共查询到20条相似文献,搜索用时 0 毫秒
1.
Reconstitution of nuclear protein transport with semi-intact yeast cells 总被引:20,自引:6,他引:20 下载免费PDF全文
《The Journal of cell biology》1993,123(4):785-798
We have developed an in vitro nuclear protein import reaction from semi- intact yeast cells. The reaction uses cells that have been permeabilized by freeze-thaw after spheroplast formation. Electron microscopic analysis and antibody-binding experiments show that the nuclear envelope remains intact but the plasma membrane is perforated. In the presence of ATP and cytosol derived from yeast or mammalian cells, a protein containing the nuclear localization sequence (NLS) of SV40 large T-antigen is transported into the nucleus. Proteins with mutant NLSs are not imported. In the absence of cytosol, binding of NLS- containing proteins occurs at the nuclear envelope. N-ethylmaleimide treatment of the cytosol as well as antibodies to the nuclear pore protein Nsp1 inhibit import but not binding to the nuclear envelope. Yeast mutants defective in nuclear protein transport were tested in the in vitro import reaction. Semi-intact cells from temperature-sensitive nsp1 mutants failed to import but some binding to the nuclear envelope was observed. On the other hand, no binding and thus no import into nuclei was observed in semi-intact nsp49 cells which are mutated in another nuclear pore protein. Np13 mutants, which are defective for nuclear protein import in vivo, were also deficient in the binding step under the in vitro conditions. Thus, the transport defect in these mutants is at the level of the nucleus and the point at which nuclear transport is blocked can be defined. 相似文献
2.
Sequential transport of protein between the endoplasmic reticulum and successive Golgi compartments in semi-intact cells. 总被引:10,自引:0,他引:10
The vectorial transport of vesicular stomatitis virus (VSV) G protein between the ER and the cis and medial Golgi compartments has been reconstituted using semi-intact (perforated) cells. The transport of VSV-G protein between successive compartments is measured by the sequential processing of the two N-linked oligosaccharide chains present on VSV-G protein to the endoglycosidase (endo) H-resistant structures which have unique electrophoretic mobilities during sodium dodecyl sulfate-gel electrophoresis. The appearance of a form of VSV-G which contains only one endo H-resistant oligosaccharide chain (GH1) is kinetically and biochemically indistinguishable from the appearance of the Man5, endo D-sensitive form (GD), the latter being a processing reaction diagnostic of transport from the ER to the cis Golgi compartment. These results provide evidence that the cis Golgi compartment may contain in addition to alpha-1,2-mannosidase I, both N-acetylglueosamine transferase I and alpha-1,2-mannosidase II. VSV-G protein is subsequently processed to the form which contains two endo H-resistant oligosaccharides (GH2) after a second wave of vesicular transport. Processing of GH1 to GH2 in vitro occurs only after a lag period following the appearance of GH1; processing is sensitive to N-ethylmaleimide, guanosine-5'-O-(3-thiotriphosphate), and a synthetic peptide homologous to the rab1 protein effector domain, and processing is inhibited in the absence of free Ca2+ (in the presence of EGTA), reagents which potently inhibit ER to cis Golgi transport. These results suggest that VSV-G protein proceeds through at least two rounds of vesicular transport from the ER to the medial Golgi compartment for processing to the GH2 form, providing a model system to study the regulation of the vectorial membrane fission and fusion events involved in vesicular trafficking and organelle dynamics in the early stages of the secretory pathway. 相似文献
3.
Wayne F. Flintoff Susan M. Spindler Louis Siminovitch 《In vitro cellular & developmental biology. Plant》1976,12(11):749-757
Summary In a previous report, we described the selection and partial characterization of three methotrexate (Mtx)-resistant Chinese
hamster ovary cells (CHO) (1). Class I cells contained an apparent structural alteration in dihydrofolate reductase. Class
II cells had an alteration affecting the permeability of the drug. Class III cells, selected from Class I cells, had an increased
activity of the altered enzyme. In the work described here, it has been shown that the spontaneous mutation rate to Class
I resistance is in the order of 2 × 10−9 mutations per locus per generation and that in single-step mutagenized selections the number of resistant colonies of Classes
I and II are about equal. Class I and Class III resistance is expressed codominantly in somatic cell hybrids, whereas the
Class II resistant marker is a recessive trait.
Presented in the formal symposium on Somatic Cell Genetics at the 27th Annual Meeting of the Tissue Culture Association, Philadelphia,
Pennsylvania, June 7–10, 1976.
This research was supported by the Medical Research Council of Canada, the National Cancer Institute of Canada and the National
Institutes of Health of the United States. W. F. was a Postdoctoral Fellow of the Medical Research Council of Canada. 相似文献
4.
The Golgi apparatus, which consists of stacks of cisternae during interphase, is fragmented or dispersed throughout the cytoplasm at the onset of mitosis. A sea sponge metabolite, ilimaquinone (IQ), causes Golgi membranes to vesiculate. And after its removal, the vesiculated membranes reassemble into stacks of cisternae in the perinuclear region. To study the mechanism of Golgi membrane dynamics during mitosis, we have reconstituted the reassembly process of IQ-induced vesiculated Golgi membranes in streptolysin O-permeabilized Mardin-Darby canine kidney (MDCK) cells. Monitoring the dynamics of Golgi membranes labeled with a green fluorescence protein (GFP)-tagged protein, we dissected the process into two elementary components: the reassembly of vesiculated Golgi membranes into punctate structures; and the subsequent reformation of these structures into stacks of cisternae near the nucleus. Using morphometric analysis, we studied the kinetics and biochemical requirements for the process, and revealed that an NEM-sensitive factor, cytoplasmic dynein, and GTP binding protein were involved in the Golgi reassembly. 相似文献
5.
In a previous report, we described the selection and partial characterization of three methotrexate (Mtx)-resistant Chinese hamster ovary cells (CHO) (1). Class I cells contained an apparent structural alteration in dihydrofolate reductase. Class II cells had an alteration affecting the permeability of the drug. Class III cells, selected from Class I cells, had an increased activity of the altered enzyme. In the work described here, it has been shown that the spontaneous mutation rate to Class I resistance is in the order of 2 X 10-9 mutations per locus per generation and that in single-step mutagenized selections the number of resistant colonies of Class I and II are about equal. Class I and Class III resistance is expressed codominantly in somatic cell hybrids, whereas the Class II resistant marker is a recessive trait. 相似文献
6.
Reconstitution of endoplasmic reticulum in rapidly dividing cells of early Xenopus embryos 总被引:2,自引:0,他引:2
The cytology of early blastomeres of Xenopus laevis embryos was examined. Particular attention was given to the organization of the nuclear envelope of karyomeres (chromosome vesicles) and the endoplasmic reticulum (ER) at different stages in early cleavage cycles of frog development. Nuclear envelope formation was observed to occur rapidly around individual chromosomes during early anaphase, and karyomeres fused subsequently to yield the final nucleus during telophase. Endoplasmic reticulum in the perinuclear cytoplasm was observed to be vesicular during metaphase and cisternal in form during telophase. Following microinjection of rat liver rough microsomes into early blastomeres, heterologous ER components were identified by electron microscope immunocytochemistry. The foreign ER was observed as large, reconstituted cisternae at stages in the cell cycle when the nuclear envelope was intact. Therefore, transplanted ER maintained the capacity to reconstitute in the cytoplasm of a rapidly dividing cell. In an attempt to better assess ER structure at the metaphase stage of the cell cycle, we next slowed down the division process by treating Xenopus embryos with anti-microtubule agents. Treatment with critical concentrations of colchicine, nocodazole, or vinblastine led to cleavage arrest but not to inhibition of the nuclear cycle. Following such treatment, homologous ER was observed in a vesicular form at all stages of the nuclear cycle. Heterologous ER, however, identified by immunocytochemistry in microinjected cells treated with nocodazole, displayed both vesicular and cisternal forms. We conclude that microinjected ER membranes exhibit cell-cycle-specific behavior, which is different from that of the host cell ER. 相似文献
7.
8.
Hasegawa H Wendling J He F Trilisky E Stevenson R Franey H Kinderman F Li G Piedmonte DM Osslund T Shen M Ketchem RR 《The Journal of biological chemistry》2011,286(22):19917-19931
Protein synthesis and secretion are essential to cellular life. Although secretory activities may vary in different cell types, what determines the maximum secretory capacity is inherently difficult to study. Increasing protein synthesis until reaching the limit of secretory capacity is one strategy to address this key issue. Under highly optimized growth conditions, recombinant CHO cells engineered to produce a model human IgG clone started housing rod-shaped crystals in the endoplasmic reticulum (ER) lumen. The intra-ER crystal growth was accompanied by cell enlargement and multinucleation and continued until crystals outgrew cell size to breach membrane integrity. The intra-ER crystals were composed of correctly folded, endoglycosidase H-sensitive IgG. Crystallizing propensity was due to the intrinsic physicochemical properties of the model IgG, and the crystallization was reproduced in vitro by exposing a high concentration of IgG to a near neutral pH. The striking cellular phenotype implicated the efficiency of IgG protein synthesis and oxidative folding exceeded the capacity of ER export machinery. As a result, export-ready IgG accumulated progressively in the ER lumen until a threshold concentration was reached to nucleate crystals. Using an in vivo system that reports accumulation of correctly folded IgG, we showed that the ER-to-Golgi transport steps became rate-limiting in cells with high secretory activity. 相似文献
9.
It is unclear whether the mammalian Golgi apparatus can form de novo from the ER or whether it requires a preassembled Golgi matrix. As a test, we assayed Golgi reassembly after forced redistribution of Golgi matrix proteins into the ER. Two conditions were used. In one, ER redistribution was achieved using a combination of brefeldin A (BFA) to cause Golgi collapse and H89 to block ER export. Unlike brefeldin A alone, which leaves matrix proteins in relatively large remnant structures outside the ER, the addition of H89 to BFA-treated cells caused ER accumulation of all Golgi markers tested. In the other, clofibrate treatment induced ER redistribution of matrix and nonmatrix proteins. Significantly, Golgi reassembly after either treatment was robust, implying that the Golgi has the capacity to form de novo from the ER. Furthermore, matrix proteins reemerged from the ER with faster ER exit rates. This, together with the sensitivity of BFA remnants to ER export blockade, suggests that presence of matrix proteins in BFA remnants is due to cycling via the ER and preferential ER export rather than their stable assembly in a matrix outside the ER. In summary, the Golgi apparatus appears capable of efficient self-assembly. 相似文献
10.
Terminally misfolded glycoproteins are ejected from the endoplasmic reticulum (ER) to the cytosol and are destroyed by the ubiquitin proteasome system. A dominant negative version of the deubiquitylating enzyme Yod1 (Yod1C160S) causes accumulation of dislocation substrates in the ER. Failure to remove ubiquitin from the dislocation substrate might therefore stall the reaction at the exit site from the ER. We hypothesized that addition of a promiscuous deubiquitylase should overcome this blockade and restore dislocation. We monitored ER-to-cytosol transport of misfolded proteins in cells permeabilized at high cell density by perfringolysin O, a pore-forming cytolysin. This method allows ready access of otherwise impermeant reagents to the intracellular milieu with minimal dilution of cytoplasmic components. We show that addition of the purified Epstein-Barr virus deubiquitylase to semi-intact cells indeed initiates dislocation of a stalled substrate intermediate, resulting in stabilization of substrates in the cytosol. Our data provide new mechanistic insight in the dislocation reaction and support a model where failure to deubiquitylate an ER-resident protein occludes the dislocon and causes upstream misfolded intermediates to accumulate. 相似文献
11.
Protein transport along the secretory pathway is supported by a noria of vesicles that bud and fuse, load and unload their cargo from one compartment into the other. However, despite this constant flow-through of proteins and lipids the various compartments of the secretory pathway are able to maintain their own specific composition. Here, we discuss recent insights into mechanisms of protein retention and localization that are necessary for the maintenance of endoplasmic reticulum (ER)- and Golgi-associated typical functions such as protein folding and glycosylation in plant cells. 相似文献
12.
Chinese hamster ovary cells (CHO-K1) were cultivated in macroporous gelatin microcarriers (CultiSpher G and CultiSpher S) in spinner flasks and a 5 1 bioreactor. Near-to-confluent cultures were harvested by bead-to-bead transfer where intact microcarriers with cells were transferred from a spinner flask to another spinner flask or to the bioreactor with naked microcarrier beads. Successful bead-to-bead transfer was achieved in various split ratios. The duration of attachment seemed to be important where the direct contact of beads to each other can be achieved by intermittent stirring. Repeated transfers were performed and at least four transfers in spinner flasks were achieved.Two variations of bead-to-bead transfer were performed in the 5 1 bioreactor either by seeding the bioreactor with near-to-confluent beads cultivated in spinner flasks orin situ transfer by adding fresh beads to the bioreactor. As in the spinner case, attachment was achieved by intermittent stirring where donor beads were in close proximity to the acceptor beads. Again successful transfers were obtained as evidenced by the good growth on acceptor beads where cell yields were in the range of 3100–4500 cells/bead.The results suggest that bead-to-bead transfer of CHO-K1 cells can be easily performed and do provide an alternative route to applications where dissolution techniques may not offer an efficient solution. 相似文献
13.
Abstract From our survey of various lipopolysaccharide (LPS) preparations, we demonstrated that three out of five commercial LPS preparations of Salmonella typhimurium were not cytotoxic for Chinese hamster ovary (CHO) cell monolayers at a concentration of 1000 μg/ml. One commercial LPS preparation produced cellular damage at a concentration of 1000 μg/ml and another at 400 μg/ml. Two S. typhimurium LPS preparations made in our laboratory were also cytotoxic at a concentration of 1000 μg/ml but not at lower concentrations. Cell-free sonic lysates of S. typhimurium TML R66 were cytotoxic when tested undiluted and up to a dilution of 1:20. Based on the 2-Keto-3-deoxyoctonate (KDO) content of all preparations, sonic lysateas were cytotoxic at KDO concentrations of 0.42 μg/ml while the KDO content of the most cytotoxic LPS preparation was 15.2 μg/ml. There was no apparent correlations between KDO content of the LPS preparations and cell detachment, leading to the conclusion that cell detachment activity of Salmonella cell lysates cannot be attributed to their LPS content. 相似文献
14.
R. L. Jones 《Protoplasma》1987,138(2-3):73-88
Summary The cytochemical localization of adenosine triphosphatase (ATPase) was studied in the aleurone layer of barley (Hordeum vulgare L. cv. Himalaya). Isolated barley aleurone layers secrete numerous enzymes having acid phosphatase activity, including ATPase. The secretion of these enzymes was stimulated by incubation of the aleurone layer in gibberellic acid (GA3). ATPase was localized using the metal-salt method in tissue incubated in CaCl2 with and without GA3. In sections of tissue incubated without GA3, cytochemical staining was confined to a narrow band of cytoplasm adjacent to the starchy endosperm and to the cell wall of the innermost tier of aleurone cells. Cytochemical staining was absent from the organelles of tissues not treated with GA3. In tissue incubated in the presence of GA3, cytochemical staining was evident throughout the cytoplasm and cell walls of the tissue. In the cell wall, electron-dense deposits were found only in digested channels. The cell-wall matrix of GA3-treated aleurone did not stain, indicating that it does not permit diffusion of enzyme. In the cytoplasm of GA3-treated aleurone, all organelles except microbodies, plastids, and spherosomes stained for ATPase activity; endoplasmic reticulum (ER), Golgi apparatus, and mitochondria showed intense deposits of stain. The ER of the aleurone is a complex system made up of flattened sheets of membrane, which may be associated with both the Golgi apparatus and the plasma membrane. The dictyosome did not stain uniformly for ATPase activity; rather there was a gradation in staining of the cisternae from thecis (lightly stained) to thetrans (heavily stained) face. Vesicles associated with dictyosome cisternae also stained intensely as did the protein bodies of GA3-treated aleurone cells. 相似文献
15.
16.
The cytotoxic behaviour of 20 sesquiterpene lactones toward Chinese hamster ovary cells was examined. The structural pre-requisite for cytotoxicity was the α-methylene γ-lactone moiety. Certain sesquiterpene lactones caused chromosomal aberrations suggesting that DNA was the cellular target. The cellular target for most of these compounds, however, is probably not the nucleus and the cytotoxicity may be accounted for by Michael-type additions with sulphydryl groups of enzymes and other proteins. 相似文献
17.
Ribonucleotide reductase from wild type and hydroxyurea-resistant chinese hamster ovary cells 总被引:2,自引:0,他引:2
The kinetic properties of partially purified ribonucleotide reductase from Chinese hamster ovary cells have been investigated. Double reciprocal plots of velocity against substrate concentration were found to be linear for three the substrates tested, and yielded apparent Km values of 0.12 mM for CDP, 0.14 mM for ADP and 0.026 mM for GDP. Hydroxyurea, a potent inhibitor of ribonucleotide reduction, was tested against varying concentrations of ribonucleotide substrates and inhibited the enzyme activity in an uncompetitive fashion. Intercept replots were linear and exhibited Ki values for hydroxyurea of 0.08 mM for CDP reduction, 0.13 mM for ADP reduction and 0.07 mM for GDP reduction. Guanazole, another inhibitor of ribonucleotide reductase, interacted with the enzyme in a similar manner to hydroxyurea showing an uncompetitive pattern of inhibition with CDP reduction and yielding a Ki value of 0.57 mM. Partially purified ribonucleotide reductase from hydroxyurea-resistant cells was compared to enzyme activity from wild type cells. Significant differences were observed in the hydroxyurea Ki values with the three ribonucleotide substrates that were tested. Also, CDP reductase activity from the drug-resistant cells yielded a significantly higher Ki value for guanazole inhibition than the wild type activity. The properties of partially purified ribonucleotide reductase from a somatic cell hybrid constructed from wild type and hydroxyurea-resistant cells was also examined. The Ki value for hydroxyurea inhibition of CDP reductase was intermediate between the Ki values of the parental lines and indicated a codominant expression of hydroxyurea-resistance at the enzyme level. The most logical explanation for these results is that the mutant cells contain a structurally altered ribonucleotide reductase whose activity is less sensitive to inhibition by hydroxyurea or guanazole. 相似文献
18.
Dynamics of the endoplasmic reticulum and golgi apparatus during early sea urchin development 下载免费PDF全文
Terasaki M 《Molecular biology of the cell》2000,11(3):897-914
The endoplasmic reticulum (ER) and Golgi were labeled by green fluorescent protein chimeras and observed by time-lapse confocal microscopy during the rapid cell cycles of sea urchin embryos. The ER undergoes a cyclical microtubule-dependent accumulation at the mitotic poles and by photobleaching experiments remains continuous through the cell cycle. Finger-like indentations of the nuclear envelope near the mitotic poles appear 2-3 min before the permeability barrier of the nuclear envelope begins to change. This permeability change in turn is approximately 30 s before nuclear envelope breakdown. During interphase, there are many scattered, disconnected Golgi stacks throughout the cytoplasm, which appear as 1- to 2-microm fluorescent spots. The number of Golgi spots begins to decline soon after nuclear envelope breakdown, reaches a minimum soon after cytokinesis, and then rapidly increases. At higher magnification, smaller spots are seen, along with increased fluorescence in the ER. Quantitative measurements, along with nocodazole and photobleaching experiments, are consistent with a redistribution of some of the Golgi to the ER during mitosis. The scattered Golgi coalesce into a single large aggregate during the interphase after the ninth embryonic cleavage; this is likely to be preparatory for secretion of the hatching enzyme during the following cleavage cycle. 相似文献
19.
Summary The major pol activity of CHO cells was purified 2 800-fold to near homogeneity and was characterized with respect to its physical and catalytic properties. The purified enzyme, upon analysis in denaturing activity gels, displayed a major, 120 kilodalton, catalytically active core and two minor, catalytically inactive components of 180 and 135 kilodaltons. The native form of the enzyme behaved in velocity sedimentation and gel permeation experiments as an asymmetric protein of an apparent Mr. of 515 kilodaltons. The purified enzyme displayed catalytic behavior and inhibitor sensitivity typical of that displayed by other mammalian pol alphas. Specifically, the enzyme: (1) was sensitive to n-ethylmaleimide and the pol -specific inhibitors, BuPdGTP and aphidicolin; (2) was subject to neutralization by specific monoclonal antibodies raised against human pol ; (3) was devoid of detectable 3 to 5 exonuclease activity, and (4) displayed a ribonucleotide-dependent DNA primase activity. 相似文献