首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination and repair. In Saccharomyces cerevisiae, several mutants in the RFA1 gene encoding the large subunit of RPA have been isolated and one of the mutants with a missense allele, rfa1-D228Y, shows a synergistic reduction in telomere length when combined with a yku70 mutation. So far, only one mutant allele of the rad11+ gene encoding the large subunit of RPA has been reported in Schizosaccharomyces pombe. To study the role of S.pombe RPA in DNA repair and possibly in telomere maintenance, we constructed a rad11-D223Y mutant, which corresponds to the S.cerevisiae rfa1-D228Y mutant. rad11-D223Y cells were methylmethane sulfonate, hydroxyurea, UV and γ-ray sensitive, suggesting that rad11-D223Y cells have a defect in DNA repair activity. Unlike the S.cerevisiae rfa1-D228Y mutation, the rad11-D223Y mutation itself caused telomere shortening. Moreover, Rad11-Myc bound to telomere in a ChIP assay. These results strongly suggest that RPA is directly involved in telomere maintenance.  相似文献   

2.
Replication Protein A is a single-stranded (ss) DNA-binding protein that is highly conserved in eukaryotes and plays essential roles in many aspects of nucleic acid metabolism, including replication, recombination, DNA repair and telomere maintenance. It is a heterotrimeric complex consisting of three subunits: RPA1, RPA2 and RPA3. It possesses four DNA-binding domains (DBD), DBD-A, DBD-B and DBD-C in RPA1 and DBD-D in RPA2, and it binds ssDNA via a multistep pathway. Unlike the RPA1 and RPA2 subunits, no ssDNA-RPA3 interaction has as yet been observed although RPA3 contains a structural motif found in the other DBDs. We show here using 4-thiothymine residues as photoaffinity probe that RPA3 interacts directly with ssDNA on the 3′-side on a 31 nt ssDNA.The replication protein A (RPA) is a single-stranded (ss) DNA-binding protein that is highly conserved in eukaryotes (1–3). RPA is one of the key players in various essential processes of DNA metabolism including replication, recombination, DNA repair and telomere maintenance (1,2,4–9). The functions of this protein are based on its DNA-binding activity and specific protein–protein interactions. Its ssDNA binding properties depend on DNA length and nucleotide sequence (6,10–13). RPA is a heterotrimeric protein, composed of 70-, 32- and 14-kDa subunits, commonly referred to as RPA1, RPA2 and RPA3, respectively. There are four DNA-binding domains (DBD) located in RPA1 (DBD A, DBD B, DBD C and DBD F), one located in RPA2 (DBD D) and one belongs to RPA3 (DBD E). RPA interacts with ssDNA via four DBD: DBD A, DBD B, DBD C and DBD D (14).It is now accepted (11) that RPA binds to ssDNA in a sequential pathway with a defined polarity (15–17). RPA binds ssDNA with three different binding modes. First, binding initially involves an unstable recognition site of 8–10 nt with the high-affinity DBD A and DBD B domains on the 5′-side of the occluded ssDNA; it is designated ‘compact conformation’ or 8–10 nt binding mode. Second, this step is followed by the weaker binding of DBD C, on the 3′-side, leading to an intermediate or ‘elongated contracted’ (13–22 nt) binding mode (18–19). Finally binding of DBD D on the 3′-side forms a stable ‘elongated extended’ complex characterized by a 30 nt long occluded binding site (30 nt binding mode). Although RPA3 contains an Oligonucleotide-Binding (OB)-fold motif found in the other DBDs, there is presently no biochemical evidence that this subunit directly contacts DNA. Thus positioning of the RPA3 subunit relative to the other domains is still speculative (11,20). It has been clearly demonstrated that RPA3 is crucial for RPA function (1,2): RPA3 is involved in heterotrimer formation and is responsible for the polarity of binding to DNA (11,21,22). The scope of the data indicates that either RPA3 participates only in protein–protein interactions or that putative interaction of RPA3 with ssDNA is unstable and too transient to be detected by standard biochemical experiments. This latter possibility is likely if such interaction is provided by the 3′-side of the ssDNA, since it has been suggested that this region might be transiently accessible to the RPA DBD domains (23,24).In the past few years, thionucleobases have been extensively used as intrinsic photolabels to probe the structure in solution of folded molecules and to identify transient contacts within nucleic acids and/or between nucleic acids and proteins, in nucleoprotein assemblies (25). Thio residues such as 4-thiothymine and 6-thioguanine absorb light at wavelengths longer than 320 nm, and thus can be selectively photo-activated. Owing to the high photo-reactivity of their triplet state, they exhibit high photo-cross-linking ability towards nucleic acid bases as well as towards amino acid residues. Here we used a combination of approaches including gel retardation assays, chemical cross-linking and cross-linking with photoreactive ssDNA probes containing 4-thiothymine, introduced at a defined site in the sequence of the ssDNA, to study interactions present in human RPA (hRPA): ssDNA complexes. These studies coupled with the identification of cross-linked targets using specific antibodies revealed that in the elongated extended hRPA:ssDNA complex RPA3 closely contacts the 3′-end positioned nucleotide and yields a covalent adduct with zero-length photolabel.  相似文献   

3.
Mung bean yellow mosaic India virus (MYMIV) is a member of genus begomoviridae and its genome comprises of bipartite (two components, namely DNA-A and DNA-B), single-stranded, circular DNA of about 2.7 kb. During rolling circle replication (RCR) of the DNA, the stability of the genome and maintenance of the stem–loop structure of the replication origin is crucial. Hence the role of host single-stranded DNA-binding protein, Replication protein A (RPA), in the RCR of MYMIV was examined. Two RPA subunits, namely the RPA70 kDa and RPA32 kDa, were isolated from pea and their roles were validated in a yeast system in which MYMIV DNA replication has been modelled. Here, we present evidences that only the RPA32 kDa subunit directly interacted with the carboxy terminus of MYMIV-Rep both in vitro as well as in yeast two-hybrid system. RPA32 modulated the functions of Rep by enhancing its ATPase and down regulating its nicking and closing activities. The possible role of these modulations in the context of viral DNA replication has been discussed. Finally, we showed the positive involvement of RPA32 in transient replication of the plasmid DNA bearing MYMIV replication origin using an in planta based assay.  相似文献   

4.
The single-stranded DNA-binding protein, Replication Protein A (RPA), is a heterotrimeric complex with subunits of 70, 32 and 14 kDa involved in DNA metabolism. RPA may be a target for cellular regulation; the 32 kDa subunit (RPA32) is phosphorylated by several cellular kinases including the DNA-dependent protein kinase (DNA-PK). We have purified a mutant hRPA complex lacking amino acids 1-33 of RPA32 (rhRPA x 32delta1-33). This mutant bound ssDNA and supported DNA replication; however, rhRPA x 32delta1-33 was not phosphorylated under replication conditions or directly by DNA-PK. Proteolytic mapping revealed that all the sites phosphorylated by DNA-PK are contained on residues 1-33 of RPA32. When wild-type RPA was treated with DNA-PK and the mixture added to SV40 replication assays, DNA replication was supported. In contrast, when rhRPA x 32delta1-33 was treated with DNA-PK, DNA replication was strongly inhibited. Because untreated rhRPA x 32delta1-33 is fully functional, this suggests that the N-terminus of RPA is needed to overcome inhibitory effects of DNA-PK on other components of the DNA replication system. Thus, phosphorylation of RPA may modulate DNA replication indirectly, through interactions with other proteins whose activity is modulated by phosphorylation.  相似文献   

5.
Replication protein A (RPA) is the major single-stranded DNA-binding protein in eukaryotes. RPA is composed of three subunits of 70, 32, and 14 kDa. The N-terminal domain of the 70-kDa subunit (RPA70) has weak DNA binding activity, interacts with proteins, and is involved in cellular DNA damage response. To define the mechanism by which this domain regulates RPA function, we analyzed the function of RPA forms containing a deletion of the N terminus of RPA70 and mutations in the phosphorylation domain of RPA (N-terminal 40 amino acids of the 32-kDa subunit). Although each individual mutation has only modest effects on RPA activity, a form combining both phosphorylation mimetic mutations and a deletion of the N-terminal domain of RPA70 was found to have dramatically altered activity. This combined mutant was defective in binding to short single-stranded DNA oligonucleotides and had altered interactions with proteins that bind to the DNA-binding core of RPA70. These results indicate that in the absence of the N-terminal domain of RPA70, a negatively charged phosphorylation domain disrupts the activity of the core DNA-binding domain of RPA. We conclude that the N-terminal domain of RPA70 functions by interacting with the phosphorylation domain of the 32-kDa subunit and blocking undesirable interactions with the core DNA-binding domain of RPA. These studies indicate that RPA conformation is important for regulating RPA-DNA and RPA-protein interactions.  相似文献   

6.
Replication protein A (RPA) is a heterotrimeric (subunits of 70, 32, and 14 kDa) single-stranded DNA-binding protein that is required for DNA replication, recombination, and repair. The 40-residue N-terminal domain of the 32-kDa subunit of RPA (RPA32) becomes phosphorylated during S-phase and after DNA damage. Recently it has been shown that phosphorylation or the addition of negative charges to this N-terminal phosphorylation domain modulates RPA-protein interactions and increases cell sensitivity to DNA damage. We found that addition of multiple negative charges to the N-terminal phosphorylation domain also caused a significant decrease in the ability of a mutant form of RPA to destabilize double-stranded (ds) DNA. Kinetic studies suggested that the addition of negative charges to the N-terminal phosphorylation domain caused defects in both complex formation (nucleation) and subsequent destabilization of dsDNA by RPA. We conclude that the N-terminal phosphorylation domain modulates RPA interactions with dsDNA. Similar changes in DNA interactions were observed with a mutant form of RPA in which the N-terminal domain of the 70-kDa subunit was deleted. This suggested a functional link between the N-terminal domains of the 70- and 32-kDa subunits of RPA. NMR experiments provided evidence for a direct interaction between the N-terminal domain of the 70-kDa subunit and the negatively charged N-terminal phosphorylation domain of RPA32. These findings suggest that phosphorylation causes a conformational change in the RPA complex that regulates RPA function.  相似文献   

7.
Walther AP  Gomes XV  Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3963-3973
Human replication protein A (RPA) is a multiple subunit single-stranded DNA-binding protein that is required for multiple processes in cellular DNA metabolism. This complex, composed of subunits of 70, 32, and 14 kDa, binds to single-stranded DNA (ssDNA) with high affinity and participates in multiple protein-protein interactions. The 70-kDa subunit of RPA is known to be composed of multiple domains: an N-terminal domain that participates in protein interactions, a central DNA-binding domain (composed of two copies of a ssDNA-binding motif), a putative (C-X2-C-X13-C-X2-C) zinc finger, and a C-terminal intersubunit interaction domain. A series of mutant forms of RPA were used to elucidate the roles of these domains in RPA function. The central DNA-binding domain was necessary and sufficient for interactions with ssDNA; however, adjacent sequences, including the zinc-finger domain and part of the N-terminal domain, were needed for optimal ssDNA-binding activity. The role of aromatic residues in RPA-DNA interactions was examined. Mutation of any one of the four aromatic residues shown to interact with ssDNA had minimal effects on RPA activity, indicating that individually these residues are not critical for RPA activity. Mutation of the zinc-finger domain altered the structure of the RPA complex, reduced ssDNA-binding activity, and eliminated activity in DNA replication.  相似文献   

8.
Eukaryotic RNA polymerases I and III share two distinct α-related subunits that show limited homology to the α subunit of Escherichia coli RNA polymerase, which forms a homodimer to nucleate the assembly of prokaryotic RNA polymerase. To gain insight into the functions of α-related subunits in eukaryotes, we have previously identified the α-related small subunit RPA17 of RNA polymerase I (and III) in Schizosaccharomyces pombe, and have shown that it is a functional homolog of Saccharomyces cerevisiae AC19. In an extension of that study, we have now isolated and characterized rpa42 +, which encodes the α-related large subunit RPA42 of S. pombe RNA polymerase I, by virtue of the fact that its product interacts with RPA17 in the yeast two-hybrid system. We have found that rpa42 + encodes a polypeptide with an apparent molecular mass of 42?kDa, which shows 58% identity to the AC40 subunit shared by RNA polymerases I and III in S. cerevisiae. Furthermore, we have shown that rpa42 + complements a temperature-sensitive mutation in RPC40 the gene that encodes AC40 in S. cerevisiae and which is essential for cell growth. Finally, we have shown that neither RPA42 nor RPA17 can self-associate. These results provide evidence that the two distinct α-related subunits, RPA42 and RPA17, of RNA polymerases I and III are functionally conserved between S. pombe and S. cerevisiae, and suggest that heterodimer formation between them is essential for the assembly of RNA polymerases I and III in eukaryotes.  相似文献   

9.
Wyka IM  Dhar K  Binz SK  Wold MS 《Biochemistry》2003,42(44):12909-12918
Human replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), eukaryotic single-stranded DNA (ssDNA) binding protein required for DNA recombination, repair, and replication. The three subunits of human RPA are composed of six conserved DNA binding domains (DBDs). Deletion and mutational studies have identified a high-affinity DNA binding core in the central region of the 70 kDa subunit, composed of DBDs A and B. To define the roles of each DBD in DNA binding, monomeric and tandem DBD A and B domain chimeras were created and characterized. Individually, DBDs A and B have a very low intrinsic affinity for ssDNA. In contrast, tandem DBDs (AA, AB, BA, and BB) bind ssDNA with moderate to high affinity. The AA chimera had a much higher affinity for ssDNA than did the other tandem DBDs, demonstrating that DBD A has a higher intrinsic affinity for ssDNA than DBD B. The RPA-DNA interface is similar in both DBD A and DBD B. Mutational analysis was carried out to probe the relative contributions of the two domains to DNA binding. Mutation of polar residues in either core DBD resulted in a significant decrease in the affinity of the RPA complex for ssDNA. RPA complexes with pairs of mutated polar residues had lower affinities than those with single mutations. The decrease in affinity observed when polar mutations were combined suggests that multiple polar interactions contribute to the affinity of the RPA core for DNA. These results indicate that RPA-ssDNA interactions are the result of binding of multiple nonequivalent domains. Our data are consistent with a sequential binding model for RPA, in which DBD A is responsible for positioning and initial binding of the RPA complex while DBD A together with DBD B direct stable, high-affinity binding to ssDNA.  相似文献   

10.
11.
The RFA1 gene encodes the large subunit of the yeast trimeric single-stranded DNA binding protein replication protein A (RPA), which is known to play a critical role in DNA replication. A Saccharomyces cerevisiae strain carrying the rfa1-44 allele displays a number of impaired recombination and repair phenotypes, all of which are suppressible by overexpression of RAD52. We demonstrate that a rad52 mutation is epistatic to the rfa1-44 mutation, placing RFA1 and RAD52 in the same genetic pathway. Furthermore, two-hybrid analysis indicates the existence of interactions between Rad52 and all three subunits of RPA. The nature of this Rad52-RPA interaction was further explored by using two different mutant alleles of rad52. Both mutations lie in the amino terminus of Rad52, a region previously defined as being responsible for its DNA binding ability (U. H. Mortenson, C. Beudixen, I. Sunjeuaric, and R. Rothstein, Proc. Natl. Acad. Sci. USA 93:10729–10734, 1996). The yeast two-hybrid system was used to monitor the protein-protein interactions of the mutant Rad52 proteins. Both of the mutant proteins are capable of self-interaction but are unable to interact with Rad51. The mutant proteins also lack the ability to interact with the large subunit of RPA, Rfa1. Interestingly, they retain their ability to interact with the medium-sized subunit, Rfa2. Given the location of the mutations in the DNA binding domain of Rad52, a model incorporating the role of DNA in the protein-protein interactions involved in the repair of DNA double-strand breaks is presented.  相似文献   

12.
Saccharomyces cerevisiae Cdc7 kinase is required for initiation of S phase, and its kinase activity, which is positively regulated by Dbf4 protein, reaches maximum at the G1/S boundary. In this study, we constructed Cdc7 point mutants (T281E, T281A, D182N, D163N, and T167E) and examined the effect of each mutant on growth. All the mutants lost the ability to complement temperature-sensitive growth of cdc7(ts) mutants at a low protein level, whereas T281A (putative target of phosphorylation) and T167E (residue involved in substrate recognition) restored the growth of cdc7(ts) when overproduced to a high level. Three putative kinase-negative mutants (T281E, D182N, and D163N) inhibited growth when overexpressed in a wild-type strain. Analyses of DNA content and morphology revealed that most cells were arrested as dumbbells with 1C DNA, indicative of a block in the G1 to S transition. This growth inhibition was suppressed by co-overexpression of the wild-type Cdc7 or Dbf4 protein. Furthermore, deletion of the Dbf4 protein-binding region in each Cdc7 mutant resulted in loss of growth inhibitory effect. Thus, dominant-negative effects of T281E, D182N, and D163N on growth can be best explained by inactivation of the wild-type Cdc7 function through titration of Dbf4 by these inactive kinases. Our results are consistent with the notion that association of Dbf4 with Cdc7 is essential for the G1 to S transition in S. cerevisiae.  相似文献   

13.
The human nuclear single-stranded (ss) DNA- binding protein, replication protein A (RPA), is a heterotrimer consisting of three subunits: p70, p32 and p14. The protein–DNA interaction is mediated by several DNA-binding domains (DBDs): two major (A and B, also known as p70A and p70B) and several minor (C and D, also known as p70C and p32D, and, presumably, by p70N). Here, using crosslinking experiments, we investigated an interaction of RPA deletion mutants containing a subset of the DBDs with partial DNA duplexes containing 5′-protruding ssDNA tails of 10, 20 and 30 nt. The crosslinks were generated using either a ‘zero-length’ photoreactive group (4-thio-2′-deoxyuridine-5′-monophosphate) embedded in the 3′ end of the DNA primer, or a group connected to the 3′ end by a lengthy linker (5-{N-[N-(4-azido-2,5-difluoro-3- chloropyridine-6-yl)-3-aminopropionyl]-trans-3-aminopropenyl-1}-2′-deoxyuridine-5′-monophosphate). In the absence of two major DBDs, p70A and p70B, the RPA trimerization core (p70C·p32D·p14) was capable of correctly recognizing the primer– template junction and adopting an orientation similar to that in native RPA. Both p70C and p32D contributed to this recognition. However, the domain contribution differed depending on the size of the ssDNA. In contrast with the trimerization core, the RPA dimerization core (p32D·p14) was incapable of detectably recognizing the DNA- junction structures, suggesting an orchestrating role for p70C in this process.  相似文献   

14.
15.
DNA polymerase ε (Pol ε) participates in the synthesis of the leading strand during DNA replication in Saccharomyces cerevisiae. Pol ε comprises four subunits: the catalytic subunit, Pol2, and three accessory subunits, Dpb2, Dpb3 and Dpb4. DPB2 is an essential gene with unclear function. A genetic screen was performed in S. cerevisiae to isolate lethal mutations in DPB2. The dpb2-200 allele carried two mutations within the last 13 codons of the open reading frame, one of which resulted in a six amino acid truncation. This truncated Dpb2 subunit was co-expressed with Pol2, Dpb3 and Dpb4 in S. cerevisiae, but this Dpb2 variant did not co-purify with the other Pol ε subunits. This resulted in the purification of a Pol2/Dpb3/Dpb4 complex that possessed high specific activity and high processivity and holoenzyme assays with PCNA, RFC and RPA on a single-primed circular template did not reveal any defects in replication efficiency. In conclusion, the lack of Dpb2 did not appear to have a negative effect on Pol ε activity. Thus, the C-terminal motif of Dpb2 that we have identified may instead be required for Dpb2 to fulfill an essential structural role at the replication origin or at the replication fork.  相似文献   

16.
Replication protein A (RPA), the eukaryotic single-stranded DNA-binding complex, is essential for multiple processes in cellular DNA metabolism. The “canonical” RPA is composed of three subunits (RPA1, RPA2, and RPA3); however, there is a human homolog to the RPA2 subunit, called RPA4, that can substitute for RPA2 in complex formation. We demonstrate that the resulting “alternative” RPA (aRPA) complex has solution and DNA binding properties indistinguishable from the canonical RPA complex; however, aRPA is unable to support DNA replication and inhibits canonical RPA function. Two regions of RPA4, the putative L34 loop and the C terminus, are responsible for inhibiting SV40 DNA replication. Given that aRPA inhibits canonical RPA function in vitro and is found in nonproliferative tissues, these studies indicate that RPA4 expression may prevent cellular proliferation via replication inhibition while playing a role in maintaining the viability of quiescent cells.Replication protein A (RPA)3 is a stable complex composed of three subunits (RPA1, RPA2, and RPA3) that binds single-stranded DNA (ssDNA) nonspecifically. RPA (also referred to as canonical RPA) is essential for cell viability (1), and viable missense mutations in RPA subunits can lead to defects in DNA repair pathways or show increased chromosome instability. For example, a missense change in a high affinity DNA-binding domain (DBD) was demonstrated to cause a high rate of chromosome rearrangement and lymphoid tumor development in heterozygous mice (2). RPA has also been shown to have increased expression in colon and breast cancers (3, 4). High RPA1 and RPA2 levels in cancer cells are also correlated with poor overall survival (3, 4), which is consistent with RPA having a role in efficient cell proliferation.RPA is a highly conserved complex as all eukaryotes contain homologs of each of the three RPA subunits (1). At least some plants (e.g. rice) and some protists (e.g. Cryptosporidium parvum) contain multiple genes encoding for subunits of RPA (5, 6). In rice, there is evidence for multiple RPA complexes that are thought to perform different cellular functions (5). In contrast, only a single alternative form of RPA2, called RPA4, has been identified in humans (7). RPA4 was originally identified as a protein that interacts with RPA1 in a yeast two-hybrid screen (7). The RPA4 subunit is 63% identical/similar to RPA2. Comparison of the sequences of RPA4 and RPA2 suggests that the two proteins have a similar domain organization.4 RPA4 appears to contain a putative core DNA-binding domain (DBD G) flanked by a putative N-terminal phosphorylation domain and a C terminus containing a putative winged-helix domain (Fig. 1A). The RPA4 gene is located on the X chromosome, intronless, and found mainly in primates.4 Initial characterization of RPA4 by Keshav et al. (7) indicated that either RPA2 or RPA4, but not both simultaneously, interacts with RPA1 and RPA3 to form a complex. This analysis also showed that RPA4 is expressed in placenta and colon tissue but was either not detected or expressed at low levels in most established cell lines examined (7).Open in a separate windowFIGURE 1.Properties of aRPA complex. A, schematic diagram of the structural and functional domains of the three subunits of RPA and (proposed for) RPA4: DNA-binding domains (DBD A-G), the phosphorylation domain (PD), winged-helix domain (WH), and linker regions (lines). The sequence similarity between RPA2 and RPA4 is indicated for each domain of the subunit. B, gel analysis of 2 μg of RPA4/3, RPA. or aRPA separated on 8-14% SDS-PAGE gels and visualized by Coomassie Blue staining. The position of each RPA subunit is indicated. C, hydrodynamic properties of aRPA and RPA complexes. The sedimentation coefficient and Stokes'' radius were determined as described previously by sedimentation on a 15-35% glycerol gradient and chromatography on a Superose 6 10/300 GL column (GE Healthcare), respectively (13). Mass and frictional coefficients were calculated using the method of Siegal and Monty (8). The predicted mass was based upon the amino acid sequence derived from the DNA sequence.These studies describe the purification and functional analysis of an alternative RPA (aRPA) complex containing RPA1, RPA3, and RPA4. The aRPA complex is a stable heterotrimeric complex similar in size and stability to the canonical RPA complex (RPA1, RPA3, and RPA2). aRPA interacts with ssDNA in a manner indistinguishable from canonical RPA; however, it does not support DNA replication in vitro. Mixing experiments demonstrate that aRPA also inhibits canonical RPA from functioning in DNA replication. Hybrid protein studies paired with structural modeling have allowed for the identification of two regions of RPA4 responsible for this inhibitory activity. Data presented here are consistent with recent analyses of RPA4 function in human cells,4 and we conclude that RPA4 has anti-proliferative properties and has the potential to play a regulatory role in human cell proliferation through the control of DNA replication.  相似文献   

17.
DNA polymerase (Pol) of Saccharomyces cerevisiae is purified as a complex of four polypeptides with molecular masses of >250, 80, 34 (and 31) and 29 kDa as determined by SDS–PAGE. The genes POL2, DPB2 and DPB3, encoding the catalytic Pol2p, the second (Dpb2p) and the third largest subunits (Dpb3p) of the complex, respectively, were previously cloned and characterised. This paper reports the partial amino acid sequence of the fourth subunit (Dpb4p) of Pol. This protein sequence matches parts of the predicted amino acid sequence from the YDR121w open reading frame on S.cerevisiae chromosome IV. Thus, YDR121w was renamed DPB4. A deletion mutant of DPB4dpb4) is not lethal, but chromosomal DNA replication is slightly disturbed in this mutant. A double mutant haploid strain carrying the Δdpb4 deletion and either pol2-11 or dpb11-1 is lethal at all temperatures tested. Furthermore, the restrictive temperature of double mutants carrying Δdpb4 and dpb2-1, rad53-1 or rad53-21 is lower than in the corresponding single mutants. These results strongly suggest that Dpb4p plays an important role in maintaining the complex structure of Pol in S.cerevisiae, even if it is not essential for cell growth. Structural homologues of DPB4 are present in other eukaryotic genomes, suggesting that the complex structure of S.cerevisiae Pol is conserved in eukaryotes.  相似文献   

18.
Cdc13 is an essential protein from Saccharomyces cerevisiae that caps telomeres by protecting the C-rich telomeric DNA strand from degradation and facilitates telomeric DNA replication by telomerase. In vitro, Cdc13 binds TG-rich single-stranded telomeric DNA with high affinity and specificity. A previously identified domain of Cdc13 encompassing amino acids 451–694 (the 451–694 DBD) retains the single-stranded DNA-binding properties of the full-length protein; however, this domain contains a large unfolded region identified in heteronuclear NMR experiments. Trypsin digestion and MALDI mass spectrometry were used to identify the minimal DNA-binding domain (the 497–694 DBD) necessary and sufficient for full DNA-binding activity. This domain was completely folded, and the N-terminal unfolded region removed was shown to be dispensable for function. Using affinity photocrosslinking to site-specifically modified telomeric single-stranded DNA, the 497–694 DBD was shown to contact the entire 11mer required for high-affinity binding. Intriguingly, both domains bound single-stranded telomeric DNA with much greater affinity than the full-length protein. The full-length protein exhibited the same rate of dissociation as both domains, however, indicating that the full-length protein contains a region that inhibits association with single-stranded telomeric DNA.  相似文献   

19.
Eukaryotic RNA polymerases I and III share two distinct α-related subunits that show limited homology to the α subunit of Escherichia coli RNA polymerase, which forms a homodimer to nucleate the assembly of prokaryotic RNA polymerase. To gain insight into the functions of α-related subunits in eukaryotes, we have previously identified the α-related small subunit RPA17 of RNA polymerase I (and III) in Schizosaccharomyces pombe, and have shown that it is a functional homolog of Saccharomyces cerevisiae AC19. In an extension of that study, we have now isolated and characterized rpa42 +, which encodes the α-related large subunit RPA42 of S. pombe RNA polymerase I, by virtue of the fact that its product interacts with RPA17 in the yeast two-hybrid system. We have found that rpa42 + encodes a polypeptide with an apparent molecular mass of 42 kDa, which shows 58% identity to the AC40 subunit shared by RNA polymerases I and III in S. cerevisiae. Furthermore, we have shown that rpa42 + complements a temperature-sensitive mutation in RPC40 the gene that encodes AC40 in S. cerevisiae and which is essential for cell growth. Finally, we have shown that neither RPA42 nor RPA17 can self-associate. These results provide evidence that the two distinct α-related subunits, RPA42 and RPA17, of RNA polymerases I and III are functionally conserved between S. pombe and S. cerevisiae, and suggest that heterodimer formation between them is essential for the assembly of RNA polymerases I and III in eukaryotes. Received: 20 April 1999 / Accepted: 26 July 1999  相似文献   

20.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (70, 32, and 14 kDa) that is an essential component of the DNA replication fork. A complementary DNA encoding zebrafish RPA 32-kDa subunit was isolated by screening a zebrafish embryo lambda APII cDNA library with a human RPA p32 cDNA probe. The zebrafish RPA p32 cDNA consisted of 1097 bp encoding 272 amino acid residues. The deduced amino acid sequence shows high similarity to mouse and human RPA p32. In vitro phosphorylation of zebrafish RPA protein by Cdc2 kinase was shown. A recombinant protein of zebrafish RPA p32 containing a short histidine tag at the NH(2)-terminus was overexpressed in Escherichia coli BL21(DE3) pLys using an inducible T7 expression system, and was purified by Ni-NTA affinity chromatography. In this article, cloning of the zebrafish RPA p32 cDNA is reported in relation to the study of DNA replication in fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号