首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria isolated from infant feces were immobilized in polysaccharide gel beads (2.5% gellan gum, 0.25% xanthan gum) using a two-phase dispersion process. A 52-day continuous culture was carried out in a single-stage chemostat containing precolonized beads and fed with a medium formulated to approximate the composition of infant chyme. Different dilution rates and pH conditions were tested to simulate the proximal (PCS), transverse (TCS), and distal (DCS) colons. Immobilization preserved all nine bacterial groups tested with survival rates between 3 and 56%. After 1 week fermentation, beads were highly colonized with all populations tested (excepted Staphylococcus spp. present in low numbers), which remained stable throughout the 7.5 weeks of fermentation, with variations below 1 log unit. However, free-cell populations in the circulating liquid medium, produced by immobilized cell growth, cell-release activity from gel beads, and free-cell growth, were altered considerably by culture conditions. Compared to the stabilization period, PCS was characterized by a considerable and rapid increase in Bifidobacterium spp. concentrations (7.4 to 9.6 log CFU/mL), whereas Bifidobacterium spp., Lactobacillus spp., and Clostridium spp. concentrations decreased and Staphylococcus spp. and coliforms increased during TCS and DCS. Under pseudo-steady-state conditions, the community structure developed in the chemostat reflected the relative proportions of viable bacterial numbers and metabolites generally encountered in infant feces. This work showed that a complex microbiota such as infant fecal bacteria can be immobilized and used in a continuous in vitro intestinal fermentation model to reproduce the high bacterial concentration and bacterial diversity of the feces inoculum, at least at the genera level, with a high stability during long-term experiment.  相似文献   

2.
In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor’s fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source.  相似文献   

3.
In vitro gut fermentation modeling offers a useful platform for ecological studies of the intestinal microbiota. In this study we describe a novel Polyfermentor Intestinal Model (PolyFermS) designed to compare the effects of different treatments on the same complex gut microbiota. The model operated in conditions of the proximal colon is composed of a first reactor containing fecal microbiota immobilized in gel beads, and used to continuously inoculate a set of parallel second-stage reactors. The PolyFermS model was validated with three independent intestinal fermentations conducted for 38 days with immobilized human fecal microbiota obtained from three child donors. The microbial diversity of reactor effluents was compared to donor feces using the HITChip, a high-density phylogenetic microarray targeting small subunit rRNA sequences of over 1100 phylotypes of the human gastrointestinal tract. Furthermore, the metabolic response to a decrease of pH from 5.7 to 5.5, applied to balance the high fermentative activity in inoculum reactors, was studied. We observed a reproducible development of stable intestinal communities representing major taxonomic bacterial groups at ratios similar to these in feces of healthy donors, a high similarity of microbiota composition produced in second-stage reactors within a model, and a high time stability of microbiota composition and metabolic activity over 38 day culture. For all tested models, the pH-drop of 0.2 units in inoculum reactors enhanced butyrate production at the expense of acetate, but was accompanied by a donor-specific reorganization of the reactor community, suggesting a concerted metabolic adaptation and trigger of community-specific lactate or acetate cross-feeding pathways in response to varying pH. Our data showed that the PolyFermS model allows the stable cultivation of complex intestinal microbiota akin to the fecal donor and can be developed for the direct comparison of different experimental conditions in parallel reactors continuously inoculated with the exact same microbiota.  相似文献   

4.
5.
The aim of this study was to compare the effects of purified exopolysaccharides from Lactobacillus rhamnosus RW-9595M with those of a well-known prebiotic (short-chain fructo-oligosaccharides) on infant colonic microbiota using a new three-stage chemostat model with immobilized infant faecal microbiota. Two continuous cultures with different faecal inocula were tested with different compositions of carbohydrate media. During the first fermentation (F1), fructo-oligosaccharides tested at a concentration of 9.8 g L(-1) increased the number of lactobacilli and decreased coliforms both in gel beads and in effluent from all three reactors, in agreement with data from the literature. During the second fermentation (F2), the effect of fructo-oligosaccharides tested at a lower concentration (7.5 g L(-1)) was reduced compared with F1. Fructo-oligosaccharides also increased total organic acid concentration and decreased ammonia production. Results obtained for exopolysaccharide tested at 1.5 g L(-1) indicate that exopolysaccharides from L. rhamnosus RW-9595M was not metabolized by infant microbiota and lacked any prebiotic effect.  相似文献   

6.
目的 研究三种模拟结肠发酵培养基和粪菌固定化对体外结肠发酵体系菌群构成的影响,为建立高度模拟结肠体外结肠发酵提供参考。方法 采集健康女性成人粪便,粪便制备悬液或用结冷胶‒黄原胶固定化粪菌接种于模拟结肠发酵反应器,分别用三种培养基按0.07 mL/h稀释率进行连续发酵10 d,用末端限制性片段长度多态性(T-RFLP)与高通量测序技术分析菌群多样性,并分析发酵液短链脂肪酸含量。结果 T-RFLP分析显示,培养基类型主要影响粪菌固定体系菌群α多样性达到稳定的时间和多样性。β多样性分析显示,第10天时培养基III悬液培养和培养基I固定化培养系统的菌群构成与粪便菌群最相近。而培养基III在第10天达到较高而稳定的丁酸浓度。  相似文献   

7.
The bifidobacterial and lactobacillus populations of fecal samples collected from 10 human subjects were studied. The numbers of bifidobacteria were similar in the fecal samples of all of the subjects, but lactobacillus numbers varied, even between samples collected from the same individual. Analysis of the composition of the bacterial populations by ribotyping and pulsed-field gel electrophoresis to differentiate between strains showed that, at least for the numerically predominant strains, each subject harbored a unique collection of bifidobacteria and lactobacilli. Predominant bifidobacterial and lactobacillus strains detected in the feces of each subject were used in immunological assays (lymphocyte transformation, serum antibody titers) to determine the influence of the bacteria on the immune system of their host. Immunoglobulin G antibodies reactive with lactobacilli were detected at high concentrations; antibodies reactive with bifidobacteria were present at lower concentrations. The antibodies appeared to be genus specific rather than strain specific. The results of the study emphasized the complexity of the relationship that exists between the intestinal microflora and the human host.  相似文献   

8.
Li  Guiding  Jiang  Yi  Li  Qinyuan  An  Defeng  Bao  Mingwei  Lang  Lei  Han  Li  Huang  Xueshi  Jiang  Chenglin 《Antonie van Leeuwenhoek》2022,115(9):1187-1202

Asian elephant is large herbivorous animal with elongated hindgut. To explore fecal microbial community composition with various ages, sex and diets, and their role in plant biomass degrading and nutrition conversation. We generated 119 Gb by metagenome sequencing from 10 different individual feces and identified 5.3 million non-redundant genes. The comprehensive analysis established that the Bacteroidetes, Firmicutes and Proteobacteria constituted the most dominant phyla in overall fecal samples. In different individuals, the alpha diversity of the fecal microbiota in female was lower than male, and the alpha diversity of the fecal microbiota in older was higher than younger, and the fecal microbial diversity was the most complex in wild elephant. But the predominant population compositions were similar to each other. Moreover, the newborn infant elephant feces assembled and maintained a diverse but host-specific fecal microbial population. The discovery speculated that Asian elephant maybe have start to building microbial populations before birth. Meanwhile, these results illustrated that host phylogeny, diets, ages and sex are significant factors for fecal microbial community composition. Therefore, we put forward the process of Asian elephant fecal microbial community composition that the dominant populations were built first under the guidance of phylogeny, and then shaped gradually a unique and flexible gut microbial community structure under the influences of diet, age and sex. This study found also that the Bacteroidetes were presumably the main drivers of plant fiber-degradation. A large of secondary metabolite biosynthetic gene clusters, and genes related to enediyne biosynthesis were found and showed that the Asian elephant fecal microbiome harbored a diverse and abundant genetic resource. A picture of antibiotic resistance genes (ARGs) reservoirs of fecal microbiota in Asian elephants was provided. Surprisingly, there was such wide range of ARGs in newborn infant elephant. Further strengthening our speculation that the fetus of Asian elephant has colonized prototypical fecal microbiota before birth. However, it is necessary to point out that the data give a first inside into the gut microbiota of Asian elephants but too few individuals were studied to draw general conclusions for differences among wild and captured elephants, female and male or different ages. Further studies are required. Additionally, the cultured actinomycetes from Asian elephant feces also were investigated, which the feces of Asian elephants could be an important source of actinomycetes.

  相似文献   

9.
Summary Gluconobacter suboxydans IFO 3290 was immobilized by adsorption on ceramic honeycomb monolith, and continuous production of free gluconic acid from 100 g/l glucose was carried out in one- and three-stage monolith reactors. Further oxidation of gluconic acid to keto-gluconic acid by the immobilized cells has been found to be more suppressed in the three-stage monolith reactor. This finding can be explained by the fact that, with the three-stage reactor, the opportunity to oxidize gluconic acid further was decreased because the residence time of the reaction mixture at glucose conversion above the threshold value was shorter.  相似文献   

10.
Fecal microbiota of 31 breast-fed, 26 mix-fed, and 11 bottle-fed infants were analyzed by using terminal restriction fragment length polymorphism (T-RFLP), and culture method. We first determined the total and cultivated bacterial counts in infant fecal microbiota. Only approximately 30% of bacteria present in fecal microbiota were cultivable while the remainder was yet-to-be cultured bacteria. Sixty-eight fecal samples were divided into two clusters (I and II) by T-RFLP analysis, and then subdivided into five subclusters (Ia, Ib, IIa, IIb and IIc). There was no clear relationship between clusters and feeding method. A proportion of bifidobacteria was detected in the fecal material by PCR method using species-specific primers. The predominant Bifidobacterium spp. was Bifidobacterium longum longum type (43 samples (63.2%)), followed by B. longum infantis type (23 samples (33.8%)) and B. breve (16 samples (23.5%)). The distribution of Bifidobacterium spp. was similar in the three feeding groups. In contrast, the high incidence of B. breve in cluster I, especially subcluster Ia and B. longum longum type in cluster II, especially subcluster IIa and IIc were characterized by T-RFLP method. Our results showed that the colonization of Bifidobacterium spp. in infant feces correlated with the T-RFLP clusters.  相似文献   

11.
16S ribosomal DNA terminal restriction fragment patterns from rat fecal samples were analyzed to track the dynamics of Lactobacillus acidophilus NCFM and discern bacterial populations that changed during feeding with NCFM. Lactobacillus johnsonii and Ruminococcus flavefaciens were tentatively identified as such bacterial populations. The presence of L. johnsonii was confirmed by isolation from feces.  相似文献   

12.
High density cell culture by membrane-based cell recycle   总被引:3,自引:0,他引:3  
Enhancement of productivity of a bioprocess necessitates continuous operation of bioreactors with high biomass concentrations than are possible in conventional batch, fedbatch or continuous modes of culture. Membrane-based cell recycle has been effectively used to maintain high cell concentrations in bioreactors. This review compares membranebased cell recycle operation with other such high density cell culture systems as immobilized cell reactors and reactors with cell recycle by centrifugation or gravity sedimentation. A theoretical of production of primary and secondary metabolites in membrane-based recycle systems is presented. Operation of this type of system is discussed with examples from aerobic and anaerobic fermentations.  相似文献   

13.
We describe a new PCR-based method for distinguishing human and cow fecal contamination in coastal waters without culturing indicator organisms, and we show that the method can be used to track bacterial marker sequences in complex environments. We identified two human-specific genetic markers and five cow-specific genetic markers in fecal samples by amplifying 16S ribosomal DNA (rDNA) fragments from members of the genus Bifidobacterium and the Bacteroides-Prevotella group and performing length heterogeneity PCR and terminal restriction fragment length polymorphism analyses. Host-specific patterns suggested that there are species composition differences in the Bifidobacterium and Bacteroides-Prevotella populations of human and cow feces. The patterns were highly reproducible among different hosts belonging to the same species. Additionally, all host-specific genetic markers were detected in water samples collected from areas frequently contaminated with fecal pollution. Ease of detection and longer survival in water made Bacteroides-Prevotella indicators better than Bifidobacterium indicators. Fecal 16S rDNA sequences corresponding to our Bacteroides-Prevotella markers comprised closely related gene clusters, none of which exactly matched previously published Bacteroides or Prevotella sequences. Our method detected host-specific markers in water at pollutant concentrations of 2.8 x 10(-5) to 2.8 x 10(-7) g (dry weight) of feces/liter and 6.8 x 10(-7) g (dry weight) of sewage/liter. Although our aim was to identify nonpoint sources of fecal contamination, the method described here should be widely applicable for monitoring spatial and temporal fluctuations in specific bacterial groups in natural environments.  相似文献   

14.
15.
With no acceptable method for collecting fresh rumen fluid from zoo ruminants, it was proposed that fecal bacterial concentrations may be correlated with rumen bacteria. If so, fecal bacterial concentrations could be used to study both the effects of diet on rumen bacteria as well as rumen abnormalities. Total and cellulolytic bacterial concentrations were determined in whole rumen contents and feces of sheep using a most‐probable‐number (MPN) assay. In a Latin square design, four crossbred ewes were fed diets of 100% long or chopped orchardgrass hay (OH) and 60% ground or whole shelled corn plus 40% chopped OH. In a second trial, the sheep were fed a pelleted complete feed at varying levels of intake i.e., control at 2.0% of body weight and at 1.8, 1.6, and 1.2% of body weight. Higher total rumen bacterial concentrations (P<0.01) were found on the high concentrate diets as compared with the high forage diets. Grinding the corn also increased total bacterial concentrations (P<0.05). Fecal concentrations of total bacteria were higher (P<0.01) with the high concentrate diets. Chopping the forage decreased the concentration of fecal cellulolytic bacteria (P<0.05) but had no effect on their concentration in the rumen. An inverse linear relationship (P<0.01) was observed between total bacterial concentrations in the feces and diet intake. Although relationships were observed between the rumen and feces for total and cellulolytic bacterial concentrations, they were dependent on diet, particle size, and level of intake. Thus, fecal bacterial concentrations cannot be used to reliably predict rumen bacterial concentrations. Zoo Biol 27:100–108, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.  相似文献   

17.
Since the non-invasive field endocrinology techniques were developed, several fecal preservation and extraction methods have been established for a variety of species. However, direct adaptation of methods from previous studies for use in crested macaques should be taken with caution. We conducted an experiment to assess the accuracy and stability of fecal estrogen metabolite (E1C) and glucocorticoid metabolite (GCM) concentrations in response to several preservation parameters: (1) time lag between sample collection and fecal preservation; (2) long-term storage of fecal samples in 80% methanol (MeOH) at ambient temperature; (3) different degrees of feces drying temperature using a conventional oven; and (4) different fecal preservation techniques (i.e., freeze-drying, oven-drying, and field-friendly extraction method) and extraction solvents (methanol, ethanol, and commercial alcohol). The study used fecal samples collected from crested macaques (Macaca nigra) living in the Tangkoko Reserve, North Sulawesi, Indonesia. Samples were assayed using validated E1C and GCM enzyme immunoassays. Concentrations of E1C and GCM in unprocessed feces stored at ambient temperature remained stable for up to 8 h of storage after which concentrations of both E1C and GCM changed significantly compared to controls extracted at time 0. Long-term storage in 80% MeOH at ambient temperature affected hormone concentrations significantly with concentrations of both E1C and GCM increasing after 6 and 4 months of storage, respectively. Drying fecal samples using a conventional oven at 50, 70, and 90 °C did not affect the E1C concentrations, but led to a significant decline for GCM concentrations in samples dried at 90 °C. Different fecal preservation techniques and extraction solvents provided similar results for both E1C and GCM concentrations. Our results confirm previous studies that prior to application of fecal hormone analysis in a new species, several preservation parameters should be evaluated for their effects on hormone metabolite stability. The results also provide several options for fecal preservation, extraction, and storage methods that can be selected depending on the condition of the field site and laboratory.  相似文献   

18.
The colonic microbiota mediates many cellular and molecular events in the host that are important to health. These processes can be affected in the elderly, because in some individuals, the composition and metabolic activities of the microbiota change with age. Detailed characterizations of the major groups of fecal bacteria in healthy young adults, in healthy elderly people, and in hospitalized elderly patients receiving antibiotics were made in this study, together with measurements of their metabolic activities, by analysis of fecal organic acid and ammonia concentrations. The results showed that total anaerobe numbers remained relatively constant in old people; however, individual bacterial genera changed markedly with age. Reductions in numbers of bacteroides and bifidobacteria in both elderly groups were accompanied by reduced species diversity. Bifidobacterial populations in particular showed marked variations in the dominant species, with Bifidobacterium angulatum and Bifidobacterium adolescentis being frequently isolated from the elderly and Bifidobacterium longum, Bifidobacterium catenulatum, Bifidobacterium boum, and Bifidobacterium infantis being detected only from the healthy young volunteers. Reductions in amylolytic activities of bacterial isolates in healthy elderly subjects and reduced short-chain fatty acid concentrations supported these findings, since bifidobacteria and bacteroides are important saccharolytic groups in the colon. Conversely, higher numbers of proteolytic bacteria were observed with feces samples from the antibiotic-treated elderly group, which were also associated with increased proteolytic species diversity (fusobacteria, clostridia, and propionibacteria). Other differences in the intestinal ecosystem in elderly subjects were observed, with alterations in the dominant clostridial species in combination with greater numbers of facultative anaerobes.  相似文献   

19.
Biocatalyst inactivation is inherent to continuous operation of immobilized enzyme reactors, meaning that a strategy must exist to ensure a production of uniform quality and constant throughput. Flow rate can be profiled to compensate for enzyme inactivation maintaining substrate conversion constant. Throughput can be maintained within specified margins of variation by using several reactors operating in parallel but displaced in time. Enzyme inactivation has been usually modeled under non-reactive conditions, leaving aside the effect of substrate and products on enzyme stability. Results are presented for the design of enzyme reactors under the above operational strategy, considering first-order biocatalyst inactivation kinetics modulated by substrate and products. The continuous production of hydrolyzed-isomerized whey permeate with immobilized lactase and glucose isomerase in sequential packed-bed reactors is used as a case study. Kinetic and inactivation parameters for immobilized lactase have been determined by the authors; those for glucose isomerase were taken from the literature. Except for lactose, all other substrates and products were positive modulators of enzyme stability. Reactor design was done by iteration since it depends on enzyme inactivation kinetics. Reactor performance was determined based on a preliminary design considering non-modulated first-order inactivation kinetics and confronted to such pattern. The new pattern of inactivation was then used to redesign the reactor and the process repeated until reactor performance (considering modulation) matched the assumed pattern of inactivation. Convergence was very fast and only two iterations were needed.  相似文献   

20.
Lactobacillus reuteri ATCC 55730 is a probiotic strain that produces, in the presence of glycerol, reuterin, a broad-spectrum antimicrobial substance. This strain has been shown to prevent intestinal infections in vivo; however, its mechanisms of action, and more specifically whether reuterin production occurs within the intestinal tract, are not known. In this study, the effects of L. reuteri ATCC 55730 on intestinal microbiota and its capacity to secrete reuterin from glycerol in a novel in vitro colonic fermentation model were tested. Two reactors were inoculated with adult immobilized fecal microbiota and the effects of daily addition of L. reuteri into one of the reactors (c.10(8) CFU mL(-1)) without or with glycerol were tested on major bacterial populations and compared with addition of glycerol or reuterin alone. The addition of glycerol alone or with L. reuteri increased numbers of the Lactobacillus-Enterococcus group and decreased Escherichia coli. The addition of reuterin significantly and selectively decreased E. coli without affecting other bacterial populations. The observed decrease in E. coli concentration during the addition of glycerol (in presence or absence of L. reuteri) could be due to in situ reuterin production because 1,3-propanediol, a typical product of glycerol fermentation, was detected during the addition of glycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号