首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of diet and different constant temperatures on hemolymph cation concentrations (Na+, K+, Mg2+, Ca2+) have been studied in Morimus funereus larvae collected from natural habitat, fed natural (oak or beech bark) or artificial diet, as well as in larvae reared from hatching on an artificial diet. In the hemolymph of larvae maintained under natural conditions Mg2+ was dominant, whereas Na+ concentration was very low. In their natural diets concentrations of Na+ and K+ were very low, while those of Ca2+ and Mg2+ were high. In larvae continuously reared on an artificial diet, hemolymph Mg2+ concentration was significantly decreased and Na+ concentration increased more than fourfold compared to the results obtained in oak-fed larvae. Na+ and K+ are the dominant cations in the artificial diet. The concentrations of K+ and Ca2+ in the hemolymph of larvae fed natural or artificial diet are nearly identical, suggesting the existence of an internal regulatory mechanism in this insect for these cations. The hemolymph cation concentrations of M. funereus larvae are predominantly dependent upon the diet consumed, much less upon the environmental temperatures. The most stable concentrations of cations were observed in larvae continuously fed an artificial diet and exposed to different constant temperatures. There was much less stability in the hemolymph cation concentration in oak larvae fed either natural or artificial food after their transfer to constant temperatures. With respect to the response to the external factors studied, the most sensitive are the Na+ concentrations, the most stable seems to be K+. © 1992 Wiley-Liss, Inc.  相似文献   

2.
Micromolar concentrations of aluminum ions interfere with calmodulin-stimulated, membrane bound ATPase activity which plays a role in the maintenance of the transmembrane potential of plasma membrane enriched vesicles isolated from barley roots. Calmodulin appears to be the major target for aluminum interaction resulting in pronounced changes in the exposure of a large, hydrophobic surface on this protein as determined with a fluorescent, hydrophobic surface probe. At a molar ratio of 3:1 [aluminum]/[calmodulin], the calmodulin stimulated enzymatic activity, probably associated with a Ca2++ Mg2+ATPase, is about 95% inhibited. Aluminum induced changes in calmodulin structure are reflected in reduced formation of the membrane potential when assayed with a fluorescent potential probe, oxonol VI. We hypothesize that the aluminum caimodulin complex represents a primary lesion in toxic responses of plants to this metal.  相似文献   

3.
The oxidation of exogenous NADH by Jerusalem artichoke ( Helianthus tuberosus L.) tuber mitochondria was strongly inhibited at pH 7.2 by EDTA, EGTA and mersalyl and by chlorotetracycline in the presence of Ca2+. This inhibition disappeared at pH 5.5 where about 50% activity was found as compared to controls at pH 7.2. The rate of oxidation of NADPH at pH 5.5 was the same as for NADH but it was inhibited by 50% by both EDTA and mersalyl.
Mitochondria from Arum maculatum spadices oxidised NADH and NADPH with pH optima of 7.2 and 6.5, respectively. In the presence of EDTA the optima shifted to 6.7 and 5.9, respectively, due to an inhibition at higher pH and a lack of inhibition at lower pH. At pH 6.7 NADH oxidation was completely insensitive to both EDTA and mersalyl whereas the oxidation of NADPH was inhibited by more than 50%. The inhibition of NAD(P)H oxidation by chelators at neutral pH was due to the removal of Ca2+ from the membranes in both types of mitochondria. The differences observed in the properties of NADH and NADPH oxidation suggest that two different dehydrogenases are involved. Because of the strong pH-dependence and the changes in chelator-sensitivity in the physiological pH-range 6–8 it is suggested that the properties of NAD(P)H oxidation provide the cell with important means of metabolic regulation.  相似文献   

4.
The K+(86Rb) uptake into the roots and the translocation to the shoots of 11-day-old intact wheat seedlings ( Triticum aestivum L. cv. Martonvásári 8) were investigated using plants grown with different K+ supplies. The effects of environmental conditions (darkness, humidity) and of metabolic and transport inhibitors (oligomycin, disalicylidene-propanediamine, 2,4-dinitriphenol, diethylstilbestrol, colchicine) were also studied. Plants with K content of about 0.2 mmol/g dry weight in the root and 0.5 mmol/g dry weight in the shoot (low K status) showed high K+ uptake into the roots and high translocation rates to the shoots. Both transport processes were very low in plants with K content of more than 1.5 and 2.2 mmol/g dry weight in the root and shoot, respectively (high K status).
Darkness and a relative humidity of the air of 100% did not influence K+ uptake by roots, but did inhibit upward translocation and water transport. Inhibition of photosynthesis and treatments with diethylstilbestrol (10−5 mol/dm3), as well as with colchicine resulted in inhibition of translocation in plants of low K status, but these inhibitors had little effect on K+ uptake by the roots. Oligomycin, 2,4-dinitrophenol and diethylstilbestrol (10−4 mol/dm3), however, inhibited K+ uptake by the roots. In general, K+ transport processes were almost unchanged in plants of high K status. It is concluded that only plants of low K status operating with active K+ transport mechanisms are responsive to environmental factors. In high K+ plants the transport processes are passive and are uncoupled from the metabolic energy flow.  相似文献   

5.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

6.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

7.
The properties of Ca2+-activated and Mg2+-activated ATPases of nerve endings from mouse brain were investigated. Ca2+ and Mg2+ each can activate ATP hydrolysis in synaptosomes and its subfractions. Both Ca2+-ATPase and Mg2+-ATPase exhibit high and low affinity for their respective cations. At millimolar concentrations of Ca2+ or Mg2+, several nucleoside triphosphates could serve as substrate for the two enzymes and their specific activities were about three to four times higher in synaptic vesicles than in synaptosomal plasma membranes (SPM). Both in SPM and in synaptic vesicles the relative activity in the presence of Ca2+ was in the order of CTP greater than UTP greater than GTP = ATP, but with Mg2+ the activity was higher with ATP than with the other three triphosphates. Mg2+-ATPase was more active than Ca2+-ATPase in SPM, but in synaptic vesicles the two enzymes exhibited similar activity. Kinetic studies revealed that Mg2+-ATPase was inhibited by excess ATP and not by excess Mg2+. The simultaneous presence of Na+ + K+ stimulated Mg2+-ATPase and inhibited Ca2+-ATPase activity in intact synaptosomes and SPM. The stimulation of Mg2+-ATPase by Na+ + K+ was further increased by increasing Mg2+ concentration and was inhibited by Ca2+ and by ouabain. When Ca2+ and Mg2+ are present together in SPM or synaptic vesicles, the total Pi liberated by the two cations may either increase or decrease, depending on their relative concentrations. Kinetic analyses indicate that Ca2+ and Mg2+ bind independently to the enzyme alone or together at different sites. The results suggest that Ca2+-ATPase and Mg2+-ATPase in SPM or synaptic vesicles may be separate and distinct systems.  相似文献   

8.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The electrophysiological properties of cultured human melanocytes were investigated using the whole-cell configuration of the patch-clamp technique. Depolarizations to membrane potentials more positive than -30 mV resulted in the rapid development (<1 ms to peak) of an inward current. The maximum peak current was observed at +10 mV and reached an average amplitude of about 270 pA. During the depolarizations, the current inactivated with a time constant of about 2 ms. The current was abolished by the addition of 0.3 μM tetrodotoxin, a blocker of voltage-gated Na+-channels, and disappeared when Na+ was omitted from the extracellular medium. In addition, the melanocytes contain at least two types of outward K+-current. The first type, observed in every cell, was highly sensitive (Ki 1 mM) to the K+-channel blocker TEA, required depolarizations beyond zero to be activated and did not inactivate. The second type was less regularly observed (10% of the cells). This current activated at more negative voltages (–20 mV), was resistant to TEA (20 mM) but was blocked by 2 mM 4-aminopyridine and inactivated rapidly during depolarizations. We conclude that human melanocytes are equipped with voltage-dependent Na+-channels, a delayed rectifying K+-current and a K+-current similar to the A-current in neurones.  相似文献   

10.
11.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

12.
The effects of abscisic acid (ABA) on growth, uptake and translocation of potassium ions, K+,Mg2+-ATPase activity and transpiration were investigated in young wheat ( Triticum aestivum L. cv. Martonvásári-8) plants grown at different K+ supplies. Long-term treatment with ABA (10 μ M ) reduced growth in high-K+ plants, but had less effect under low-K+ conditions. K+(86Rb) uptake was inhibited by about 70 and 40% in low- and high-K+ plants, respectively. The stimulation by K+ of the Mg2+-ATPase activity in the root microsomal fraction was lost with ABA treatment. It is suggested that the inhibitory effect of ABA on K+ uptake may be related to this effects on the K+,Mg2+-ATPase. Translocation of K+ to the shoot was inhibited in low-K+ plants only, and it was not affected in high-K+ plants. In parallel to this, ABA treatment reduced transpiration by about 50% in low-K+ plants, whereas a much smaller effect was seen in high-K+ plants. These observations suggest that the regulation by ABA of the stomatal movements is strongly counteracted by high-K+ status.  相似文献   

13.
Long-term effects of 1-naphtaleneacetic acid (NAA), benzyladenine (BA), gibberellic acid (GA3), abscisic acid (ABA) and ethylene on K+ levels, K+ uptake and translocation to the shoot were studied in young wheat plants (Triticum aesticum L. cv. Martonvásári-8) grown at different K+ supplies. Na+ levels and K+/Na+ selectivity were also investigated. Both in shoots and roots, NAA, BA and ABA decreased K+ and Na+ levels more effectively in high-K+ plants than in low-K+ plants. GA, and ethylene did not influence K+ and Na+ levels. K+/Na+ selectivity in roots of low-K+ plants was increased in favour of K+ by BA, NAA and to a lesser extent by ABA. In high-K+ plants only BA increased the K+/Na+ ratio, whereas the effects of the other hormones were the opposite (NAA) or less pronounced (ABA). K+(86Rb) uptake was inhibited by NAA and BA in low-K+ plants but not in high-K+ plants. K+(86Rb) uptake was inhibited throughout by 10 μM ABA. K+(86Rb) translocation to the shoot was influenced by the hormones similarly to the uptake patterns, with the exception of ABA, which inhibited translocation in low-K+ plants but not in high-K+ plants. The results show that hormonal effects may quantitatively and qualitatively be modified by K+ levels in the plant and that internal K+ concentration may play a role in the mechanisms regulating the effects of NAA, BA and ABA but probably not in those of GA3 or ethylene.  相似文献   

14.
The release of [3H]GABA evoked by depolarization with various concentrations of KCl was studied using superfused rat cerebrocortex synaptosomes. Elevating [K+] produced release of [3H]GABA over basal which was increasingly less dependent on external Ca2+ but more sensitive to the GABA transporter blocker SKF 100330 A. Accordingly, the sensitivity to clostridial toxins of the depolarization-evoked amino acid release was inversely correlated to the concentration of KCl used. However, at 50 mM K+, one-third of the stimulated release remained which was external Ca2+-independent but insensitive to SKF 100330 A. This release was prevented by BAPTA, thapsigargin or dantrolene; it also was inhibited by blocking in mitochondria the ATP production with oligomycin, the H+-dependent Ca2+ uniporter with RU 360, the Na+/Ca2+ exchanger with CGP 37157 or by lowering extraterminal [Na+]. In fluorescence experiments with fura-2/AM, 50 mM K+ (in Ca2+ free medium) caused elevation of cytosolic [Ca2+] that was sensitive to thapsigargin or CGP 37157; these compounds produced partially additive effects. When exocytosis was monitored with the fluorescent dye acridine orange, the fluorescence elicited by 50 mM K+ was sensitive to thapsigargin or CGP 37157, which produced additive effects, and to low-Na+ media. To conclude, extracellular K+ concentrations occurring in the CNS in certain pathological conditions provoke GABA release by mechanisms different from classical exocytosis. These include carrier-mediated release and internal Ca2+-dependent exocytosis; in the latter, mitochondrial Ca2+ seems to play a primary role.  相似文献   

15.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

16.
A mathematical model describing the possible role of Ca2+-dependent K+ channels and adenylate metabolism in volume stabilization of human erythrocytes was developed. The model predicts that the red blood cell volume can be stabilized either dynamically or stationary over a broad range of cell membrane permeabilities to cations. The dynamic stabilization results from the operation of Ca2+-dependent potassium channels. The erythrocyte volume changes less than 10% if the membrane permeability changes abruptly to a value in the range from half to sevenfold higher than the normal one. The stationary stabilization is achieved via controlling the adenylate metabolism. The stationary value of cell volume changes less than 10% when the membrane permeability varies from half the normal value to 15-fold higher than the normal value.  相似文献   

17.
We have studied the effects of local anesthetics (dibucaine, tetracaine, lidocaine, and procaine) on calcium fluxes through the plasma membrane of synaptosomes. All these local anesthetics inhibit the ATP-dependent calcium uptake by inverted plasma membrane vesicles at concentrations close to those that promote an effective blockade of the action potential. The values obtained for the K0.5 of inhibition of calcium uptake are the following: 23 microM (dibucaine), 0.44 mM (lidocaine), 1.5 mM (procaine), and 0.8 mM (tetracaine). There is a good correlation between these K0.5 values and the concentrations of the local anesthetics that inhibit the Ca2(+)-dependent Mg2(+)-ATPase of these membranes. In addition, except for procaine, these local anesthetics stimulate severalfold the Ca2+ outflow via the Na+/Ca2+ exchange in these membranes. This effect, however, is observed at concentrations slightly higher than those that effectively inhibit the ATP-dependent Ca2+ uptake, e.g., 80-700 microM dibucaine, 2-10 mM lidocaine, and 1-3 mM tetracaine. The results suggest that the Ca2+ buffering of neuronal cytosol is altered by these anesthetics at pharmacological concentrations.  相似文献   

18.
Steep concentration gradients of many ions are actively maintained, with lower concentrations typically located in the cytosol, and higher concentrations in organelles and outside the cell. The vacuole is an important storage organelle for many ions. The concentration gradient of cations is established across the plant tonoplast, in part, by high-capacity cation/H+ (CAX) exchange activity. While plants may not be green yeast, analysis of CAX regulation and substrate specificity has been greatly aided by utilizing yeast as an experimental tool. The basic CAX biology in ARABIDOPSIS has immediate relevance toward understanding the functional interplay between diverse transport processes. The long-range applied goals are to identify novel transporters and express them in crop plants in order to "mine" nutrients out of the soil and into plants. In doing so, this could boost the levels of essential nutrients in plants.  相似文献   

19.
To investigate the contribution of the changes in intracellular Na+ and Ca2+ concentrations ([Na+]i and [Ca2+]i) to myocardial reperfusion injury, we made an ischemia/reperfusion model in intact guinea pig myocytes. Myocardial ischemia was simulated by the perfusion of metabolic inhibitors (3.3 mM amobarbital and 5 M carbonyl cyanide m-chlorophenylhydrazone) with pH 6.6 and reperfusion was achieved by the washout of them with pH 7.4. [Na+]i increased from 7.9 ± 2.0 to 14.0 ± 3.4 mM (means ± S.E., p < 0.01) during 7.5 min of simulated ischemia (SI) and increased further to 18.8 ± 3.0 mM at 7.5 min after reperfusion. [Ca2+]i, expressed as the ratio of fluo 3 fluorescence intensity, increased to 133 ± 8% (p < 0.01) during SI and gradually returned to the control level after reperfusion. Intracellular pH decreased from 7.53 ± 0.04 to 6.31 ± 0.04 (p < 0.01) and recovered quickly after reperfusion. Reperfusion with the acidic solution or the continuous perfusion of hexamethylene amiloride (2 M) prevented the reperfusion-induced increase in [Na+]i. When the duration of SI was prolonged to 15 min, the cell response after reperfusion varied, 16 of 37 cells kept quiescent, 21 cells showed spontaneous Ca2+ waves, and 4 cells out of these 21 cells became hypercontracted. In quiescent cells, both [Na+]i and [Ca2+]i decreased immediately after reperfusion. In cells with Ca2+ waves, [Na+]i transiently increased further at the early phase of reperfusion, while [Ca+]i declined. In hypercontracted cells, [Na+]i increased as much as in Ca2+ wave cells, but [Ca2+]i increased extensively and both ion concentrations continued to increase. Reperfusion with the Ca2+-free solution prevented both the [Ca2+]i increase and morphological change. In the presence of ryanodine (10 M), the increase in [Ca2+]i after reperfusion was augmented and some cells became hypercontracted. We concluded that (1) Na+/H+ exchange is active both during SI and reperfusion, resulting in the additional [Na+]i elevation on reperfusion, (2) the [Na+]i level after reperfusion and the following Ca2+ influx via Na+/Ca2+ exchange are crucial for reperfusion cell injury, and (3) the Ca2+ buffering capacity of sarcoplasmic reticulum would also contribute to the Ca2+ regulation and cell injury after reperfusion.  相似文献   

20.
Although the extent of ischemic brain damage is directly proportional to the duration of anoxic depolarization (AD), the mechanism of cytosolic [Ca(2+)] ([Ca(2+)](c)) elevation during AD is poorly understood. To address the mechanism in this study, [Ca(2+)](c) was monitored in cultured rat hippocampal CA1 neurons loaded with a Ca-sensitive dye, fura-2FF, and exposed to an AD-simulating medium containing (in mmol/L): K(+) 65, Na(+) 50, Ca(2+) 0.13, glutamate 0.1, and pH reduced to 6.6. Application of this medium promptly elevated [Ca(2+)](c) to about 30 micromol/L, but only if oxygen was removed, the respiratory chain was inhibited, or if the mitochondria were uncoupled. These high [Ca(2+)](c) elevations depended on external Ca(2+) and could not be prevented by inhibiting NMDA or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors, or gadolinium-sensitive channels. However, they could be prevented by removing external Na(+) or simultaneously inhibiting NMDA and AMPA/kainate receptors; 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate (KB-R7943), an inhibitor of plasmalemmal Na(+)/Ca(2+) exchanger, partly suppressed them. The data indicate that the [Ca(2+)](c) elevations to 30 micromol/L during AD result from Na(+) influx. Activation of either NMDA or AMPA/kainate channels provides adequate Na(+) influx to induce these [Ca(2+)](c) elevations, which are mediated by KB-R7943-sensitive and KB-R7943-resistant mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号