首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli involves four parallel channels whose inter-conversions are controlled by three cis/trans prolyl isomerization reactions (tau(1), tau(2) and tau(3)). A previous mutational analysis of all 19 proline positions, including the unique cis Asp27-Pro28 peptide bond, revealed that the G(3)P28G, P78A or P96A mutations selectively eliminated the fast, tau(1) (ten seconds), folding phase, while the P217M and P261A mutations eliminated the medium, tau(2) (40 seconds) and the slow, tau(3) ( approximately 300 seconds) folding phases, respectively. To further elucidate the role of these proline residues and to simplify the folding mechanism, a series of double and triple mutants were constructed at these critical positions, and comprehensive kinetic and thermodynamic experiments were performed. Although it was not possible to construct a stable system that was free of proline isomerization constraints, a double mutant variant, G(3)P28G/P217M, in which the refolding of more than 90% of the unfolded protein is not limited by proline isomerization reactions was identified. Further, long-range interactions between several of these residues appear to be a crucial part of the cooperative network of structure that stabilizes the TIM barrel motif for alphaTS.  相似文献   

2.
The cis/trans isomerization of prolyl peptide bonds has been suggested to dominate the folding of the alpha subunit of tryptophan synthase from Escherichia coli (alphaTS). To test the role of the unique cis isomer between Asp27 and Pro28, the folding properties of P28A, P28G and G(3)P28G, a three-glycine insertion mutant between Asp27 and Gly28, were investigated using urea as a denaturant. Circular dichroism analysis demonstrated that none of the mutations perturb the secondary structure significantly, although the aromatic side-chain packing is altered for P28A and P28G. All three mutant proteins inherited the three-state thermodynamic behavior observed in wild-type alphaTS, ensuring that the fundamental features of the energy surface are intact. Kinetic studies showed that neither alanine nor glycine substitutions at Pro28 results in the elimination of any slow-refolding phases. By contrast, the G(3)P28G mutant eliminates the fastest of the slow-refolding phases and one of the two unfolding phases. Double-jump experiments on G(3)P28G confirm the assignment of the missing refolding phase to the isomerization of the Asp27-Pro28 peptide bond. These results imply that the local stability conveyed by the tight, overlapping turns containing the cis peptide bond is sufficient to favor the cis isomer for several non-prolyl residues. The free energy required to drive the isomerization reaction is provided by the formation of the stable intermediate, demonstrating that the acquisition of structure and stability is required to induce subsequent rate-limiting steps in the folding of alphaTS.  相似文献   

3.
In folded proteins, prolyl peptide bonds are usually thought to be either trans or cis because only one of the isomers can be accommodated in the native folded protein. For the N-terminal domain of the gene-3 protein of the filamentous phage fd (N2 domain), Pro161 resides at the tip of a beta hairpin and was found to be cis in the crystal structure of this protein. Here we show that Pro161 exists in both the cis and the trans conformations in the folded form of the N2 domain. We investigated how conformational folding and prolyl isomerization are coupled in the unfolding and refolding of N2 domain. A combination of single-mixing and double-mixing unfolding and refolding experiments showed that, in unfolded N2 domain, 7% of the molecules contain a cis-Pro161 and 93% of the molecules contain a trans-Pro161. During refolding, the fraction of molecules with a cis-Pro161 increases to 85%. This implies that 10.3 kJ mol(-1) of the folding free energy was used to drive this 75-fold change in the Pro161 cis/trans equilibrium constant during folding. The stabilities of the forms with the cis and the trans isomers of Pro161 and their folding kinetics could be determined separately because their conformational folding is much faster than the prolyl isomerization reactions in the native and the unfolded proteins. The energetic coupling between conformational folding and Pro161 isomerization is already fully established in the transition state of folding, and the two isomeric forms are thus truly native forms. The folding kinetics are well described by a four-species box model, in which the N2 molecules with either isomer of Pro161 can fold to the native state and in which cis/trans isomerization occurs in both the unfolded and the folded proteins.  相似文献   

4.
The effect of His-heme misligation on folding has been investigated for a triple mutant of yeast iso-2 cytochrome c (N26H,H33N,H39K iso-2). The variant contains a single misligating His residue at position 26, a location at which His residues are found in several cytochrome c homologues, including horse, tuna, and yeast iso-1. The amplitude for fast phase folding exhibits a strong initial pH dependence. For GdnHCl unfolded protein at an initial pH<5, the observed refolding at final pH 6 is dominated by a fast phase (tau(2f)=20 ms, alpha(2f)=90 %) that represents folding in the absence of misligation. For unfolded protein at initial pH 6, folding at final pH 6 occurs in a fast phase of reduced amplitude (alpha(2f) approximately 20 %) but the same rate (tau(2f)=20 ms), and in two slower phases (tau(m)=6-8 seconds, alpha(m) approximately 45 %; and tau(1b)=16-20 seconds, alpha(1b) approximately 35 %). Double jump experiments show that the initial pH dependence of the folding amplitudes results from a slow pH-dependent equilibrium between fast and slow folding species present in the unfolded protein. The slow equilibrium arises from coupling of the His protonation equilibrium to His-heme misligation and proline isomerization. Specifically, Pro25 is predominantly in trans in the unligated low-pH unfolded protein, but is constrained in a non-native cis isomerization state by His26-heme misligation near neutral pH. Refolding from the misligated unfolded form proceeds slowly due to the large energetic barrier required for proline isomerization and displacement of the misligated His26-heme ligand.  相似文献   

5.
Refolding of b*C40A/C82A/P27A is comprised of several kinetically detectable folding phases. The slowest phase in refolding originates from trans-->cis isomerization of the Tyr47-Pro48 peptide bond being in cis conformation in the native state. This refolding phase can be accelerated by the peptidyl-prolyl cis/trans isomerase human cytosolic cyclophilin (Cyp18) with a kcat/K(M) of 254,000 M(-1) s(-1). The fast refolding phase is not influenced by the enzyme.  相似文献   

6.
The protein folding process is often in vitro rate‐limited by slow cis‐trans proline isomerization steps. Importantly, the rate of this process in vivo is accelerated by prolyl isomerases (PPIases). The archetypal PPIase is the human cyclophilin 18 (Cyp18 or CypA), and Arg 55 has been demonstrated to play a crucial role when studying short peptide substrates in the catalytic action of Cyp18 by stabilizing the transition state of isomerization. However, in this study we show that a R55A mutant of Cyp18 is as efficient as the wild type to accelerate the refolding reaction of human carbonic anhydrase II (HCA II). Thus, it is evident that the active‐site located Arg 55 is not required for catalysis of the rate‐limiting prolyl cis‐trans isomerization steps during the folding of a protein substrate as HCA II. Nevertheless, catalysis of cis‐trans proline isomerization in HCA II occurs in the active‐site of Cyp18, since binding of the inhibitor cyclosporin A abolishes rate acceleration of the refolding reaction. Obviously, the catalytic mechanisms of Cyp18 can differ when acting upon a simple model peptide, four residues long, with easily accessible Pro residues compared with a large protein molecule undergoing folding with partly or completely buried Pro residues. In the latter case, the isomerization kinetics are significantly slower and simpler mechanistic factors such as desolvation and/or strain might operate during folding‐assisted catalysis, since binding to the hydrophobic active site is still a prerequisite for catalysis.  相似文献   

7.
Ribonuclease A is known to form an equilibrium mixture of fast-folding (UF) and slow-folding (US) species. Rapid unfolding to UF is then followed by a reaction in the unfolded state, which produces a mixture of UF, USII, USI, and possibly also minor populations of other US species. The two cis proline residues, P93 and P114, are logical candidates for producing the major US species after unfolding, by slow cis <==> trans isomerization. Much work has been done in the past on testing this proposal, but the results have been controversial. Site-directed mutagenesis is used here. Four single mutants, P93A, P93S, P114A, and P114G, and also the double mutant P93A, P114G have been made and tested for the formation of US species after unfolding. The single mutants P114G and P114A still show slow isomerization reactions after unfolding that produce US species; thus, Pro 114 is not required for the formation of at least one of the major US species of ribonuclease A. Both the refolding kinetics and the isomerization kinetics after unfolding of the Pro 93 single mutants are unexpectedly complex, possibly because the substituted amino acid forms a cis peptide bond, which should undergo cis --> trans isomerization after unfolding. The kinetics of peptide bond isomerization are not understood at present and the Pro 93 single mutants cannot be used yet to investigate the role of Pro 93 in forming the US species of ribonuclease A. The double mutant P93A, P114G shows single exponential kinetics measured by CD, and it shows no evidence of isomerization after unfolding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Wedemeyer WJ  Welker E  Scheraga HA 《Biochemistry》2002,41(50):14637-14644
Proline cis-trans isomerization plays a key role in the rate-determining steps of protein folding. The energetic origin of this isomerization process is summarized, and the folding and unfolding of disulfide-intact bovine pancreatic ribonuclease A is used as an example to illustrate the kinetics and structural features of conformational changes from the heterogeneous unfolded state (consisting of cis and trans isomers of X-Pro peptide groups) to the native structure in which only one set of proline isomers is present.  相似文献   

9.
Proline peptide group isomerization can result in kinetic barriers in protein folding. In particular, the cis proline peptide conformation at Tyr92-Pro93 of bovine pancreatic ribonuclease A (RNase A) has been proposed to be crucial for chain folding initiation. Mutation of this proline-93 to alanine results in an RNase A molecule, P93A, that exhibits unfolding/refolding kinetics consistent with a cis Tyr92-Ala93 peptide group conformation in the folded structure (Dodge RW, Scheraga HA, 1996, Biochemistry 35:1548-1559). Here, we describe the analysis of backbone proton resonance assignments for P93A together with nuclear Overhauser effect data that provide spectroscopic evidence for a type VI beta-bend conformation with a cis Tyr92-Ala93 peptide group in the folded structure. This is in contrast to the reported X-ray crystal structure of [Pro93Gly]-RNase A (Schultz LW, Hargraves SR, Klink TA, Raines RT, 1998, Protein Sci 7:1620-1625), in which Tyr92-Gly93 forms a type-II beta-bend with a trans peptide group conformation. While a glycine residue at position 93 accommodates a type-II bend (with a positive value of phi93), RNase A molecules with either proline or alanine residues at this position appear to require a cis peptide group with a type-VI beta-bend for proper folding. These results support the view that a cis Pro93 conformation is crucial for proper folding of wild-type RNase A.  相似文献   

10.
The refolding of ribonuclease T1 is dominated by two major slow kinetic phases that show properties of proline isomerization reactions. We report here that the molecular origin of one of these processes is the trans----cis isomerization of the Ser54-Pro55 peptide bond, which is cis in the native protein but predominantly trans in unfolded ribonuclease T1. This is shown by a comparison of the wild type and a designed mutant protein where Ser54 and Pro55 were replaced by Gly54 and Asn55, respectively. This mutation leaves the thermal stability of the protein almost unchanged; however, in the absence of Pro55 one of the two slow phases in folding is abolished and the kinetic mechanism of refolding is dramatically simplified.  相似文献   

11.
J A Zitzewitz  C R Matthews 《Biochemistry》1999,38(31):10205-10214
The alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli is a 268-residue 8-stranded beta/alpha barrel protein. Two autonomous folding units, comprising the first six strands (residues 1-188) and the last two strands (residues 189-268), have been previously identified in this single structural domain protein by tryptic digestion [Higgins, W., Fairwell, T., and Miles, E. W. (1979) Biochemistry 18, 4827-4835]. The larger, amino-terminal fragment, alphaTS(1-188), was overexpressed and independently purified, and its equilibrium and kinetic folding properties were studied by absorbance, fluorescence, and near- and far-UV circular dichroism spectroscopies. The native state of the fragment unfolds cooperatively in an apparent two-state transition with a stability of 3.98 +/- 0.19 kcal mol(-1) in the absence of denaturant and a corresponding m value of 1.07 +/- 0.05 kcal mol(-1) M(-1). Similar to the full-length protein, the unfolding of the fragment shows two kinetic phases which arise from the presence of two discrete native state populations. Additionally, the fragment exhibits a significant burst phase in unfolding, indicating that a fraction of the folded state ensemble under native conditions has properties similar to those of the equilibrium intermediate populated at 3 M urea in full-length alphaTS. Refolding of alphaTS(1-188) is also complex, exhibiting two detectable kinetic phases and a burst phase that is complete within 5 ms. The two slowest isomerization phases observed in the refolding of the full-length protein are absent in the fragment, suggesting that these phases reflect contributions from the carboxy-terminal segment. The folding mechanism of alphaTS(1-188) appears to be a simplified version of the mechanism for the full-length protein [Bilsel, O., Zitzewitz, J. A., Bowers, K.E, and Matthews, C. R.(1999) Biochemistry 38, 1018-1029]. Four parallel channels in the full-length protein are reduced to a pair of channels that most likely reflect a cis/trans proline isomerization reaction in the amino-terminal fragment. The off- and on-pathway intermediates that exist for both full-length alphaTS and alphaTS(1-188) may reflect the preponderance of local interactions in the beta/alpha barrel motif.  相似文献   

12.
F X Schmid 《FEBS letters》1986,198(2):217-220
The trans----cis isomerization of Pro 93 was measured during refolding of bovine ribonuclease A. This isomerization is slow (tau = 500 s) under marginally stable folding conditions of 2.0 M GdmCl, pH 6, at 10 degrees C. However, it is strongly accelerated (tau = 100 s) in samples which, prior to isomerization, had been converted to a folding intermediate by a 15 s refolding pulse under strongly native conditions (0.8 M ammonium sulfate, 0 degree C). The results demonstrate that extensive folding is possible before Pro 93 isomerizes to its native cis state and that the presence of structural folding intermediates leads to a marked increase in the rate of subsequent proline isomerization.  相似文献   

13.
K L Borden  F M Richards 《Biochemistry》1990,29(12):3071-3077
The folding mechanism for bacteriophage T4 thioredoxin is best described by a four-state box mechanism, N----Uc----Ut----It----N, where N indicates native, Uc the unfolded form with the cis proline isomer, Ut unfolded with the trans proline isomer, and It a compact form with a trans proline isomer. Both manual mixing fluorescence and size-exclusion chromatography indicate that there is a cis-trans proline isomerization that is important to the folding pathway. Furthermore, the data suggest that the cis-trans isomerization can also occur in a compact nativelike state which is referred to as It. The slow phase seen in fluorescence seems to be monitoring the cis-trans isomerization in the compact form, not the isomerization which occurs in the denatured state.  相似文献   

14.
Folding of tendamistat is a rapid two-state process for the majority of the unfolded molecules. In fluorescence-monitored refolding kinetics about 8% of the unfolded molecules fold slowly (lambda=0.083s(-1)), limited by peptidyl-prolyl cis-trans isomerization. This is significantly less than expected from the presence of three trans prolyl-peptide bonds in the native state. In interrupted refolding experiments we detected an additional very slow folding reaction (lambda=0.008s(-1) at pH 2) with an amplitude of about 12%. This reaction is caused by the interconversion of a highly structured intermediate to native tendamistat. The intermediate has essentially native spectroscopic properties and about 2% of it remain populated in equilibrium after folding is complete. Catalysis by human cyclophilin 18 identifies this very slow reaction as a prolyl isomerization reaction. This shows that prolyl-isomerases are able to efficiently catalyze native state isomerization reactions, which allows them to influence biologically important regulatory conformational transitions. Folding kinetics of the proline variants P7A, P9A, P50A and P7A/P9A show that the very slow reaction is due to isomerization of the Glu6-Pro7 and Ala8-Pro9 peptide bonds, which are located in a region that makes strong backbone and side-chain interactions to both beta-sheets. In the P50A variant the very slow isomerization reaction is still present but native state heterogeneity is not observed any more, indicating a long-range destabilizing effect on the alternative native state relative to N. These results enable us to include all prolyl and non-prolyl peptide bond isomerization reactions in the folding mechanism of tendamistat and to characterize the kinetic mechanism and the energetics of a native-state prolyl isomerization reaction.  相似文献   

15.
Meng HY  Thomas KM  Lee AE  Zondlo NJ 《Biopolymers》2006,84(2):192-204
Cis-trans isomerization of amide bonds plays critical roles in protein molecular recognition, protein folding, protein misfolding, and disease. Aromatic-proline sequences are particularly prone to exhibit cis amide bonds. The roles of residues adjacent to a tyrosine-proline residue pair on cis-trans isomerism were examined. A short series of peptides XYPZ was synthesized and cis-trans isomerism was analyzed. Based on these initial studies, a series of peptides XYPN, X = all 20 canonical amino acids, was synthesized and analyzed by NMR for i residue effects on cis-trans isomerization. The following effects were observed: (a) aromatic residues immediately preceding Tyr-Pro disfavor cis amide bonds, with K(trans/cis)= 5.7-8.0, W > Y > F; (b) proline residues preceding Tyr-Pro lead to multiple species, exhibiting cis-trans isomerization of either or both X-Pro amide bonds; and (c) other residues exhibit similar values of K(trans/cis) (= 2.9-4.2), with Thr and protonated His exhibiting the highest fraction cis. beta-Branched and short polar residues were somewhat more favorable in stabilizing the cis conformation. Phosphorylation of serine at the i position modestly increases the stability of the cis conformer. In addition, the effect of the i+3 residue was examined in a limited series of peptides TYPZ. NMR data indicated that aromatic residues, Pro, Asn, Ala, and Val at the i+3 residue all favor cis amide bonds, with aromatic residues and Asn favoring more compact phi at Tyr(cis) and Ala and Pro favoring more extended phi at Tyr(cis). D-Alanine at the i+3 position particularly disfavors cis amide bonds.  相似文献   

16.
Site-directed mutagenesis has frequently been used to replace proline with other amino acids in order to determine if proline isomerization is responsible for a slow phase during refolding. Replacement of Pro 85 with alanine in cellular retinoic acid binding protein I (CRABP-I) abolished the slowest refolding phase, suggesting that this phase is due to proline isomerization in the unfolded state. To further test this assumption, we mutated Pro 85 to valine, which is the conservative replacement in the two most closely related proteins in the family (cellular retinoic acid binding protein II and cellular retinol binding protein I). The mutant protein was about 1 kcal/mole more stable than wild type. Retinoic acid bound equally well to wild type and P85V-CRABP I, confirming the functional integrity of this mutation. The refolding and unfolding kinetics of the wild-type and mutant proteins were characterized by stopped flow fluorescence and circular dichroism. The mutant P85V protein refolded with three kinetic transitions, the same number as wild-type protein. This result conflicts with the P85A mutant, which lost the slowest refolding rate. The P85V mutation also lacked a kinetic unfolding intermediate found for wild-type protein. These data suggest that proline isomerization may not be responsible for the slowest folding phase of CRABP I. As such, the loss of a slow refolding phase upon mutation of a proline residue may not be diagnostic for proline isomerization effects on protein folding.  相似文献   

17.
The kinetics of unfolding and refolding of porcine ribonuclease were investigated. The unfolded state of this protein was found to consist of a fast-refolding species (UF) and two slow-refolding species (UIS and UIIS). After the rapid collapse of the structure during the N (native)----UF unfolding reaction, UIS and UIIS are produced from UF by two independent slow isomerizations of the unfolded polypeptide chain, leading ultimately to a mixture of about 10% UF, 20% UIIS and 70% UIS molecules at equilibrium. This is at variance with all other ribonucleases investigated to date, which show a distribution of 20% UF, 60 to 70% UIIS and only 10 to 20% UIS. The two isomerizations of the unfolded porcine protein differ strongly in rate. The first process with tau = 250 seconds (10 degrees C) leads to an increase in the fluorescence of Tyr92 and was identified as cis in equilibrium trans isomerization of Pro93. At equilibrium, most unfolded molecules contain an incorrect trans Pro93. The second isomerization is much slower (tau = 1300 s at 10 degrees C) and leads to a predominance of the incorrect isomer as well. Like isomerization of Pro93, it is governed by an activation enthalpy of 22 kcal/mol (92 kJ/mol) and it was tentatively assigned to the Pro114-Pro115 sequence of porcine ribonuclease. Because of the wide separation in rate between the two reactions, molecules with an incorrect isomer only at Pro93 accumulate transiently after unfolding. These are the UIIS molecules. Most of them are finally converted to UIS by the 1300 second process. All molecules that have undergone this isomerization refold very slowly, i.e. the UIS molecules. The major fraction contains two incorrect isomers. A 1300 second isomerization after unfolding and a predominant very slow refolding reaction were observed only for the porcine protein. We suggest that these changes in the folding mechanism may be correlated with the presence of the Pro114-Pro115 sequence, which occurs only in porcine ribonuclease. The refolding pathway of porcine UIIS involves the rapid formation of a native-like intermediate with an incorrect trans Pro93 as was found previously for the bovine ribonuclease, where the UIIS species predominates in the unfolded state.  相似文献   

18.
As a test of the hypothesis that folding mechanisms are better conserved than sequences in TIM barrels, the equilibrium and kinetic folding mechanisms of indole-3-glycerol phosphate synthase (sIGPS) from the thermoacidophilic archaebacterium Sulfolobus solfataricus were compared to the well-characterized models of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli. A multifaceted approach combining urea denaturation and far-UV circular dichroism, tyrosine fluorescence total intensity, and tyrosine fluorescence anisotropy was employed. Despite a sequence identity of only 13%, a stable intermediate (I) in sIGPS was found to be similar to a stable intermediate in alphaTS in terms of its thermodynamic properties and secondary structure. Kinetic experiments revealed that the fastest detectable folding event for sIGPS involves a burst-phase (<5ms) reaction that leads directly to the stable intermediate. The slower of two subsequent phases reflects the formation/disruption of an off-pathway dimeric form of I. The faster phase reflects the conversion of I to the native state and is limited by folding under marginally stable conditions and by isomerization or rearrangement under strongly folding conditions. By contrast, alphaTS is thought to fold via an off-pathway burst-phase intermediate whose unfolding controls access to a set of four on-pathway intermediates that comprise the stable equilibrium intermediate. At least three proline isomerization reactions are known to limit their interconversions and lead to a parallel channel mechanism. The simple sequential mechanism deduced for sIGPS reflects the dominance of the on-pathway burst-phase intermediate and the absence of prolyl residues that partition the stable intermediate into kinetically distinguishable species. Comparison of the results for sIGPS and alphaTS demonstrates that the thermodynamic properties and the final steps of the folding reaction are better conserved than the early events. The initial events in folding appear to be more sensitive to the sequence differences between the two TIM barrel proteins.  相似文献   

19.
We report that Pro74 in human stefin B is critical for fibril formation and that proline isomerization plays an important role. The stefin B P74S mutant did not fibrillate over the time of observation at 25 °C, and it exhibited a prolonged lag phase at 30 °C and 37 °C. The peptidyl prolyl cis/trans isomerase cyclophilin A, when added to the wild-type protein, exerted two effects: it prolonged the lag phase and increased the yield and length of the fibrils. Addition of the inactive cyclophilin A R55A variant still resulted in a prolonged lag phase but did not mediate the increase of the final fibril yield. These results demonstrate that peptidyl prolyl cis/trans isomerism is rate-limiting in stefin B fibril formation.  相似文献   

20.
The relative contributions of chain topology and amino acid sequence in directing the folding of a (betaalpha)(8) TIM barrel protein of unknown function encoded by the Bacillus subtilis iolI gene (IOLI) were assessed by reversible urea denaturation and a combination of circular dichroism, fluorescence and time-resolved fluorescence anisotropy spectroscopy. The equilibrium reaction for IOLI involves, in addition to the native and unfolded species, a stable intermediate with significant secondary structure and stability and self-associated forms of both the native and intermediate states. Global kinetic analysis revealed that the unfolded state partitions between an off-pathway refolding intermediate and the on-pathway equilibrium intermediate early in folding. Comparisons with the folding mechanisms of two other TIM barrel proteins, indole-3-glycerol phosphate synthase from the thermophile Sulfolobus solfataricus (sIGPS) and the alpha subunit of Escherichia coli tryptophan synthase (alphaTS), reveal striking similarities that argue for a dominant role of the topology in both early and late events in folding. Sequence-specific effects are apparent in the magnitudes of the relaxation times and relative stabilities, in the presence of additional monomeric folding intermediates for alphaTS and sIGPS and in rate-limiting proline isomerization reactions for alphaTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号