首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: In analyses of microarray data with a design of different biological conditions, ranking genes by their differential 'importance' is often desired so that biologists can focus research on a small subset of genes that are most likely related to the experiment conditions. Permutation methods are often recommended and used, in place of their parametric counterparts, due to the small sample sizes of microarray experiments and possible non-normality of the data. The recommendations, however, are based on classical knowledge in the hypothesis test setting. RESULTS: We explore the relationship between hypothesis testing and gene ranking. We indicate that the permutation method does not provide a metric for the distance between two underlying distributions. In our simulation studies permutation methods tend to be equally or less accurate than parametric methods in ranking genes. This is partially due to the discreteness of the permutation distributions, as well as the non-metric property. In data analysis the variability in ranking genes can be assessed by bootstrap. It turns out that the variability is much lower for permutation than parametric methods, which agrees with the known robustness of permutation methods to individual outliers in the data.  相似文献   

2.
Estimating p-values in small microarray experiments   总被引:5,自引:0,他引:5  
MOTIVATION: Microarray data typically have small numbers of observations per gene, which can result in low power for statistical tests. Test statistics that borrow information from data across all of the genes can improve power, but these statistics have non-standard distributions, and their significance must be assessed using permutation analysis. When sample sizes are small, the number of distinct permutations can be severely limited, and pooling the permutation-derived test statistics across all genes has been proposed. However, the null distribution of the test statistics under permutation is not the same for equally and differentially expressed genes. This can have a negative impact on both p-value estimation and the power of information borrowing statistics. RESULTS: We investigate permutation based methods for estimating p-values. One of methods that uses pooling from a selected subset of the data are shown to have the correct type I error rate and to provide accurate estimates of the false discovery rate (FDR). We provide guidelines to select an appropriate subset. We also demonstrate that information borrowing statistics have substantially increased power compared to the t-test in small experiments.  相似文献   

3.
Gene set analysis methods are popular tools for identifying differentially expressed gene sets in microarray data. Most existing methods use a permutation test to assess significance for each gene set. The permutation test's assumption of exchangeable samples is often not satisfied for time‐series data and complex experimental designs, and in addition it requires a certain number of samples to compute p‐values accurately. The method presented here uses a rotation test rather than a permutation test to assess significance. The rotation test can compute accurate p‐values also for very small sample sizes. The method can handle complex designs and is particularly suited for longitudinal microarray data where the samples may have complex correlation structures. Dependencies between genes, modeled with the use of gene networks, are incorporated in the estimation of correlations between samples. In addition, the method can test for both gene sets that are differentially expressed and gene sets that show strong time trends. We show on simulated longitudinal data that the ability to identify important gene sets may be improved by taking the correlation structure between samples into account. Applied to real data, the method identifies both gene sets with constant expression and gene sets with strong time trends.  相似文献   

4.
Testing for differentially expressed genes with microarray data   总被引:1,自引:1,他引:0       下载免费PDF全文
This paper compares the type I error and power of the one- and two-sample t-tests, and the one- and two-sample permutation tests for detecting differences in gene expression between two microarray samples with replicates using Monte Carlo simulations. When data are generated from a normal distribution, type I errors and powers of the one-sample parametric t-test and one-sample permutation test are very close, as are the two-sample t-test and two-sample permutation test, provided that the number of replicates is adequate. When data are generated from a t-distribution, the permutation tests outperform the corresponding parametric tests if the number of replicates is at least five. For data from a two-color dye swap experiment, the one-sample test appears to perform better than the two-sample test since expression measurements for control and treatment samples from the same spot are correlated. For data from independent samples, such as the one-channel array or two-channel array experiment using reference design, the two-sample t-tests appear more powerful than the one-sample t-tests.  相似文献   

5.
MOTIVATION: An important application of microarray experiments is to identify differentially expressed genes. Because microarray data are often not distributed according to a normal distribution nonparametric methods were suggested for their statistical analysis. Here, the Baumgartner-Weiss-Schindler test, a novel and powerful test based on ranks, is investigated and compared with the parametric t-test as well as with two other nonparametric tests (Wilcoxon rank sum test, Fisher-Pitman permutation test) recently recommended for the analysis of gene expression data. RESULTS: Simulation studies show that an exact permutation test based on the Baumgartner-Weiss-Schindler statistic B is preferable to the other three tests. It is less conservative than the Wilcoxon test and more powerful, in particular in case of asymmetric or heavily tailed distributions. When the underlying distribution is symmetric the differences in power between the tests are relatively small. Thus, the Baumgartner-Weiss-Schindler is recommended for the usual situation that the underlying distribution is a priori unknown. AVAILABILITY: SAS code available on request from the authors.  相似文献   

6.
Collings and Hamilton (1988), described a uniform bootstrap method that is applied on observed or pilot data in order to approximate the power of the two-sample Wilcoxon test for location shift alternatives. In this paper we demonstrate how importance and antithetic resampling can be used to substantially reduce the amount of computation needed to approximate the power of the two-sample tests for location shift and scale alternatives. Importance and antithetic bootstrap resampling methods are applied to simulated data of different sample sizes from a variety of distributions as well as to data from the Iowa 65+ Rural Health Study. Also, a suggestion is given for using a combination of importance and antithetic resampling for approximating the power of two-sample tests.  相似文献   

7.
Because of the high operation costs involved in microarray experiments, the determination of the number of replicates required to detect a gene significantly differentially expressed in a given multiple-testing procedure is of considerable significance. Calculation of power/replicate numbers required in multiple-testing procedures provides design guidance for microarray experiments. Based on this model and by choice of a multiple-testing procedure, expression noises based on permutation resampling can be considerably minimized. The method for mixture distribution model is suitable to various microarray data types obtained from single noise sources, or from multiple noise sources. By using the biological replicate number required in microarray experiments for a given power or by determining the power required to detect a gene significantly differentially expressed, given the sample size, or the best multiple-testing method can be chosen. As an example, a single-distribution model of t-statistic was fitted to an observed microarray dataset of 3 000 genes responsive to stroke in rat, and then used to calculate powers of four popular multiple-testing procedures to detect a gene of an expression change D. The results show that the B-procedure had the lowest power to detect a gene of small change among the multiple-testing procedures, whereas the BH-procedure had the highest power. However, all multiple-testing procedures had the same power to identify a gene having the largest change. Similar to a single test, the power of the BH-procedure to detect a small change does not vary as the number of genes increases, but powers of the other three multiple-testing procedures decline as the number of genes increases.  相似文献   

8.
谭远德  颜亨梅 《遗传学报》2006,33(12):1132-1140
鉴于基因芯片实验的造价,在基因芯片实验设计中,首要考虑的因素是需要多少重复才能检测出一个具有显著差异表达的基因。计算多重检验法要求的重复数(样本大小)或功效可为基因芯片实验设计提供重要的参考。为此,本文基于置换重抽样法构建了一种基因表达噪声混合分布模型。该方法适用各类基因表达数据,即无论是基因表达单噪声源或是多噪声源都可行。应用混合模型和多重检验法并给定统计功效。研究者能在基因芯片实验中获得所需要的最少生物学重复数:或者根据样本大小来确定测定一个显著差异表达的基因所具有的检验功效;或者根据样本大小和统计检验功效,选择最好的统计测验方法。本文以一组在老鼠中与中风有关的3000个基因的基因芯片实验所获得的数据为例,应用该方法拟和后组建了一个单分布模型(即表达单噪声源的分布模型)。根据该模型,我们计算了4种多重检验法在鉴定一个具有表达差异(D)值的基因中所需要的统计功效。结果表明。检测一个小的差异D值,4种多重检验法中B方法的统计功效最低,而BH方法最高。但是,对于鉴定一个具有最大表达差异的基因时,4种方法有相同的鉴定功效。与传统的单个检验法一样,BH方法检测一个小的变化所需要的效率不会随基因数目增加而改变,其他3种多重检验法的检测功效则随基因数目增加而降低。  相似文献   

9.
Pairwise distance or association measures of sample elements are often used as a basis for hierarchical cluster analyses. They can also be used in tests for the comparison of pre-defined subgroups of the total sample. Usually this is done with permutation tests In this paper, we compare such a procedure with alternative tests for high-dimensional data based on spherically distributed scores in simulation experiments and with real data. The tests based on the pairwise distance or similarity measures perform quite well in this comparison. As the number of possible permutations is small in very small samples, this might restrict the use of the test. Therefore, we propose an exact parametric small sample version of the test using randomly rotated samples.  相似文献   

10.
Heinze G  Gnant M  Schemper M 《Biometrics》2003,59(4):1151-1157
The asymptotic log-rank and generalized Wilcoxon tests are the standard procedures for comparing samples of possibly censored survival times. For comparison of samples of very different sizes, an exact test is available that is based on a complete permutation of log-rank or Wilcoxon scores. While the asymptotic tests do not keep their nominal sizes if sample sizes differ substantially, the exact complete permutation test requires equal follow-up of the samples. Therefore, we have developed and present two new exact tests also suitable for unequal follow-up. The first of these is an exact analogue of the asymptotic log-rank test and conditions on observed risk sets, whereas the second approach permutes survival times while conditioning on the realized follow-up in each group. In an empirical study, we compare the new procedures with the asymptotic log-rank test, the exact complete permutation test, and an earlier proposed approach that equalizes the follow-up distributions using artificial censoring. Results confirm highly satisfactory performance of the exact procedure conditioning on realized follow-up, particularly in case of unequal follow-up. The advantage of this test over other options of analysis is finally exemplified in the analysis of a breast cancer study.  相似文献   

11.

Background  

Time-course microarray experiments are widely used to study the temporal profiles of gene expression. Storey et al. (2005) developed a method for analyzing time-course microarray studies that can be applied to discovering genes whose expression trajectories change over time within a single biological group, or those that follow different time trajectories among multiple groups. They estimated the expression trajectories of each gene using natural cubic splines under the null (no time-course) and alternative (time-course) hypotheses, and used a goodness of fit test statistic to quantify the discrepancy. The null distribution of the statistic was approximated through a bootstrap method. Gene expression levels in microarray data are often complicatedly correlated. An accurate type I error control adjusting for multiple testing requires the joint null distribution of test statistics for a large number of genes. For this purpose, permutation methods have been widely used because of computational ease and their intuitive interpretation.  相似文献   

12.

Background  

In cancer studies, it is common that multiple microarray experiments are conducted to measure the same clinical outcome and expressions of the same set of genes. An important goal of such experiments is to identify a subset of genes that can potentially serve as predictive markers for cancer development and progression. Analyses of individual experiments may lead to unreliable gene selection results because of the small sample sizes. Meta analysis can be used to pool multiple experiments, increase statistical power, and achieve more reliable gene selection. The meta analysis of cancer microarray data is challenging because of the high dimensionality of gene expressions and the differences in experimental settings amongst different experiments.  相似文献   

13.
Zhou XH  Tu W 《Biometrics》2000,56(4):1118-1125
In this paper, we consider the problem of interval estimation for the mean of diagnostic test charges. Diagnostic test charge data may contain zero values, and the nonzero values can often be modeled by a log-normal distribution. Under such a model, we propose three different interval estimation procedures: a percentile-t bootstrap interval based on sufficient statistics and two likelihood-based confidence intervals. For theoretical properties, we show that the two likelihood-based one-sided confidence intervals are only first-order accurate and that the bootstrap-based one-sided confidence interval is second-order accurate. For two-sided confidence intervals, all three proposed methods are second-order accurate. A simulation study in finite-sample sizes suggests all three proposed intervals outperform a widely used minimum variance unbiased estimator (MVUE)-based interval except for the case of one-sided lower end-point intervals when the skewness is very small. Among the proposed one-sided intervals, the bootstrap interval has the best coverage accuracy. For the two-sided intervals, when the sample size is small, the bootstrap method still yields the best coverage accuracy unless the skewness is very small, in which case the bias-corrected ML method has the best accuracy. When the sample size is large, all three proposed intervals have similar coverage accuracy. Finally, we analyze with the proposed methods one real example assessing diagnostic test charges among older adults with depression.  相似文献   

14.

Background  

Microarrays permit biologists to simultaneously measure the mRNA abundance of thousands of genes. An important issue facing investigators planning microarray experiments is how to estimate the sample size required for good statistical power. What is the projected sample size or number of replicate chips needed to address the multiple hypotheses with acceptable accuracy? Statistical methods exist for calculating power based upon a single hypothesis, using estimates of the variability in data from pilot studies. There is, however, a need for methods to estimate power and/or required sample sizes in situations where multiple hypotheses are being tested, such as in microarray experiments. In addition, investigators frequently do not have pilot data to estimate the sample sizes required for microarray studies.  相似文献   

15.
A modification of the principal component test is presented. It uses a weighted combination of the sums of squares for different principal components and is thus more powerful in high-dimensional settings with small sample sizes. Under usual normality assumptions, a rotation test is proposed which enables an exact conditional parametric test. The procedure is demonstrated with microarray data for the bacterial composition in the rhizosphere of different potato cultivars. In simulation studies, the power of the proposed statistic is compared with the competing multivariate parametric tests.  相似文献   

16.
We propose a method to construct adaptive tests based on a bootstrap technique. The procedure leads to a nearly exact adaptive test depending on the size of the sample. With the use of the estimated Pitman's relative efficacy as selector statistic, we show that the adaptive test has a power that is asymptotically equal to the power of it's better component. We apply the idea to construct an adaptive test for two-way analysis of variance model. Finally, we use simulations to observe the behaviour of the method for small sample sizes.  相似文献   

17.

Background  

One important application of microarray experiments is to identify differentially expressed genes. Often, small and negative expression levels were clipped-off to be equal to an arbitrarily chosen cutoff value before a statistical test is carried out. Then, there are two types of data: truncated values and original observations. The truncated values are not just another point on the continuum of possible values and, therefore, it is appropriate to combine two statistical tests in a two-part model rather than using standard statistical methods. A similar situation occurs when DNA methylation data are investigated. In that case, there are null values (undetectable methylation) and observed positive values. For these data, we propose a two-part permutation test.  相似文献   

18.
Wang H  He X 《Biometrics》2008,64(2):449-457
Summary .   Due to the small number of replicates in typical gene microarray experiments, the performance of statistical inference is often unsatisfactory without some form of information-sharing across genes. In this article, we propose an enhanced quantile rank score test (EQRS) for detecting differential expression in GeneChip studies by analyzing the quantiles of gene intensity distributions through probe-level measurements. A measure of sign correlation, δ, plays an important role in the rank score tests. By sharing information across genes, we develop a calibrated estimate of δ, which reduces the variability at small sample sizes. We compare the EQRS test with four other approaches for determining differential expression: the gene-specific quantile rank score test, the quantile rank score test assuming a common δ, a modified t -test using summarized probe-set-level intensities, and the Mack–Skillings rank test on probe-level data. The proposed EQRS is shown to be favorable for preserving false discovery rates and for being robust against outlying arrays. In addition, we demonstrate the merits of the proposed approach using a GeneChip study comparing gene expression in the livers of mice exposed to chronic intermittent hypoxia and of those exposed to intermittent room air.  相似文献   

19.

Background  

In microarray gene expression profiling experiments, differentially expressed genes (DEGs) are detected from among tens of thousands of genes on an array using statistical tests. It is important to control the number of false positives or errors that are present in the resultant DEG list. To date, more than 20 different multiple test methods have been reported that compute overall Type I error rates in microarray experiments. However, these methods share the following dilemma: they have low power in cases where only a small number of DEGs exist among a large number of total genes on the array.  相似文献   

20.
Statistical properties of new neutrality tests against population growth   总被引:2,自引:0,他引:2  
A number of statistical tests for detecting population growth are described. We compared the statistical power of these tests with that of others available in the literature. The tests evaluated fall into three categories: those tests based on the distribution of the mutation frequencies, on the haplotype distribution, and on the mismatch distribution. We found that, for an extensive variety of cases, the most powerful tests for detecting population growth are Fu's F(S) test and the newly developed R(2) test. The behavior of the R(2) test is superior for small sample sizes, whereas F(S) is better for large sample sizes. We also show that some popular statistics based on the mismatch distribution are very conservative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号