首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical calculations were made to determine the influence of side specific 'melting' and 'stabilizing' proteins on the thermal stability of nearby base pairs (bp). A DNA sequence 999bp. long containing the 123 bp. lactose operon control region in the center was examined. Melting curves of base pairs near the binding sites of the catabolite activator protein, CAP, the lactose repressor, and RNA polymerase were calculated in the absence and presence of each protein. The empirical loop entropy model of the helix-coil transition of DNA was employed. Calculations show that melting and stabilizing proteins alter the tm of base pairs 20 to 100 bp-away. The magnitude and range of the effect is strongly influenced by the base pair composition and sequence of the protein site and the immediately adjacent DNA regions.  相似文献   

2.
The distribution of thermal stability in the Escherichia coli lac control region is evaluated from the melting behavior of 5 short (80-219 base pairs (bp)) sequenced DNA restriction fragments containing various parts of this sequence. The thermal denaturation of these fragments was measured at 3 salt concentrations. The previous notion that the melting curves for small fragments are sharp and asymmetric in 0.01 M Na+ and broadened and less asymmetric at 0.105 and 0.505 M Na+ is confirmed and the possible explanations are discussed. The existence of two thermodynamic boundaries in this region is also confirmed. The exact location of the boundary upstream of the cyclic AMP receptor protein (CAP) binding site is accurately determined from melting experiments at 260 and 282 nm. The secondary boundary located between the promoter and operator sequence is apparent at the two higher salt concentrations and begins to disappear at the lower salt concentration. The physical interpretation of the melting experiments is compared to the results of theoretical predictions derived from the known sequence of the fragments.  相似文献   

3.
Stacking energies in DNA   总被引:12,自引:0,他引:12  
Variations in base mono- and dipoles result in variations in stacking energies for the 10 unique neighbor pairs in DNA. Stacking energies for pair M on N, expressed as TMN, were derived by matrix decomposition of a large set of linear algebraic expressions relating the measured Tm for subtransitions emanating from large polymeric DNAs, and the fractional neighbor frequencies, fMN, for the domains responsible for the transitions, Tm = sigma fMNTMN. Tm were determined for subtransitions that dissociate in approximately all-or-none fashion in high resolution melting profiles of partially deleted and recombinant forms of pBR322 DNA. Three different analytical maneuvers were undertaken to resolve subtransitions: site-specific cleavage of domains; deletion of domains; and addition of domains. Three dozen domains of widely divergent, quasi-random neighbor frequencies were identified and assigned, resulting in a unique set of values for TMN with standard deviation, sigma = +/- 0.23 degree C. The average difference between calculated and experimental Tm for domains is only +/- 0.17 degree C, indicating that the thermodynamic properties of these domains are not in any way unusual. Assuming delta S to be constant for all pairs, the corresponding delta HMN are found to have a precision of +/- 10 calories.mol-1 and an accuracy of +/- 606 calories.mol-1. TMN used to calculate melting curves by statistical mechanical analysis of sequences of the different plasmid specimens in this study were in quantitative agreement with observed curves for most sequences. These TMN differ significantly from those determined previously and also correlate poorly with values determined by quantum chemical analysis. Stabilities of neighbor pairs, expressed as the difference in free energy between that for a given pair (MN) and that for the average of like pairs (M, N), depend on the relationship of stacked purines and pyrimidines as follows. delta delta Gpu-py(-466 cal) greater than delta delta Gpu-pu(+52 cal) greater than delta delta Gpy-pu(+335 cal) Differences between experimental Tm and Tm calculated with TMN for the isolated neighbor pairs in the B-conformation are useful in the identification of altered structures and unusual modes of dissociation of helixes. A significantly higher Tm is observed for the highly biased repeated sequence synthetic helixes dA.dT, d(AGC).d(GCT), and d(GAT).d(ATC), reflecting auxiliary sources of stability such as bifurcated hydrogen bonds and/or altered structures for these helixes.  相似文献   

4.
F Schaeffer  A Kolb    H Buc 《The EMBO journal》1982,1(1):99-105
To understand the denaturation process of short DNA segments we have chosen a 203-base pair (bp) restriction fragment containing the lactose control region. A steady decrease in GC content exists between its i proximal and z proximal ends. We confirm that this fragment melts at low salt in two subtransitions. A GC to AT mutation in the AT-rich region (mutation UV5) increases the number of denatured base pairs in the first subtransition and decreases the cooperativity of the melting process. A GC to AT mutation in the GC-rich region (mutation L8) decreases the number of denatured base pairs in the first subtransition and increases the cooperativity. These mutations induce the same shift in the temperature of half denaturation. The effects of both mutations are additive. A short deletion at the z end of the fragment affects only the first subtransition. When four GC pairs are added to both end, the fragment melts in one transition. Comparison with the results obtained with a larger 789-bp lac fragment reveals strong end effects on base pair stability and suggests that denaturation of the 203-bp fragment proceeds unidirectionally from the z end. Good agreement is shown with the predictions made with the "z ipper model" of Crothers et al. (1965).  相似文献   

5.
A method is reported for calculating the melting curve of a DNA molecule of random base sequence, including in the formalism the dependence of the free energy of base pair formation on the size of a denatured section. Some explicit results are shown for a “typical” base sequence, in particular the probability of helix formation at individual base pairs in several different regions of the molecule and the amount of melting from the end of the chain. Particular attention is drawn to the variation of local melting behavior from one region of the molecule to another. It is found that sections rich in AT melt at relatively low temperatures with a fairly broad transition curve, whereas regions rich in GC pairs melt at higher temperatures (as expected) with a very abrupt, local transition curve. To account qualitatively for the results one may divide melting into two kinds of processes: (a) the nucleation and growth of denatured regions, and (b) the merging together of two denatured sections at the expense of the intervening helix. The first of these processes dominates in the first stages of melting, and leads to rather broad local melting curves, whereas the second process predominates in the later stages, and occurs, in a particular part of the molecule, over a very narrow temperature range. It is estimated that the average length of a helix plus adjacent coil section at the midpoint of the transition is approximately 600 base pairs. Since transition curves which measure the local melting behavior reflect local compositions fluctuations, these curves contain information about the broad outlines of base sequence in the molecule. Some suggestions are made concerning experiments by which this potential information source could be exploited. In particular, it is pointed out that one might hope to map AT or GC rich regions at particular genetic loci in a biologically active DNA molecule. Values of the relevant parameters found earlier for the transition of homopolymers produce melting curves for a DNA of random base sequence which are in good agreement with the experimental transition curve for T2 phage DNA. Hence the present theoretical picture of the melting of polynucleotides is at least internally self-consistent.  相似文献   

6.
Temperature-Gradient Gel Electrophoresis (TGGE) was employed to determine the thermal stabilities of 28 DNA fragments, 373 bp long, with two adjacent mismatched base pairs, and eight DNAs with Watson-Crick base pairs at the same positions. Heteroduplex DNAs containing two adjacent mismatches were formed by melting and reannealing pairs of homologous 373 bp DNA fragments differing by two adjacent base pairs. Product DNAs were separated based on their thermal stability by parallel and perpendicular TGGE. The polyacrylamide gel contained 3.36 M urea and 19.2 % formamide to lower the DNA melting temperatures. The order of stability was determined in the sequence context d(CXYG).d(CY'X'G) where X.X' and Y.Y" represent the mismatched or Watson-Crick base pairs. The identity of the mismatched bases and their stacking interactions influence DNA stability. Mobility transition melting temperatures (T u) of the DNAs with adjacent mismatches were 1.0-3.6 degrees C (+/-0.2 degree C) lower than the homoduplex DNA with the d(CCAG).d(CTGG) sequence. Two adjacent G.A pairs, d(CGAG).d(CGAG), created a more stable DNA than DNAs with Watson-Crick A.T pairs at the same sites. The d(GA).d(GA) sequence is estimated to be 0.4 (+/-30%) kcal/mol more stable in free energy than d(AA).d(TT) base pairs. This result confirms the unusual stability of the d(GA).d(GA) sequence previously observed in DNA oligomers. All other DNAs with adjacent mismatched base pairs were less stable than Watson-Crick homoduplex DNAs. Their relative stabilities followed an order expected from previous results on single mismatches. Two homoduplex DNAs with identical nearest neighbor sequences but different next-nearest neighbor sequences had a small but reproducible difference in T u value. This result indicates that sequence dependent next neighbor stacking interactions influence DNA stability.  相似文献   

7.
Base pairing involving deoxyinosine: implications for probe design.   总被引:34,自引:24,他引:10       下载免费PDF全文
The thermal stability of oligodeoxyribonucleotide duplexes containing deoxyinosine (I) residues matched with each of the four normal DNA bases were determined by optical melting techniques. The duplexes containing at least one I were obtained by mixing equimolar amounts of an oligonucleotide of sequence dCA3XA3G with one of sequence dCT3YT3G where X and Y were A, C, G, T, or I. Comparison of optical melting curves yielded relative stabilities for the I-containing standard base pairs in an otherwise identical base-pair sequence. I:C pairs were found to be less stable than A:T pairs in these duplexes. Large neighboring-base effects upon stability were observed. For example, when (X,Y) = (I,A), the duplex is eight-fold more stable than when (X,Y) = (A,I). Independent of sequence effects the order of stabilities is: I:C greater than I:A greater than I:T congruent to I:G. This order differs from that of deoxyguanosine which pairs less strongly with dA; otherwise each deoxyinosine base pair is less stable than its deoxyguanosine counterpart in the same sequence environment. Implications of these results for design of DNA oligonucleotide probes are discussed.  相似文献   

8.
The single-copy DNA sequence difference between individual sea urchins of the species Strongylocentrotus purpuratus has been estimated by comparing the thermal stability of reassociated DNA duplexes from two individuals with that for DNA from an individual. Thermal stability was measured by hydroxyapatite thermal chromatography, S1 nuclease resistance after heating in a solvent which neutralizes the effect of DNA base composition, and spectrophotometric melting. One pair of individuals appear to differ from each other in about 4% of the nucleotide pairs of their single-copy DNA sequence. The differences in DNA sequence among individuals in local populations are not distinguishably smaller than those among populations as far apart as 2000 kilometers along the Pacific coast of North America.  相似文献   

9.
This article reports the enhancement of thermal stability involving normal duplex and mutation-carrying DNA duplexes in microchannel laminar flow. The application of an in-house temperature-controllable microchannel-type flow cell is demonstrated for improved discrimination of mismatch base pairs such as A-G and T-G that are difficult to distinguish due to the rather small thermal destabilizations. Enhancement in thermal stability is reflected by an increased thermal melting temperature achieved in microchannel laminar flow as compared with batch reactions. To examine the kinetics and thermodynamics of duplex-coil equilibrium of DNA oligomers, denaturation-renaturation hysteresis curves were measured. The influence of microchannel laminar flow on DNA base mismatch analysis was described from the kinetic and thermodynamic perspectives. An increasing trend was observed for association rate constant as flow rate increased. In contrast, an apparent decrease in dissociation rate constant was observed with increasing flow rate. The magnitudes of the activation energies of dissociation were nearly constant for both the batch and microchannel laminar flow systems at all flow rates. In contrast, the magnitudes of activation energies of association decreased as flow rate increased. These results clearly show how microchannel laminar flow induces change in reaction rate by effecting change in activation energy. We anticipate, therefore, that this approach based on microchannel laminar flow system holds great promise for improved mismatch discrimination in DNA analyses, particularly on single-base-pair mismatch, by pronouncedly enhancing thermal stability.  相似文献   

10.
The double-stranded RNAs from bacteriophage phi6 and the replicative form of mengovirus denature upon heating in a series of abrupt steps which resemble the subtransitions (thermalites) observed within the high resolution profiles of small, naturally occurring DNA molecules. Such RNA thermalites are approximately an order of magnitude narrower than typical thermal subtransitions of nominally single-stranded RNA. We conclude that the same features of nucleotide sequence that give rise to cooperative denaturation in DNA genomes are to be found also in RNA genomes. Thus, high resolution thermal denaturation profiles are useful for characterizing double-stranded RNA molecules as well as native DNA in the size range of common viruses. A medium containing dimethylsulfoxide was required to lower the Tm of the RNA samples to a satisfactory temperature range. For double-stranded RNA in 50% dimethylsulfoxide, the dependence of Tm on G . C composition was greater than that of DNA in the same medium and also greater than that of double-stranded RNA in an aqueous medium. The fact that RNA thermalites are broader than DNA thermalites and that the melting temperature of double-stranded RNA has a greater dependence on base composition than that of DNA, indicates that at least one of the thermodynamic parameters for double helix formation in RNA is different from that in DNA.  相似文献   

11.
Melting curves are calculated for infinitely long DNA-like random copolymers composed of AT and GC pairs of nucleotides. The entropy of random coil rings formed on melting is explicitly included through use of the Jacobson-Stockmayer ring-weighting factors. Transition curves are calculated for values of the cooperativity parameter σ in the range 10?2 ? σ ? 10?4. Ninety percent of the melting occurs in ca. 0.2°C for σ ? 10?3 regardless of the mole fraction of GC. We conclude that observed breadths of thermal denaturation curves for native DNAs result from a superposition of essentially all-or-none melting of various regions of the molecule. It is argued that refined approximations to the ring-weighting factors are probably not important when compared with the effects produced by long-range base sequence correlations which are known to occur in native DNA.  相似文献   

12.
Abstract

A theoretical method is developed for calculation of melting curves of covalent complexes of DNA with antitumor drugs. The method takes into account all the types of chemical modifications of the double helix caused by platinum compounds and DNA alkylating agents: 1) monofunctional adducts bound to one nucleotide; 2) intrastrand cross-links which appear due to bidentate binding of a drug molecule to two nucleotides that are included into the same DNA strand; 3) interstrand cross-links caused by bidentate binding of a molecule to two nucleotides of different strands. The developed calculation method takes into account the following double helix alterations at sites of chemical modifications: 1) a change in stability of chemically modified base pairs and neighboring ones, that is caused by all the types of chemical modifications; 2) a change in the energy of boundaries between helical and melted regions at sites of chemical modification (local alteration of the factor of cooperativity of DNA melting), that is caused by all the types of chemical modifications, too; 3) a change in the loop entropy factor of melted regions that include interstrand cross-links; 4) the prohibition of divergence of DNA strands in completely melted DNA molecules, which is caused by interstrand cross-links only. General equations are derived, and three calculation methods are proposed to calculate DNA melting curves and the parameters that characterize the helix-coil transition.  相似文献   

13.
A theoretical method is developed for calculation of melting curves of covalent complexes of DNA with antitumor drugs. The method takes into account all the types of chemical modifications of the double helix caused by platinum compounds and DNA alkylating agents: 1) monofunctional adducts bound to one nucleotide; 2) intrastrand cross-links which appear due to bidentate binding of a drug molecule to two nucleotides that are included into the same DNA strand; 3) interstrand cross-links caused by bidentate binding of a molecule to two nucleotides of different strands. The developed calculation method takes into account the following double helix alterations at sites of chemical modifications: 1) a change in stability of chemically modified base pairs and neighboring ones, that is caused by all the types of chemical modifications; 2) a change in the energy of boundaries between helical and melted regions at sites of chemical modification (local alteration of the factor of cooperativity of DNA melting), that is caused by all the types of chemical modifications, too; 3) a change in the loop entropy factor of melted regions that include interstrand cross-links; 4) the prohibition of divergence of DNA strands in completely melted DNA molecules, which is caused by interstrand cross-links only. General equations are derived, and three calculation methods are proposed to calculate DNA melting curves and the parameters that characterize the helix-coil transition.  相似文献   

14.
The influence of water-soluble cationic 3N- and 4N-pyridyl porphyrins with different peripheral substituents (oxyethyl, buthyl, allyl, and metallyl) on melting parameters of DNA has been studied. Results indicate that the presence of porphyrin changes the shape and parameters of DNA melting curve. The increase of porphyrins concentration results in the increase of the melting temperature (Tm) and the melting interval (ΔT) of DNA. At the porphyrin-DNA concentration ratio r?=?0.01, changes in the melting temperature have not been observed. The melting intervals almost do not change upon adding of the 4N-porphyrins, while the decrease of ΔT, in the presence of 3N-porphyrins, is observed. Because the intercalation binding mechanism occurs in GC-rich regions of DNA, we assume that 3N-porphyrins, intercalated in GC-rich regions, reduce the thermal stability of these sites, bringing them closer to the thermal stability of the AT-sites, which is the reason for the decrease in the melting interval. While at the relative concentration r?=?0.01 for 4-N porphyrins, already the external binding mechanism “turns on” and the destabilizing effect of porphyrins on GC-pairs compensates stabilizing effect on AT-pairs, as a result of which change in the melting of DNA upon complexation with these porphyrins is not observed. The decrease of the hypochromic effect also indicates the intercalation of investigated porphyrins in the DNA structure, which weakens the staking interaction of base pairs of DNA. The increase of the hypochromic effect of DNA upon binding with porphyrin depends on the type of peripheral substituents of the porphyrin. The results show that porphyrins with butyl and allyl substituents weaken staking interaction of base pairs less than porphyrins with other substituents. The largest change was observed for metallyl porphyrins. It can be the result of bulky peripheral substituents, which make significant local changes in DNA structure.  相似文献   

15.
16.
The differential scanning calorimetry (DSC) of plasmid ColE1 DNA was carried out. The DSC curve under the solvent condition of 1.0 X SSC buffer gave eleven clear peaks over the temperature range of 83 to 98 degrees C. The DSC curves obtained here were essentially in good agreement with the optical melting curves of ColE1 DNA reported previously. The theoretical melting profiles of ColE1 DNA calculated from its entire nucleotide sequence showed a good agreement with the DSC curves. The theoretical analysis made by constructing the thermal stability map showed that there was the positional correlation between the boundaries of the cooperatively melting regions and the ends of the protein coding regions of genes of ColE1. It was shown that the helix-coil transition of many of the small genes had a single cooperatively melting region. However, the large genes such as cea and mob3 had two or more cooperatively melting regions. It was suggested that this is closely related to the domain structures of the proteins encoded by such genes.  相似文献   

17.
Effects of different end sequences on stability, circular dichroism spectra (CD), and enzyme binding properties were investigated for six 22-base pair, non-self-complementary duplex DNA oligomers. The center sequences of these deoxyoligonucleotides have 8-14 base pairs in common and are flanked on both sides by sequences differing in context and A-T content. Temperature-induced melting transitions monitored by differential scanning calorimetry (DSC) and ultraviolet absorbance were measured for the six duplexes in buffered 115 mM Na(+) solutions. Values of the melting transition enthalpy, DeltaH(cal), and entropy, DeltaS(cal), were obtained directly from DSC experiments. Melting transition parameters, DeltaH(vH) and DeltaS(vH), were also estimated from van't Hoff analysis of optical melting curves collected as a function of DNA concentration, assuming a two-state melting transition. Melting free energies (20 degrees C) of the six DNAs evaluated from DSC experiments ranged from -18.7 to -32.7 kcal/mol. van't Hoff estimates of the free energies ranged from -18.5 to -48.0 kcal/mol. With either method, the trends in free energy as a function of sequence were identical. Equilibrium binding by BamHI restriction endonuclease to the 22-base pair DNAs was also investigated. The central eight base pairs of all six molecules, 5'-A-GGATCC-A-3', contained a BamHI recognition sequence bounded by A-T base pairs. Magnesium free binding assays were performed by titering BamHI against a constant concentration of each of the deoxyoligonucleotide substrates and analyzing reaction products by gel retardation. Binding isotherms of the total amount of bound DNA versus protein concentration were constructed which provided semiquantitative estimates of the equilibrium dissociation constants for dissociation of BamHI from the six DNA oligomers. Dissociation constants ranged from 0.5 x 10(-)(9) to 12.0 x 10(-)(9) M with corresponding binding free energies of -12.5 to -10.6 (+/-0. 1) kcal/mol. An inverse relationship is found when binding and stability are compared.  相似文献   

18.
Abstract

Covalent and strong coordination binding to DNA of a large number of antitumour drugs and other compounds leads to interstrand cross-link formation. To investigate cross-link influence on double helix stability, two methods are developed for the calculation of melting curves. The first method is based on Poland's approach. It requires computer time proportional to u-N, where u is the average distance (in base pairs) between neighboring crosslinks, and N is the number of base pairs in the DNA chain. The method is more suitable when u is not large, and small loops formed by interstrand cross-links in melted regions strongly affect DNA melting. The computer time for the second method, based on the Fixman-Freire approach, does not depend on the number of cross-links and is proportional to I N (I is the number of exponential functions used for a decomposition of the loop entropy factor). It is more appropriate when N and u are large, and therefore particular values of the entropy factors of small loops do not influence DNA melting behavior.  相似文献   

19.
Melting experiments were conducted on 22 DNA dumbbells as a function of solvent ionic strength from 25-115 mM Na(+). The dumbbell molecules have short duplex regions comprised of 16-20 base pairs linked on both ends by T(4) single-strand loops. Only the 4-8 central base pairs of the dumbbell stems differ for different molecules, and the six base pairs on both sides of the central sequence and adjoining loops on both ends are the same in every molecule. Results of melting analysis on the 22 new DNA dumbbells are combined with our previous results on 17 other DNA dumbbells, with stem lengths containing from 14-18 base pairs, reported in the first article of this series (Doktycz, Goldstein, Paner, Gallo, and Benight, Biopoly 32, 1992, 849-864). The combination of results comprises a database of optical melting parameters for 39 DNA dumbbells in ionic strengths from 25-115 mM Na(+). This database is employed to evaluate the thermodynamics of singlet, doublet, and triplet sequence-dependent interactions in duplex DNA. Analysis of the 25 mM Na(+) data reveals the existence of significant sequence-dependent triplet or next-nearest-neighbor interactions. The enthalpy of these interactions is evaluated for all possible triplets. Some of the triplet enthalpy values are less than the uncertainty in their evaluation, indicating no measurable interaction for that particular sequence. This finding suggests that the thermodynamic stability of duplex DNA depends on solvent ionic strength in a sequence-dependent manner. As a part of the analysis, the nearest-neighbor (base pair doublet) interactions in 55, 85, and 115 mM Na(+) are also reevaluated from the larger database.  相似文献   

20.
Interaction of distamycin A with calf spleen DNA is investigated by the method of hyperchromic spectra. Hyperchromic spectra of complexes are partitioned into the components corresponding to the denaturation A-T and G+C base pairs and dissociation of the ligand, fractions of respective components are found as a function of temperature. A scheme of melting of successive regions of DNA -with different G+C content together with the scheme of distamycin A redistribution in the course of thermal denaturation is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号