首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Maize and Arabidopsis thaliana class 1 reversibly glycosylated polypeptides (C1RGPs) are plasmodesmata-associated proteins. Previously, overexpression of Arabidopsis C1RGP AtRGP2 in Nicotiana tabacum was shown to reduce intercellular transport of photoassimilate, resulting in stunted, chlorotic plants, and inhibition of local cell-to-cell spread of tobacco mosaic virus (TMV). Here, we used virus induced gene silencing to examine the effects of reduced levels of C1RGPs in Nicotiana benthamiana. Silenced plants show wild-type growth and development. Intercellular transport in silenced plants was probed using fluorescently labeled TMV and its movement protein, P30. P30 shows increased cell-to-cell movement and TMV exhibited accelerated systemic spread compared with control plants. These results support the hypothesis that C1RGPs act to regulate intercellular transport via plasmodesmata.  相似文献   

2.
Reversibly glycosylated polypeptides (RGPs) have been implicated in polysaccharide biosynthesis. To date, to our knowledge, no direct evidence exists for the involvement of RGPs in a particular biochemical process. The Arabidopsis (Arabidopsis thaliana) genome contains five RGP genes out of which RGP1 and RGP2 share the highest sequence identity. We characterized the native expression pattern of Arabidopsis RGP1 and RGP2 and used reverse genetics to investigate their respective functions. Although both genes are ubiquitously expressed, the highest levels are observed in actively growing tissues and in mature pollen, in particular. RGPs showed cytoplasmic and transient association with Golgi. In addition, both proteins colocalized in the same compartments and coimmunoprecipitated from plant cell extracts. Single-gene disruptions did not show any obvious morphological defects under greenhouse conditions, whereas the double-insertion mutant could not be recovered. We present evidence that the double mutant is lethal and demonstrate the critical role of RGPs, particularly in pollen development. Detailed analysis demonstrated that mutant pollen development is associated with abnormally enlarged vacuoles and a poorly defined inner cell wall layer, which consequently results in disintegration of the pollen structure during pollen mitosis I. Taken together, our results indicate that RGP1 and RGP2 are required during microspore development and pollen mitosis, either affecting cell division and/or vacuolar integrity.  相似文献   

3.
4.
Endocytosis of cell-surface proteins via specific pathways is critical for their function. We show that multiple glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed to the recycling endosomal compartment but not to the Golgi via a nonclathrin, noncaveolae mediated pathway. GPI anchoring is a positive signal for internalization into rab5-independent tubular-vesicular endosomes also responsible for a major fraction of fluid-phase uptake; molecules merely lacking cytoplasmic extensions are not included. Unlike the internalization of detergent-resistant membrane (DRM)-associated interleukin 2 receptor, endocytosis of DRM-associated GPI-APs is unaffected by inhibition of RhoA or dynamin 2 activity. Inhibition of Rho family GTPase cdc42, but not Rac1, reduces fluid-phase uptake and redistributes GPI-APs to the clathrin-mediated pathway. These results describe a distinct constitutive pinocytic pathway, specifically regulated by cdc42.  相似文献   

5.
6.
In an investigation of the mechanism underlying the functional sublocalization of glycosyltransferases within the Golgi apparatus, caveolin-1 was identified as a possible cellular factor. Caveolin-1 appears to regulate the localization of N-acetylglucosaminyltransferase III (GnT-III) in the intra-Golgi subcompartment. Structural analyses of total cellular N-glycans indicated that the overexpression of GnT-III in human hepatoma cells, in which caveolin-1 is not expressed, failed to reduce branch formation, whereas expression of caveolin-1 led to a dramatic decrease in the extent of branching with no enhancement in GnT-III activity. Because the addition of a bisecting GlcNAc by GnT-III to the core beta-Man in N-glycans prevents the action of GnT-IV and GnT-V, both of which are involved in branch formation, this result suggests that caveolin-1 facilitates the prior action of GnT-III, relative to the other GnTs, on the nascent sugar chains in the Golgi apparatus and that GnT-III is redistributed in the earlier Golgi subcompartment by caveolin-1. Indeed, when caveolin-1 was expressed in human hepatoma cells, it was found to be co-localized with GnT-III, as evidenced by the fractionation of Triton X-100-insoluble cellular membranes by density gradient ultracentrifugation. Caveolin-1 may modify the biosynthetic pathway of sugar chains via the regulation of the intra-Golgi subcompartment localization of this key glycosyltransferase.  相似文献   

7.
8.
Batoko H  Zheng HQ  Hawes C  Moore I 《The Plant cell》2000,12(11):2201-2218
We describe a green fluorescent protein (GFP)-based assay for investigating membrane traffic on the secretory pathway in plants. Expression of AtRab1b(N121I), predicted to be a dominant inhibitory mutant of the Arabidopsis Rab GTPase AtRab1b, resulted in accumulation of a secreted GFP marker in an intracellular reticulate compartment reminiscent of the endoplasmic reticulum. This accumulation was alleviated by coexpressing wild-type AtRab1b but not AtRab8c. When a Golgi-targeted and N-glycosylated variant of GFP was coexpressed with AtRab1b(N121I), the variant also accumulated in a reticulate network and an endoglycosidase H-sensitive population appeared. Unexpectedly, expression of AtRab1b(N121I), but not of the wild-type AtRab1b, resulted in a reduction or cessation of vectorial Golgi movement, an effect that was reversed by coexpression of the wild type. We conclude that AtRab1b function is required for transport from the endoplasmic reticulum to the Golgi apparatus and suggest that this process may be coupled to the control of Golgi movement.  相似文献   

9.
Con A, NaF, and eserine (lysosomotropic agents) induced marked translocation of acidic [3H] nonhistone proteins (NHP) from the cytoplasm to the nucleus in lymphocytes prelabeled with [3H]-2-mannose. The nuclear [3H] NHP contents were 38-120% higher in cells treated with these agents than in control cells. Tunicamycin, a strong inhibitor of N-glycosylation via the dolichol pathway, caused a concentration-dependent inhibition of [3H]-2-mannose incorporation into the nuclear [3H] NHP. Considerable amounts of nuclear [3H] NHP from lymphocytes labeled with either [3H]-2-mannose or [3H] leucine, bound specifically to Con A-Sepharose and could be eluted by alpha-methyl mannoside. Con A and NaF caused also nuclear translocation of acidic [3H] NHP in cells labeled with [3H] glucosamine, [3H] galactose, or [3H] fucose. Fractionation of the nuclear proteins by isoelectric focusing in a pH gradient of 2.5-6.5 showed that multiple species of acidic NHP were labeled with each of the four 3H-sugars. These results indicate that a fraction of the acidic nuclear NHP are N-glycosylated proteins and that gene activation and mitogenesis are associated with the translocation of these glycoproteins to the nucleus. Considering the known intracellular traffic of nascent glycoproteins our results suggest that at least some of the acidic NHP are synthesized and glycosylated in the endoplasmic reticulum and the Golgi (secretory pathway). It is likely that these proteins, after completion of synthesis and glycosylation, emerge from the trans-stack of the Golgi packaged in vesicles and accumulate in the cytoplasm. Induction of nuclear translocation of such NHP by various agents may be mediated by a vesicular transport mechanism.  相似文献   

10.
Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate cyclases. Caveolin-1 is the major integral component of DRMs, possessing scaffolding and regulatory activities towards various signaling proteins. In this study, photoreceptor Ca2+-binding proteins recoverin, NCS1, GCAP1, and GCAP2, belonging to neuronal calcium sensor (NCS) family, were recognized as novel caveolin-1 interacting partners. All four NCS proteins co-fractionate with caveolin-1 in DRMs, isolated from illuminated bovine rod outer segments. According to pull-down assay, surface plasmon resonance spectroscopy and isothermal titration calorimetry data, they are capable of high-affinity binding to either N-terminal fragment of caveolin-1 (1–101), or its short scaffolding domain (81–101) via a novel structural site. In recoverin this site is localized in C-terminal domain in proximity to the third EF-hand motif and composed of aromatic amino acids conserved among NCS proteins. Remarkably, the binding of NCS proteins to caveolin-1 occurs only in the absence of calcium, which is in agreement with higher accessibility of the caveolin-1 binding site in their Ca2+-free forms. Consistently, the presence of caveolin-1 produces no effect on regulatory activity of Ca2+-saturated recoverin or NCS1 towards rhodopsin kinase, but upregulates GCAP2, which potentiates guanylate cyclase activity being in Ca2+-free conformation. In addition, the interaction with caveolin-1 decreases cooperativity and augments affinity of Ca2 + binding to recoverin apparently by facilitating exposure of its myristoyl group. We suggest that at low calcium NCS proteins are compartmentalized in photoreceptor rafts via binding to caveolin-1, which may enhance their activity or ensure their faster responses on Ca2+-signals thereby maintaining efficient phototransduction recovery and light adaptation.  相似文献   

11.
Targeting of proteins to the Golgi apparatus   总被引:8,自引:0,他引:8  
 The proteins that reside in the Golgi carry out functions associated with post-translational modifications, including glycosylation and proteolytic processing, membrane transport, recycling of endoplasmic reticulum proteins and maintenance of the structural organisation of the organelle itself. The latter includes Golgi stacking, interconnections between stacks and the microtubule-dependent positioning of the organelle within the cell. There are a number of distinct groups of Golgi membrane proteins, including glycosyltransferases, recycling trans-Golgi network (TGN) proteins, peripheral membrane proteins and receptors. Considerable effort has been directed at understanding the basis of the localisation of Golgi glycosyltransferases and recycling TGN proteins; in both cases there is increasing evidence that multiple signals may be involved in their specific localisation. A number of models for the Golgi retention of glycosyltransferases have been proposed including oligomerisation, lipid-mediated sorting and intra-Golgi retrograde transport. More information is required to determine the contribution of each of these potential mechanisms in the targeting of different glycosyltransferases. Future work is also likely to focus on the relationship between the localisation of resident Golgi proteins and the maintenance of Golgi structure. Accepted: 15 October 1997  相似文献   

12.
13.
Targeting of proteins to the Golgi apparatus   总被引:5,自引:0,他引:5  
The Golgi apparatus maintains a highly organized structure in spite of the intense membrane traffic which flows into and out of this organelle. Resident Golgi proteins must have localization signals to ensure that they are targeted to the correct Golgi compartment and not swept further along the secretory pathway. There are a number of distinct groups of Golgi membrane proteins, including glycosyltransferases, recyclingtrans-Golgi network proteins, peripheral membrane proteins, receptors and viral glycoproteins. Recent studies indicate that there are a number of different Golgi localization signals and mechanisms for retaining proteins to the Golgi apparatus. This review focuses on the current knowledge in this field.  相似文献   

14.
The central function of heterotrimeric GTP-binding proteins (G proteins) is the transduction of extracellular signals, via membrane receptors, leading to the activation of intracellular effectors. In addition to being associated with the plasma membrane, the alpha subunits of some of these proteins have also been localized in intracellular compartments. The mRNA of the G-protein inhibitory alpha subunit 2 (G(alphai2)) encodes two proteins, G(alphai2) and sG(i2), by an alternative splicing mechanism. sG(i2) differs from G(alphai2) in the C-terminal region and localizes in the Golgi in contrast to the plasma membrane localization of G(alphai2). In this paper we show that the sequence specific to sG(i2) can direct the Golgi localization of other G(alphai) subunits, but not of the stimulatory subunit G(alphas) or of a secreted protein. This indicates that, in addition to the sG(i2) C-terminus, sequences located elsewhere in the protein are required to determine the Golgi localization. Inside the sG(i2) C-terminal region we have identified a 14-amino-acid proline-rich motif which specifies the Golgi localization. Finally, we show that the sG(i2) subunit, once activated, leaves the Golgi to be localized in the endoplasmic reticulum.  相似文献   

15.
Human proteins IEF 58 and 57a are associated with the Golgi apparatus   总被引:1,自引:0,他引:1  
A mouse monoclonal antibody (mAB 22-II-D8B) raised against lysed transformed human amnion cells (AMA) has been characterized. The mAB decorated the Golgi apparatus in growing and quiescent cultured monolayer cells (fibroblasts and epithelial cells) of various species as determined by double immunofluorescence labeling and colocalization with galactosyltransferase antibodies. It reacted with the acidic human proteins IEF 58 (Mr = 29,000) and 57a, respectively (Mr = 30,000) (HeLa protein catalogue number; [(1982) Clin. Chem. 28, 766]), Golgi staining was also observed in BS-C-1 cells microinjected with mAB 22-II-D8B suggesting that the epitopes recognized by the antibody are most likely located on the cytoplasmic face of the membranes. The precise localization of the antigens to the various cisternae of the Golgi apparatus could not be demonstrated by immunogold cytochemistry on ultrathin cryosections due to either weak reactivity of the antibody or low concentration of the antigens. Immunofluorescence staining with mAB 22-II-D8B of lymphoid human Molt-4 cells and some human tissues failed to reveal any significant staining even though these expressed high levels of both IEF 58 and 57a. These results are taken to imply that the epitopes recognized by mAB 22-II-D8B may be masked in some cell types.  相似文献   

16.
G Hinz  S Hillmer  M Baumer    I Hohl  I 《The Plant cell》1999,11(8):1509-1524
In the parenchyma cells of developing legume cotyledons, storage proteins are deposited in a special type of vacuole, known as the protein storage vacuole (PSV). Storage proteins are synthesized at the endoplasmic reticulum and pass through the Golgi apparatus. In contrast to lysosomal acid hydrolases, storage proteins exit the Golgi apparatus in 130-nm-diameter electron-dense vesicles rather than in clathrin-coated vesicles. By combining isopycnic and rate zonal sucrose density gradient centrifugation with phase partitioning, we obtained a highly enriched dense vesicle fraction. This fraction contained prolegumin, which is the precursor of one of the major storage proteins. In dense vesicles, prolegumin occurred in a more aggregated form than it did in the endoplasmic reticulum. The putative vacuolar sorting receptor BP-80 was highly enriched in purified clathrin-coated vesicles, which, in turn, did not contain prolegumin. The amount of BP-80 was markedly reduced in the dense vesicle fraction. This result was confirmed by quantitative immunogold labeling of cryosections of pea cotyledons: whereas antibodies raised against BP-80 significantly labeled the Golgi stacks, labeling of the dense vesicles could not be detected. In contrast, 90% of the dense vesicles were labeled with antibodies raised against alpha-TIP (for tonoplast intrinsic protein), which is the aquaporin specific for the membrane of the PSV. These results lead to the conclusions that storage proteins and alpha-TIP are delivered via the same vesicular pathway into the PSVs and that the dense vesicles that carry these proteins in turn do not contain BP-80.  相似文献   

17.
Developing pea cotyledons contain functionally different vacuoles, a protein storage vacuole and a lytic vacuole. Lumenal as well as membrane proteins of the protein storage vacuole exit the Golgi apparatus in dense vesicles rather than in clathrin-coated vesicles (CCVs). Although the sorting receptor for vacuolar hydrolases BP-80 is present in CCVs, it is not detectable in dense vesicles. To localize these different vacuolar sorting events in the Golgi, we have compared the distribution of vacuolar storage proteins and of alpha-TIP, a membrane protein of the protein storage vacuole, with the distribution of the vacuolar sorting receptor BP-80 across the Golgi stack. Analysis of immunogold labeling from cryosections and from high pressure frozen samples has revealed a steep gradient in the distribution of the storage proteins within the Golgi stack. Intense labeling for storage proteins was registered for the cis-cisternae, contrasting with very low labeling for these antigens in the trans-cisternae. The distribution of BP-80 was the reverse, showing a peak in the trans-Golgi network with very low labeling of the cis-cisternae. These results indicate a spatial separation of different vacuolar sorting events in the Golgi apparatus of developing pea cotyledons.  相似文献   

18.
The Golgi apparatus is an intracellular organelle playing central roles in post-translational modification and in the secretion of membrane and secretory proteins. These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the cis-, medial-and trans-cisternae of the Golgi. While trafficking through the Golgi, proteins are sequentially modified with glycan moieties by different glycosyltransferases. Therefore, it is important to analyze the glycosylation function of the Golgi at the level of cisternae. Markers widely used for cis-, medial- and trans-cisternae/trans Golgi network (TGN) in Drosophila are GM130, 120 kDa and Syntaxin16 (Syx16); however the anti-120 kDa antibody is no longer available. In the present study, Drosophila Golgi complex-localized glycoprotein-1 (dGLG1) was identified as an antigen recognized by the anti-120 kDa antibody. A monoclonal anti-dGLG1 antibody suitable for immunohistochemistry was raised in rat. Using these markers, the localization of glycosyltransferases and nucleotide-sugar transporters (NSTs) was studied at the cisternal level. Results showed that glycosyltransferases and NSTs involved in the same sugar modification are localized to the same cisternae. Furthermore, valuable functional information was obtained on the localization of novel NSTs with as yet incompletely characterized biochemical properties.  相似文献   

19.
K Wüthrich 《Biopolymers》1983,22(1):131-138
Recently, a new procedure for the assignment of protein 1H-nmr spectra was introduced that relies on stereochemical considerations of proton–proton distances in polypeptides and on the use of two-dimensional nmr for obtaining 1H-1H through-bond and through-space connectivity maps. In the present paper a particular aspect of this assignment procedure is discussed in more detail, i.e., how to obtain individual resonance assignments from identification of amino acid side-chain spin systems and identification of neighboring residues in the amino acid sequence.  相似文献   

20.
Summary The potential of tobacco BY-2 suspension-cultured cells for examining in vivo targeting and import of proteins into plant peroxisomes was shown recently in our laboratory. In the current study, the necessity and sufficiency of putative C-terminal targeting signals on cottonseed malate synthase and bacterial chloramphenicol acetyl-transferase (CAT) were examined in BY-2 cells. Cotton suspension cells also were evaluated as another in vivo peroxisome targeting system. Ultrastructural views of BY-2 cells showed that the peroxisomes were relatively small (0.1-0.3 m diameter), a characteristic of so-called unspecialized peroxisomes, Peroxisomes in cotton and tobacco cells were identified with anti-cottonseed catalase IgGs as distinct immunofluorescent particles clearly distinguishable from abundant immunofluorescent mitochondria and plastids, marked with antibodies to -ATPase and stearoyl-ACP 9 desaturase, respectively. The C-terminal ser-lys-leu (SKL) motif is a well-established peroxisome targeting signal (PTS 1) for mammals and yeasts, but not for plants. Antiserum raised against SKL peptides recognized proteins only in peroxisomes in cotton and tobacco cells. The necessity of SKL-COOH for targeting of proteins to plant peroxisomes had not been demonstrated; we showed that SKL-COOH was necessary for directing cottonseed malate synthase to BY-2 peroxisomes. KSRM-COOH, a conservative modification of SKL-COOH, was shown by others to be sufficient for redirecting CAT in stably-transformed Arabidopsis plants to the leaf peroxisomes. Here we show with the same CAT constructs (e.g., pMON316CAT-KSRM) that KSRM is sufficient for targeting transiently-expressed passenger proteins to unspecialized BY-2 peroxisomes. These results provide new direct evidence for the necessity of SKL-COOH (a type 1 PTS) and sufficiency of a conservative modification of the PTS 1 (KSRM-COOH) for in vivo, heterologous targeting of proteins to plant peroxisomes.Abbreviations CAT chloramphenicol acetyltransferase - CHO cells Chinese hamster ovary cells - DAB 3,3-diaminobenzidine - GUS -glucuronidase - ICL isocitrate lyase - KSRM lysine-serine-arginine-methionine - MS malate synthase - PBS phosphate-buffered saline - PTS peroxisome targeting signal - SKL serine-lysine-leucine - tobacco BY-2 Bright Yellow-2 Dedicated to Professor Eldon H. Newcomb in recognition of his contributions to cell biology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号