acid. Received: 28 October 1997 / Received revision: 3 February 1998 / Accepted: 6 February 1998  相似文献   

8.
Corynebacterium acetoacidophilum RYU3161 was cultivated in al-histidine-limited fed-batch culture. To investigate the effect of cell growth on thel-proline production, 5l fed-batch culture was performed using an exponential feeding rate to obtain the specific growth rates (μ) of 0.04, 0.06, 0.08, and 0.1 h−1. The results show that the highest production ofl-proline was obtained at μ=0.04 h−1. The specificl-proline production rate (Qp) increased proportionally as a function of the specific growth rate, but decreased after it revealed the maximum value at μ=0.08 h−1. Thus, the highest productivity ofl-proline was 1.66 g L−1 h−1 at μ=0.08 h−1. The results show that the production of L-proline inC. acetoacidophilum RYU3161 has mixed growth-associated characteristics.  相似文献   

9.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

10.
l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.  相似文献   

11.
High-level production of D-mannitol with membrane cell-recycle bioreactor   总被引:2,自引:0,他引:2  
Ten heterofermentative lactic acid bacteria were compared in their ability to produce D-mannitol from D-fructose in a resting state. The best strain, Leuconostoc mesenteroides ATCC-9135, was examined in high cell density membrane cell-recycle cultures. High volumetric mannitol productivity (26.2 g l−1 h−1) and mannitol yield (97 mol%) were achieved. Using the same initial biomass, a stable high-level production of mannitol was maintained for 14 successive bioconversion batches. Applying response surface methodology, the temperature and pH were studied with respect to specific mannitol productivity and yield. Moreover, increasing the initial fructose concentration from 100 to 120 and 140 g l−1 resulted in decreased productivities due to both substrate and end-product inhibition of the key enzyme, mannitol dehydrogenase (MDH). Nitrogen gas flushing of the bioconversion media was unnecessary, since it did not change the essential process parameters. Journal of Industrial Microbiology & Biotechnology (2002) 29, 44–49 doi:10.1038/sj.jim.7000262 Received 12 November 2001/ Accepted in revised form 30 March 2002  相似文献   

12.
A two-stage two-stream chemostat system and a two-stage two-stream immobilized upflow packed-bed reactor system were used for the study of lactic acid production by Lactobacillus casei subsp casei. A mixing ratio of D 12/D 2 = 0.5 (D = dilution rate) resulted in optimum production, making it possible to generate continuously a broth with high lactic acid concentration (48 g l−1) and with a lowered overall content of initial yeast extract (5  g l−1), half the concentration supplied in the one-step process. In the two-stage chemostat system, with the first stage at pH 5.5 and 37 °C and a second stage at pH 6.0, a temperature change from 40 °C to 45 °C in the second stage resulted in a 100% substrate consumption at an overall dilution rate of 0.05 h−1. To increase the cell mass in the system, an adhesive strain of L. casei was used to inoculate two packed-bed reactors, which operated with two mixed feedstock streams at the optimal conditions found above. Lactic acid fermentation started after a lag period of cell growth over foam glass particles. No significant amount of free cells, compared with those adhering to the glass foam, was observed during continuous lactic acid production. The extreme values, 57.5 g l−1 for lactic acid concentration and 9.72 g l−1 h−1 for the volumetric productivity, in upflow packed-bed reactors were higher than those obtained for free cells (48 g l−1  and 2.42 g l−1 h−1) respectively and the highest overall l(+)-lactic acid purity (96.8%) was obtained in the two-chemostat system as compared with the immobilized-cell reactors (93%). Received: 4 December 1997 / Received revision: 23 February 1998 / Accepted: 14 March 1998  相似文献   

13.
Individual nutrient salts were experimentally varied to determine the minimum requirements for efficient l(+)-lactate production by recombinant strains of Escherichia coli B. Based on these results, AM1 medium was formulated with low levels of alkali metals (4.5 mM and total salts (4.2 g l−1). This medium was equally effective for ethanol production from xylose and lactate production from glucose with average productivities of 18–19 mmol l−1 h−1 for both (initial 48 h of fermentation).  相似文献   

14.
Under oxygen deprivation, aerobic Corynebacterium glutamicum produce organic acids from glucose at high yields in mineral medium even though their proliferation is arrested. To develop a new, high-productivity bioprocess based on these unique features, characteristics of organic acid production by C. glutamicum under oxygen deprivation were investigated. The main organic acids produced from glucose under these conditions were lactic acid and succinic acid. Addition of bicarbonate, which is a co-substrate for anaplerotic enzymes, increased the glucose consumption rate, leading to increased organic acid production rates. With increasing concentration of bicarbonate, the yield of succinic acid increased, whereas that of lactic acid decreased. There was a direct correlation between cell concentration and organic acid production rates even at elevated cell densities, and productivities of lactic acid and succinic acid were 42.9 g l−1 h−1 and 11.7 g l−1 h−1, respectively, at a cell concentration of 60 g dry cell l−1. This cell-recycling continuous reaction demonstrated that rates of organic acid production by C. glutamicum could be maintained for at least 360 h.  相似文献   

15.
Lactic acid is used as an additive in foods, pharmaceuticals, and cosmetics, and is also an industrial chemical. Optically pure lactic acid is increasingly used as a renewable bio-based product to replace petroleum-based plastics. However, current production of lactic acid depends on carbohydrate feedstocks that have alternate uses as foods. The use of non-food feedstocks by current commercial biocatalysts is limited by inefficient pathways for pentose utilization. B. coagulans strain 36D1 is a thermotolerant bacterium that can grow and efficiently ferment pentoses using the pentose-phosphate pathway and all other sugar constituents of lignocellulosic biomass at 50°C and pH 5.0, conditions that also favor simultaneous enzymatic saccharification and fermentation (SSF) of cellulose. Using this bacterial biocatalyst, high levels (150–180 g l−1) of lactic acid were produced from xylose and glucose with minimal by-products in mineral salts medium. In a fed-batch SSF of crystalline cellulose with fungal enzymes and B. coagulans, lactic acid titer was 80 g l−1 and the yield was close to 80%. These results demonstrate that B. coagulans can effectively ferment non-food carbohydrates from lignocellulose to l(+)-lactic acid at sufficient concentrations for commercial application. The high temperature fermentation of pentoses and hexoses to lactic acid by B. coagulans has these additional advantages: reduction in cellulase loading in SSF of cellulose with a decrease in enzyme cost in the process and a reduction in contamination of large-scale fermentations.  相似文献   

16.
In order to improve the production rate of l-lysine, a mutant of Corynebacterium glutamicum ATCC 21513 was cultivated in complex medium with gluconate and glucose as mixed carbon sources. In a batch culture, this strain was found to consume gluconate and glucose simultaneously. In continuous culture at dilution rates ranging from 0.2 h−1 to 0.25 h−1, the specific l-lysine production rate increased to 0.12 g g−1 h−1 from 0.1 g g−1 h−1, the rate obtained with glucose as the sole carbon source [Lee et al. (1995) Appl Microbiol Biotechnol 43:1019–1027]. It is notable that l-lysine production was observed at higher dilution rates than 0.4 h−1, which was not observed when glucose was the sole carbon source. The positive effect of gluconate was confirmed in the shift of the carbon source from glucose to gluconate. The metabolic transition, which has been characterized by decreased l-lysine production at the higher glucose uptake rates, was not observed when gluconate was added. These results demonstrate that the utilization of gluconate as a secondary carbon source improves the maximum l-lysine production rate in the threonine-limited continuous culture, probably by relieving the limiting factors in the lysine synthesis rate such as NADPH supply and/or phosphoenolpyruvate availability. Received: 16 May 1997 / Received revision: 28 August 1997 / Accepted: 29 August 1997  相似文献   

17.
The aim of this study is to investigate production of l-lactic acid from sucrose and corncob hydrolysate by the newly isolated R. oryzae GY18. R. oryzae GY18 was capable of utilizing sucrose as a sole source, producing 97.5 g l−1 l-lactic acid from 120 g l−1 sucrose. In addition, the strain was also efficiently able to utilize glucose and/or xylose to produce high yields of l-lactic acid. It was capable of producing up to 115 and 54.2 g l−1 lactic acid with yields of up to 0.81 g g−1 glucose and 0.90 g g−1 xylose, respectively. Corncob hydrolysates obtained by dilute acid hydrolysis and enzymatic hydrolysis of the cellulose-enriched residue were used for lactic acid production by R. oryzae GY18. A yield of 355 g lactic acid per kg corncobs was obtained after 72 h incubation. Therefore, sucrose and corncobs could serve as potential sources of raw materials for efficient production of lactic acid by R. oryzae GY18.  相似文献   

18.
Brevibacterium flavum ATCC14067 was engineered for l-valine production by overexpression of different ilv genes; the ilvEBNrC genes from B. flavum NV128 provided the best candidate for l-valine production. In traditional fermentation, l-valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further improve the l-valine production and conversion efficiency based on the optimum temperatures of l-valine biosynthesis enzymes (above 35°C) and the thermotolerance of B. flavum, the fermentation temperature was increased to 34, 37, and 40°C. As a result, higher metabolic rate and l-valine biosynthesis enzymes activity were obtained at high temperature, and the maximum l-valine production, conversion efficiency, and specific l-valine production rate reached 38.08 ± 1.32 g/L, 0.241 g/g, and 0.133 g g−1 h−1, respectively, at 37°C in 48 h fermentation. The strategy for enhancing l-valine production by overexpression of key enzymes in thermotolerant strains may provide an alternative approach to enhance branched-chain amino acids production with other strains.  相似文献   

19.
Osmotic stress restricts glycolytic flux, growth (rate and yield), d-lactate productivity, and d-lactate tolerance in Escherichia coli B strain SZ132 during batch fermentation in mineral salts medium with 10% (w/v) sugar. Addition of 1 mm betaine, a non-metabolized protective osmolyte, doubled cell yield, increased specific productivity of d-lactate and glycolytic flux by 50%, and tripled volumetric productivity (from 8.6 to 25.7 mmol l−1 h−1; 0.8 to 2.3 g l−1 h−1). Glycolytic flux and specific productivity in mineral salts medium with betaine exceeded that in Luria broth, substantially eliminating the need for complex nutrients during d-lactate production. In mineral salts medium supplemented with betaine, SZ132 produced approximately 1 mol d-lactate (90 g) per 100 g sugar (glucose or sucrose). Revisions requested 17 January 2006; Revisions received 7 February 2006  相似文献   

20.
Klebsiella oxytoca M5al is an excellent 1,3-propanediol (1,3-PD) producer, but too much lactic acid yielded greatly lessened the fermentation efficiency for 1,3-PD. To counteract the disadvantage, four lactate deficient mutants were obtained by knocking out the ldhA gene of lactate dehydrogenase (LDH) of K. oxytoca M5al. The LDH activities of the four mutants were from 3.85 to 6.92% of the parental strain. The fed-batch fermentation of 1,3-PD by mutant LDH3, whose LDH activity is the lowest, was studied. The results showed that higher 1,3-PD concentration, productivity, and molar conversion rate from glycerol to 1,3-PD can be gained than those of the wild type strain and no lactic acid is produced under both anaerobic and microaerobic conditions. Sucrose fed during the fermentation increased the conversion and sucrose added at the beginning increased the productivity. In fed-batch fermentation with sucrose as cosubstrate under microaerobic conditions, the 1,3-PD concentration, conversion, and productivity were improved significantly to 83.56 g l−1, 0.62 mol mol−1, and 1.61 g l−1 h−1, respectively. Furthermore, 60.11 g l−1 2,3-butanediol was also formed as major byproduct in the broth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号