首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial zinc finger proteins (ZFPs) consist of Cys(2)-His(2)-type modules composed of ~30 amino acids with a ββα structure that coordinates a zinc ion. ZFPs that recognize specific DNA target sequences can substitute for the binding domains of enzymes that act on DNA to create designer enzymes with programmable sequence specificity. The most studied of these engineered enzymes are zinc finger nucleases (ZFNs). ZFNs have been widely used to model organisms and are currently in human clinical trials with an aim of therapeutic gene editing. Difficulties with ZFNs arise from unpredictable mutations caused by nonhomologous end joining and off-target DNA cleavage and mutagenesis. A more recent strategy that aims to address the shortcomings of ZFNs involves zinc finger recombinases (ZFRs). A thorough understanding of ZFRs and methods for their modification promises powerful new tools for gene manipulation in model organisms as well as in gene therapy. In an effort to design efficient and specific ZFRs, the effects of the DNA binding affinity of the zinc finger domains and the linker sequence between ZFPs and recombinase catalytic domains have been assessed. A plasmid system containing ZFR target sites was constructed for evaluation of catalytic activities of ZFRs with variable linker lengths and numbers of zinc finger modules. Recombination efficiencies were evaluated by restriction enzyme analysis of isolated plasmids after reaction in Escherichia coli and changes in EGFP fluorescence in mammalian cells. The results provide information relevant to the design of ZFRs that will be useful for sequence-specific genome modification.  相似文献   

2.
3.
4.
Klug A 《FEBS letters》2005,579(4):892-894
It has long been the goal of molecular biologists to design DNA-binding proteins for the specific control of gene expression. The zinc finger design is ideally suited for such purposes, discriminating between closely related sequences both in vitro and in vivo. Whereas other DNA-binding proteins generally make use of the 2-fold symmetry of the double helix, zinc fingers do not and so can be linked linearly in tandem to recognize DNA sequences of different lengths, with high fidelity. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA. By fusing zinc finger peptides to repression or activation domains, genes can be selectively targeted and switched off and on. Several recent applications of such engineered zinc finger proteins (ZFPs) are described, including the activation of vascular endothelial growth factor (VEGF) in a human cell line and an animal model. Clinical trials have recently begun on using VEGF-activating ZFPs to treat human peripheral arterial disease, by stimulating vascular growth. Also in progress are pre-clinical studies using ZFPs to target the defective genes in two monogenic disorders, SCID and SCA. The aim is to replace them in each case by a correct copy from an extrachromosomal DNA donor by means of homologous recombination. Promising results are reported.  相似文献   

5.
锌指蛋白(Zinc finger proteins, ZFPs)是一类在真核生物体内广泛分布的蛋白质。锌指蛋白作为一类转录因子,它能够调控基因的表达和细胞的分化,最近的研究显示其在动植物抗逆方面也发挥着重要作用。本研究对中华蜜蜂Apis cerana cerana ZFP37的蛋白结构进行了预测分析,并通过qRT-PCR分析了中华蜜蜂在遭受高温胁迫时ZFP37的表达情况,进一步了解锌指蛋白在中华蜜蜂应对热胁迫过程中的作用。结果显示,中华蜜蜂ZFP37可编码123个氨基酸,蛋白分子量为13.7 kDa,无跨膜结构。氨基酸同源序列比对结果表明,中华蜜蜂ZFP37序列与蜜蜂科昆虫的相似性最高,与其他膜翅目昆虫的相似性存在差异。基因的表达模式显示,ZFP37在高温下表达升高,此外,胁迫时间的增加也可导致ZFP37表达的升高。这些结果表明ZFP37对于中华蜜蜂应对热应激有重要的生物学意义。  相似文献   

6.
Designed zinc finger proteins (ZFPs) regulate expression of target genes when coupled to activator or repressor domains. Transfection of ZFPs into cell lines can create expression systems where the targeted endogenous gene is transcribed and the protein of interest can be investigated in its own cellular context. Here we describe the pharmacological investigation of an expression system generated using CCK2 receptor-selective ZFPs transfected into human embryonic kidney cells (HEKZFP system). The receptors expressed in this system, in response to ZFP expression, were functional in calcium mobilization studies and the potency of the agonists investigated was consistent with their action at CCK2 receptors (CCK-8S pA50 = 9.05+/-0.11, pentagastrin pA50 = 9.11+/-0.13). In addition, binding studies were conducted using [125I]-BH-CCK-8S as radioligand. The saturation binding analysis of this radioligand was consistent with a single population of high affinity CCK receptors (pK(D) = 10.24). Competition studies were also conducted using a number of previously well-characterized CCK-receptor selective ligands; JB93182, YF476, PD-134,308, SR27897, dexloxiglumide, L-365,260 and L-364,718. Overall, the estimated affinity values for these ligands were consistent with their interaction at CCK2 receptors. Therefore, CCK2 receptors up-regulated using zinc finger protein technology can provide an alternative to standard transfection techniques for the pharmacological analysis of compounds.  相似文献   

7.
8.
9.
10.
The use of artificial zinc finger chimeras to manipulate the expression of a gene of interest is a promising approach because zinc finger proteins can be engineered to bind any given DNA sequence in the genome. We have previously shown that a zinc finger chimera with a VP16 activation domain can activate a reporter gene in transgenic Arabidopsis thaliana (Sánchez, J.P., Ullman, C., Moore, M., Choo, Y. and Chua, N.H. (2002) Regulation of gene expression in Arabidopsis thaliana by artificial zinc finger chimeras. Plant Cell Physiol . 43 , 1465–1472). Here, we report the use of artificial zinc finger chimeras to specifically regulate the 4-coumarate:coenzyme-A ligase-1 ( At4CL1 ) gene in A. thaliana . At4CL1 is a key enzyme in lignin biosynthesis and the down-regulation of At4CL1 can lead to a decrease in lignin content, which has a significant commercial value for the paper industry. To this end, we designed zinc finger chimeras containing either an activation or a repression domain, which bind specifically to the At4CL1 promoter region. Transgenic lines expressing a zinc finger chimera with the VP16 activation domain showed an increase in At4CL1 expression and enzyme activity. In contrast, transgenic lines expressing a chimera with the KOX (KRAB) repression domain displayed repression of At4CL1 expression and enzyme activity. The activation of At4CL1 expression produced an increase in lignin content, and transgenic plant stems showed ectopic lignin distribution. Repression of the At4CL1 gene resulted in reduced lignin content, and lignin distribution in transgenic stems was severely diminished. Our results confirm and extend previous studies of gene regulation using various artificial zinc finger chimeras in animal and plant systems, and show that this system can be used to up- and down-regulate the expression of an endogenous plant gene such as At4CL1.  相似文献   

11.
12.
Plant C2H2-type zinc finger proteins (ZFPs) play essential roles in developmental control and stress responses. The whole complement of ZFP genes has been identified in Arabidopsis and rice, while the genome-scale identification and functional analysis of maize ZFPs is not yet reported. Hence, we performed a comprehensive analysis, including gene structure, chromosome location, duplicated event, selective pressure, phylogeny, gene ontology annotation, and expression profiling under developmental stages and abiotic stresses. Phylogenetic analyses suggested that the ZmZFP gene family can be grouped into three classes (A, B, and C). The analysis of differential gene expression in different developmental stages and stress treatments (drought, salt, and cold) was conducted based on microarray and RNA-seq data. A total of 99.05 % (209 genes) of the total ZmZFP genes (211 genes) were detected in 60 different tissues in microarray data. Under drought stress, 13 differentially expressed genes were found in leaf, of which 7 and 6 genes were up-regulated and down-regulated, respectively. For salt stress, crown root (CR), primary root (PR) and seed root (SR) each had one significantly elevated gene, while 2, 1, and 7 genes were obviously down-regulated in CR, PR and SR, respectively. Additionally, 8 and 3 genes were significantly up-regulated and down-regulated, respectively, in the cold-tolerant line ETH-DH7. This study will lay the foundation for understanding the roles of ZFPs in maize growth and stress resistance, contributing to the molecular breeding of maize for food.  相似文献   

13.
Custom-designed zinc finger nucleases (ZFNs), proteins designed to cut at specific DNA sequences, are becoming powerful tools in gene targeting—the process of replacing a gene within a genome by homologous recombination (HR). ZFNs that combine the non-specific cleavage domain (N) of FokI endonuclease with zinc finger proteins (ZFPs) offer a general way to deliver a site-specific double-strand break (DSB) to the genome. The development of ZFN-mediated gene targeting provides molecular biologists with the ability to site-specifically and permanently modify plant and mammalian genomes including the human genome via homology-directed repair of a targeted genomic DSB. The creation of designer ZFNs that cleave DNA at a pre-determined site depends on the reliable creation of ZFPs that can specifically recognize the chosen target site within a genome. The (Cys2His2) ZFPs offer the best framework for developing custom ZFN molecules with new sequence-specificities. Here, we explore the different approaches for generating the desired custom ZFNs with high sequence-specificity and affinity. We also discuss the potential of ZFN-mediated gene targeting for ‘directed mutagenesis’ and targeted ‘gene editing’ of the plant and mammalian genome as well as the potential of ZFN-based strategies as a form of gene therapy for human therapeutics in the future.  相似文献   

14.
15.
16.
We have exploited emulsion-based in vitro compartmentalization (IVC) to devise a method for the selection of zinc finger proteins (ZFPs) on the basis of their DNA-binding specificity. A library of ZFPs fused to a C-terminal peptide tag is encoded by a set of DNA cassettes that are prepared wholly in vitro. In addition to the ZFP gene, each DNA cassette also carries a given DNA target binding site sequence for which one wishes to isolate ZFP binders. An aliquot of the library is added to bacterial S30 extract and emulsified in mineral oil so that most of the aqueous droplets contain, on average, no more than one gene. If an intra-compartmentally expressed ZFP binds specifically to its encoding DNA via the target binding site, the complex can be purified by affinity capture via the peptide tag after breaking the emulsion, thus rescuing the gene. We present proof-of-principle for this IVC selection method by selecting a specific high-affinity ZFP gene from a high background of a related gene. We also propose that high-affinity ZFPs can be used as genotype-phenotype linkages to enable selection of other proteins using IVC.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号