首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four new sulfonates were prepared as potential inhibitors of antigen 85C, a mycolyl transferase involved in the biosynthesis of the mycobacterial cell wall being designed on the basis of the proposed catalytic mechanism and antigen 85C crystal structure. The inhibitors contained a sulfonate moiety, 3-phenoxybenzyl alcohol or N-(hydroxyethyl)phthalimide as trehalose mimetics, and an alkyl chain of different length mimicking either the mycolate (alpha-chain or the mycolic acid (beta-branch. One compound displayed promising activity in a mycolyltransferase inhibition assay (compound 2b, IC50 = 4.3 microM). The two compounds containing a phthalimide moiety (compounds 3a and 3b) showed significant and selective cytotoxicity against the breast cancer cell line MDA-MB231.  相似文献   

2.
AIMS: The antigen 85 complex (Ag85) from Mycobacterium tuberculosis consists of three abundantly secreted proteins (FbpA, FbpB and FbpC2) which play a key role in the pathogenesis of tuberculosis and also exhibit cell wall mycolyltransferase activity. A related protein with similarity to the Ag85 complex was recently annotated in the M. tuberculosis genome as FbpC1. An investigation was carried out to determine whether FbpC1 may also possess mycolyltransferase activity, a characteristic feature of the Ag85 complex. METHODS AND RESULTS: Heterologous expression of FbpA, FbpC1 and FbpC2 was performed in Escherichia coli. Recombinant proteins were purified under non-denaturating conditions and used in an in vitro mycolyltransferase assay. CONCLUSIONS: In contrast to FbpA and FbpC2, recombinant FbpC1 did not possess in vitro mycolyltransferase activity and was not recognized by two monoclonal antibodies to the native Ag85. SIGNIFICANCE AND IMPACT OF THE STUDY: Mycolyltransferase activity is restricted to FbpA, FbpbB and FbpC2 only; the actual function of FbpC1 remains to be established.  相似文献   

3.
Four new sulfonates were prepared as potential inhibitors of antigen 85C, a mycolyl transferase involved in the biosynthesis of the mycobacterial cell wall being designed on the basis of the proposed catalytic mechanism and antigen 85C crystal structure. The inhibitors contained a sulfonate moiety, 3-phenoxybenzyl alcohol or N-(hydroxyethyl)phthalimide as trehalose mimetics, and an alkyl chain of different length mimicking either the mycolate (α-chain or the mycolic acid (β-branch. One compound displayed promising activity in a mycolyltransferase inhibition assay (compound 2b, IC50 = 4.3 μM). The two compounds containing a phthalimide moiety (compounds 3a and 3b) showed significant and selective cytotoxicity against the breast cancer cell line MDA-MB231.  相似文献   

4.
The Ag85 family enzymes are responsible for the synthesis of cell wall components in mycobacterial species. Inhibitors to these enzymes are potential antimycobacterial agents. We have carried out the docking of phoshonate and trehalose analog inhibitors into the three dimensional structure of mycolyltransferase enzyme, Ag85C of M. tuberculosis using the GOLD software. The inhibitor binding positions and affinity were evaluated using both the scoring fitness functions- GoldScore and ChemScore. We observed that the inhibitor binding position identified using the GoldScore was marginally better than the ChemScore. A qualitative agreement between the reported experimental biological activities (IC50) and the GoldScore was observed. We identified that amino acid residues Arg541, Trp762 are important for inhibitor recognition via hydrogen bonding interactions. This information can be exploited to design Ag85C specific inhibitors.  相似文献   

5.
The antigen 85 (ag85) complex, composed of three proteins (ag85A, B and C), is a major protein component of the Mycobacterium tuberculosis cell wall. Each protein possesses a mycolyltransferase activity required for the biogenesis of trehalose dimycolate (cord factor), a dominant structure necessary for maintaining cell wall integrity. The crystal structure of recombinant ag85C from M. tuberculosis, refined to a resolution of 1.5 A, reveals an alpha/beta-hydrolase polypeptide fold, and a catalytic triad formed by Ser 124, Glu 228 and His 260. ag85C complexed with a covalent inhibitor implicates residues Leu 40 and Met 125 as components of the oxyanion hole. A hydrophobic pocket and tunnel extending 21 A into the core of the protein indicates the location of a probable trehalose monomycolate binding site. Also, a large region of conserved surface residues among ag85A, B and C is a probable site for the interaction of ag85 proteins with human fibronectin.  相似文献   

6.
Control of cell wall assembly by a histone-like protein in Mycobacteria   总被引:1,自引:0,他引:1  
Bacteria coordinate assembly of the cell wall as well as synthesis of cellular components depending on the growth state. The mycobacterial cell wall is dominated by mycolic acids covalently linked to sugars, such as trehalose and arabinose, and is critical for pathogenesis of mycobacteria. Transfer of mycolic acids to sugars is necessary for cell wall biogenesis and is mediated by mycolyltransferases, which have been previously identified as three antigen 85 (Ag85) complex proteins. However, the regulation mechanism which links cell wall biogenesis and the growth state has not been elucidated. Here we found that a histone-like protein has a dual concentration-dependent regulatory effect on mycolyltransferase functions of the Ag85 complex through direct binding to both the Ag85 complex and the substrate, trehalose-6-monomycolate, in the cell wall. A histone-like protein-deficient Mycobacterium smegmatis strain has an unusual crenellated cell wall structure and exhibits impaired cessation of glycolipid biosynthesis in the growth-retarded phase. Furthermore, we found that artificial alteration of the amount of the extracellular histone-like protein and the Ag85 complex changes the growth rate of mycobacteria, perhaps due to impaired down-regulation of glycolipid biosynthesis. Our results demonstrate novel regulation of cell wall assembly which has an impact on bacterial growth.  相似文献   

7.
The enzymes of the antigen 85 complex (Ag85A, B, and C) possess mycolyltransferase activity and catalyze the synthesis of the most abundant glycolipid of the mycobacterial cell wall, the cord factor. The cord factor (trehalose 6,6′-dimycolate, TDM) is essential for the integrity of the mycobacterial cell wall and pathogenesis of the bacillus. Thus, TDM biosynthesis is regarded as a potential drug target for control of Mycobacterium tuberculosis infections. Trehalose 6,6′-dimycolate (TDM) is synthesized from two molecules of trehalose-6′-monomycolate (TMM) by antigen 85A. We report here a novel enzyme assay using the natural substrate TMM. The novel colorimetric assay is based on the quantification of glucose from the degradation of trehalose, which is the product from catalytic activity of antigen 85A. Using the new assay, Km and Kcat were determined with values of 129.6 ± 8.1 µM and 65.4 ± 4.1 min 1, respectively. This novel assay is also suitable for robust high-throughput screening (HTS) for compound library screening against mycolyltransferase (antigen 85A). The assay is significantly faster and more convenient to use than all assays currently in use. The assay has a very low coefficient of variance (0.04) in 96-well plates and shows a Z′ factor of 0.67–0.73, indicating the robustness of the assay. In addition, this new assay is highly suitable for the quantification of total TMM of the mycobacterial cell envelope.  相似文献   

8.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is known to secrete a number of highly immunogenic proteins that are thought to confer pathogenicity, in part, by mediating binding to host tissues. Among these secreted proteins are the trimeric antigen 85 (Ag85) complex and the related MPT51 protein, also known as FbpC1. While the physiological function of Ag85, a mycolyltransferase required for the biosynthesis of the cell wall component alpha,alpha'-trehalose dimycolate (or cord factor), has been identified recently, the function of the closely related MPT51 (approximately 40% identity with the Ag85 components) remains to be established. The crystal structure of M.tuberculosis MPT51, determined to 1.7 A resolution, shows that MPT51, like the Ag85 components Ag85B and Ag85C2, folds as an alpha/beta hydrolase, but it does not contain any of the catalytic elements required for mycolyltransferase activity. Moreover, the absence of a recognizable alpha,alpha'-trehalose monomycolate-binding site and the failure to detect an active site suggest that the function of MPT51 is of a non-enzymatic nature and that MPT51 may in fact represent a new family of non-catalytic alpha/beta hydrolases. Previous experimental evidence and the structural similarity to some integrins and carbohydrate-binding proteins led to the hypothesis that MPT51 might have a role in host tissue attachment, whereby ligands may include the serum protein fibronectin and small sugars.  相似文献   

9.
UDP (uridine diphosphate) galactopyranose mutase (UGM) is involved in the cell wall biosynthesis of many pathogenic microorganisms. UGM catalyzes the reversible conversion of UDP-α-d-galactopyranose into UDP-α-d-galactofuranose, with the latter being the precursor of galactofuranose (Galf) residues in cell walls. Glycoconjugates of Galf are essential components in the cell wall of various pathogenic bacteria, including Mycobacterium tuberculosis, the causative agent of tuberculosis. The absence of Galf in humans and its bacterial requirement make UGM a potential target for developing novel antibacterial agents. In this article, we report the synthesis, inhibitory activity, and X-ray crystallographic studies of UDP-phosphono-galactopyranose, a nonhydrolyzable C-glycosidic phosphonate. This is the first report on the synthesis of a phosphonate analog of UDP-α-d-galactopyranose by a chemoenzymatic phosphoryl coupling method. The phosphonate was evaluated against three bacterial UGMs and showed only moderate inhibition. We determined the crystal structure of the phosphonate analog bound to Deinococcus radiodurans UGM at 2.6 Å resolution. The phosphonate analog is bound in a novel conformation not observed in UGM-substrate complex structures or in other enzyme-sugar nucleotide phosphonate complexes. This complex structure provides a structural basis for the observed micromolar inhibition towards UGM. Steric clashes, loss of electrostatic stabilization between an active-site arginine (Arg305) and the phosphonate analog, and a 180° flip of the hexose moiety account for the differences in the binding orientations of the isosteric phosphonate analog and the physiological substrate. This provides new insight into the ability of a sugar-nucleotide-binding enzyme to orient a substrate analog in an unexpected geometry and should be taken into consideration in designing such enzyme inhibitors.  相似文献   

10.
The maintenance of the highly hydrophobic cell wall is central to the survival of Mycobacterium tuberculosis within its host environment. The antigen 85 proteins (85A, 85B, and 85C) of M. tuberculosis help maintain the integrity of the cell wall 1) by catalyzing the transfer of mycolic acids to the cell wall arabinogalactan and 2) through the synthesis of trehalose dimycolate (cord factor). Additionally, these secreted proteins allow for rapid invasion of alveolar macrophages via direct interactions between the host immune system and the invading bacillus. Here we describe two crystal structures: the structure of antigen 85C co-crystallized with octylthioglucoside as substrate, resolved to 2.0 A, and the crystal structure of antigen 85A, which was solved at a resolution of 2.7 A. The structure of 85C with the substrate analog identifies residues directly involved in substrate binding. Elucidation of the antigen 85A structure, the last of the three antigen 85 homologs to be solved, shows that the active sites of the three antigen 85 proteins are virtually identical, indicating that these share the same substrate. However, in contrast to the high level of conservation within the substrate-binding site and the active site, surface residues disparate from the active site are quite variable, indicating that three antigen 85 enzymes are needed to evade the host immune system.  相似文献   

11.
The antigen 85 complex of Mycobacterium tuberculosis consists of three abundantly secreted proteins. The recent characterization of a mycoloyltransferase activity associated in vitro with each of these antigens suggested that they are potentially important for the building of the unusual cell envelope of mycobacteria. To define the physiological role of these proteins, the gene coding for antigen 85C was inactivated by transposon mutagenesis. The resulting mutant was shown to transfer 40% fewer mycolates to the cell wall with no change in the types of mycolates esterifying arabinogalactan or in the composition of non-covalently linked mycolates. As a consequence, the diffusion of the hydrophobic chenodeoxycholate and the hydrophilic glycerol, but not that of isoniazid, was found to be much faster through the cell envelope of the mutant than that of the parent strain. Taken together, these data demonstrate that: (i) antigen 85C is involved directly or indirectly in the transfer of mycolates onto the cell wall of the whole bacterium; (ii) the enzyme is not specific for a given type of mycolate; and (iii) the cell wall-linked mycolate layer may represent a barrier for the diffusion of small hydrophobic and hydrophilic molecules.  相似文献   

12.
Siemion IZ  Wieczorek Z 《Peptides》2003,24(4):623-628
Initial entry of Mycobacteria into the cells depends upon the formation of a molecular complex between Antigen 85 (Ag85), located on the bacterial cell wall, and serum protein-fibronectin (FN) [Nat. Struct. Biol. 7 (2000) 141; Nat. Struct. Biol. 7 (2000) 94]. Therefore, a way of preventing a Mycobacteria invasion could be to inhibit the interaction between fibronectin and leucocyte cellular receptors of the integrin type. We found that some antiadhesive peptides (such as RGDVY and GRGD), derived of fibronectin and human leucocyte antigen DQ (HLA-DQ) sequences, are in fact very potent inhibitors of Mycobacterium kansasii phagocytosis. This observation may open new prospects in the search for tuberculosis therapy.  相似文献   

13.
There is no effective vaccine against Buruli ulcer. In experimental footpad infection of C57BL/6 mice with M. ulcerans, a prime-boost vaccination protocol using plasmid DNA encoding mycolyltransferase Ag85A of M. ulcerans and a homologous protein boost has shown significant, albeit transient protection, comparable to the one induced by M. bovis BCG. The mycolactone toxin is an obvious candidate for a vaccine, but by virtue of its chemical structure, this toxin is not immunogenic in itself. However, antibodies against some of the polyketide synthase domains involved in mycolactone synthesis, were found in Buruli ulcer patients and healthy controls from the same endemic region, suggesting that these domains are indeed immunogenic. Here we have analyzed the vaccine potential of nine polyketide synthase domains using a DNA prime/protein boost strategy. C57BL/6 mice were vaccinated against the following domains: acyl carrier protein 1, 2, and 3, acyltransferase (acetate) 1 and 2, acyltransferase (propionate), enoylreductase, ketoreductase A, and ketosynthase load module. As positive controls, mice were vaccinated with DNA encoding Ag85A or with M. bovis BCG. Strongest antigen specific antibodies could be detected in response to acyltransferase (propionate) and enoylreductase. Antigen-specific Th1 type cytokine responses (IL-2 or IFN-γ) were induced by vaccination against all antigens, and were strongest against acyltransferase (propionate). Finally, vaccination against acyltransferase (propionate) and enoylreductase conferred some protection against challenge with virulent M. ulcerans 1615. However, protection was weaker than the one conferred by vaccination with Ag85A or M. bovis BCG. Combinations of these polyketide synthase domains with the vaccine targeting Ag85A, of which the latter is involved in the integrity of the cell wall of the pathogen, and/or with live attenuated M. bovis BCG or mycolactone negative M. ulcerans may eventually lead to the development of an efficacious BU vaccine.  相似文献   

14.
Dihydroxyacetone-phosphate and phosphonate derivatives were synthesized bearing a N-sulfonyl hydroxamate moiety. The phosphate derivatives represent competitive inhibitors for the class II-FBP aldolase catalyzed reaction, while the phosphonate isosteres are comparatively weaker inhibitors.  相似文献   

15.
Bahn, Arthur N. (Northwestern University, Chicago, Ill.), Patrick C. Y. Kung, and James A. Hayashi. Chemical composition and serological analysis of the cell wall of Peptostreptococcus. J. Bacteriol. 91:1672-1676. 1966.-Chemical and serological analyses were made of the cell wall of Peptostreptococcus to characterize taxonomically this genus of anaerobic streptococci. Cell wall hydrolysates of P. putridus strains 06 and 85, P. intermedius strains 11 and 87, and P. elsdenii strain B-159 were prepared, and the cell wall sugars were measured quantitatively by paper chromatography. Strain 85 contained only glucose, whereas strain 06 contained 93% glucose and 7% mannose. Strain 87 contained only rhamnose, and strain 11 contained approximately equal amounts of glucose and rhamnose. Strain B-159 differed from all the other strains in having a low (3.1%) content of total carbohydrate, consisting of rhamnose, galactose, and glucose. Quantitative amino acid analyses showed that the major amino compounds present in the cell wall were glutamic and aspartic acids, alanine, lysine, muramic acid, glucosamine, and galactosamine. Strains 06 and 85 possessed this complement of amino compounds, but strains 11 and 87 had relatively little aspartic acid. Strain B-159 was markedly different in having a high content of glycine and diaminopimelic acid, with only traces of lysine; it was the only strain in which teichoic acid was found. Serological analyses were made with the use of cell wall extracts as antigenic material and with homologous antisera, as well as streptococcal group antisera for groups A through S. The only strong agglutination was obtained between strain 87 antigen and group C antisera; weak agglutination was obtained with 87 against N, O, and K, and between strain 11 and groups E and F. All other antisera gave negative reactions. It is concluded that strain B-159 does not belong to the genus Peptostreptococcus, that strains 06 and 85 are members of P. putridus, and that strains 11 and 87 may be members of two different genera.  相似文献   

16.
We have isolated and purified to homogeneity an alpha,alpha'-trehalose 6-monomycolate:alpha,alpha'-trehalose mycolyltransferase (trehalose mycolyltransferase) from Mycobacterium smegmatis that catalyzes the exchange of a mycolyl group between trehalose, trehalose 6-monomycolate (TM), and trehalose 6,6'-dimycolate (TD). This enzyme was prominent in M. smegmatis and it catalyzed the following reactions. TM + [14C]trehalose in equilibrium [14C]TM + trehalose [14C]TM + TM in equilibrium [14C]TD + trehalose This enzyme was purified by (i) ammonium sulfate fractionation, (ii) QAE-Sephadex A-50 column chromatography, (iii) gel filtration on a Sephadex G-75 column, and (iv) SP-Sephadex C-50 column chromatography. The purified protein yielded a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 25,000. This enzyme was a glycoprotein, had no cofactor requirement, and was highly specific for alpha,alpha'-trehalose as the mycolate acceptor. It was less specific for the acyl donor group since the palmitoyl group in trehalose 6-monopalmitate was easily exchangeable. There was no TM acylhydrolase activity in the purified enzyme, suggesting that it is probably associated with the anabolic pathway of mycolic acid metabolism. We postulate the formation of a mycolyl-enzyme intermediate in this reaction. Such an intermediate could play a central role in the transfer of mycolic acid to form the prominent cell wall components of mycobacterial TD and possibly murein-arabinogalactan-mycolate.  相似文献   

17.
This work is focused on the design of new antimicrobial drugs and on the development of lipophilic inhibitors of the DXR, the second enzyme of the MEP pathway for the biosynthesis of isoprene units in most bacteria, by replacing the phosphonate group of fosmidomycin derivatives by a tetrazoyl moiety capable of multiple hydrogen bonding. The N- and C-substituted tetrazole analogues of phosphonohydroxamate inhibitors were synthesized and tested on the DXR of Escherichia coli. This work points out the hypothesis that the phosphonate/phosphate recognition site might be too rigid to accommodate other functional groups.  相似文献   

18.
An antigenic peptide analogue consisting of HIV gp120 residues 421-431 (an antigen recognition site probe) with diphenyl amino(4-amidinophenyl)methanephosphonate located at the C-terminus (a catalytic site probe) was synthesized and its trypsin and antibody reactivity characteristics were studied. Antibodies to the peptide determinant recognized the peptidyl phosphonate probe. Trypsin was inhibited equipotently by the peptidyl phosphonate and its simple phosphonate counterpart devoid of the peptide determinant. The peptidyl phosphonate inhibited the gp120-hydrolyzing activity of a catalytic antibody light chain. It was bound covalently by the light chain and the binding was inhibited by the classical active-site directed inhibitor of serine proteinase, diisopropyl fluorophosphate. These results reveal that the peptidyl phosphonate ester can serve as a probe for the antigen recognition and catalytic subsites of proteolytic antibodies.  相似文献   

19.
The Mycobacterium tuberculosis 30 kDa major secretory protein (antigen 85B) is the most abundant protein exported by M. tuberculosis, as well as a potent immunoprotective antigen and a leading drug target. A mycolyl transferase of 285 residues, it is closely related to two other mycolyl transferases, each of molecular mass 32 kDa: antigen 85A and antigen 85C. All three catalyze transfer of the fatty acid mycolate from one trehalose monomycolate to another, resulting in trehalose dimycolate and free trehalose, thus helping to build the bacterial cell wall. We have determined two crystal structures of M. tuberculosis antigen 85B (ag85B), initially by molecular replacement using antigen 85C as a probe. The apo ag85B model is refined against 1.8 A data, to an R-factor of 0.196 (R(free) is 0.276), and includes all residues except the N-terminal Phe. The active site immobilizes a molecule of the cryoprotectant 2-methyl-2,4-pentanediol. Crystal growth with addition of trehalose resulted in a second ag85B crystal structure (1.9 A resolution; R-factor is 0.195; R(free) is 0.285). Trehalose binds in two sites at opposite ends of the active-site cleft. In our proposed mechanism model, the trehalose at the active site Ser126 represents the trehalose liberated by temporary esterification of Ser126, while the other trehalose represents the incoming trehalose monomycolate just prior to swinging over to the first trehalose site to displace the mycolate from its serine ester. Our proposed interfacial mechanism minimizes aqueous exposure of the apolar mycolates. Based on the trehalose-bound structure, we suggest a new class of antituberculous drugs, made by connecting two trehalose molecules by an amphipathic linker.  相似文献   

20.
Synthesis of novel inhibitors of human IMP dehydrogenase is described. These inhibitors are isosteric methylenebis(sulfonamide) analogues 5-8 of earlier reported mycophenolic adenine methylenebis(phosphonate)s 1-3. The parent bis(phosphonate) 1 and its bis(sulfonamide) analogue 5 showed similar sub-micromolar inhibitory activity against IMPDH2 (K(i) approximately 0.2 microM). However, the bis(sulfonamide) analogues 6 and 8 substituted at the position 2 of adenine were approximately 3- to 10-fold less potent inhibitors of IMPDH2 (K(i)=0.3-0.4 microM) than the corresponding parent bis(phosphonate)s 2 and 3 (K(i)=0.04-0.11 microM), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号