首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Measurements of the stability as a function of pH for the acyl-coenzyme A binding protein (ACBP) has shown a significant difference in the pH transition midpoint measured by NMR spectroscopy at pH 3.12 and the transition midpoint measured at pH 2.92 and 2.97 by circular dichroism and by fluorescence spectroscopy, respectively. A similar behavior has not been observed in other proteins. It is suggested that these differences arise because the population of the unfolded molecules still contains significant amounts of native like secondary and tertiary structure. NMR spectroscopy measures the concentration of the two components of the folding unfolding equilibrium individually, whereas circular dichroism and fluorescence measure the concentration of the conformations of the light-absorbing chromophores present in both the folded and the unfolded molecules. In the narrow pH range, nascent structure can be detected as the average amount of secondary structure per unfolded molecule and hydrophobic interactions in the population of unfolded molecules. These structures are not observable immediately by NMR spectroscopy; however, a chemical shift analysis of the peptide backbone (13)C chemical shift indicates strongly the existence of short-lived and transient helical structures at pH 2.3. Magnetization transfer studies have been applied to study the equilibrium between folded and unfolded ACBP near the pH transition point measured by NMR. This study has shown that there are two categories of subpopulations in the population of unfolded ACBP. One for which magnetization can be transferred to the folded form during the folding process, and one for which transfer is not observed. The molecules of the latter population of unfolded protein apparently, do not fold within the time-frame of the magnetization transfer experiment. This result suggests the existence of a subpopulation of the acid-unfolded protein molecules with a high propensity for folding. It is suggested that in this subpopulation, a particular set of native like interactions in the peptide backbone and between side-chains in the peptide chain have to be formed.  相似文献   

2.
    
The TEM-1 β-lactamase is a globular protein containing 12 proline residues. The folding mechanism of this enzyme was investigated by kinetic and equilibrium experiments with the help of fluorescence spectroscopy and circular dichroism. The equilibrium denaturation of the protein induced by guanidine hydrochloride occurs in two discrete steps, indicating the existence of a thermodynamically stable intermediate state. Thisstate is 5.2 ± 0.4 kcal/mol less stable than the native conformation and 5.7 ± 0.2 kcal/mol more stable than the fully denaturedprotein. This intermediate state exhibits a high content of native secondary structure elements but is devoid of specific tertiary organization; its relation to the “molten globule” is discussed. Refolding kinetic experimentsrevealed the existence of a transient intermediate conformation between thethermodynamically stable intermediate and the native protein. This transient intermediate appears rapidly during the folding reaction. It exhibits a secondary structure content very similar to that of the native protein and has also recovered a significant amount of tertiary organisation. The final refolding step of the TEM-1 β-lactamase, leading to the native enzyme, is dominated by two major slow kinetic phases which probablyreflect a very complex process kinetically limited by proline cis/transisomerization. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Mutations in human copper zinc superoxide dismutase (hSOD) that are associated with amyotrophic lateral sclerosis (ALS) have been proposed to destabilize the protein and thereby enhance toxic protein aggregation. In previous studies, denaturation of metallated (holo) hSODs was found to be irreversible, and complicated by the formation of intermolecular disulfide bonds. Here, ALS-associated mutations (E100G, G93A, G85R and A4V) are introduced into a pseudo wild-type background containing no free cysteine residues. The guanidinium chloride-induced denaturation of the holo proteins is generally found to be highly reversible (except for A4V, which tended to aggregate), enabling quantitative analysis of the effects of the mutations on protein stability. Denaturation and renaturation curves were monitored by tryptophan fluorescence, circular dichroism, enzyme activity, chemical cross-linking and analytical sedimentation, as a function of equilibration time and protein concentration. There is strong kinetic hysteresis, with curves requiring exceptionally long times (many days for pseudo wild-type) to reach equilibrium, and evidence for the formation of kinetic and equilibrium intermediate(s), which are more highly populated at lower protein concentrations. The effects of metal dissociation were included in the data fitting. The full protein concentration dependence is best described using a three-state model involving metallated native dimer, metallated monomeric intermediate and unfolded monomers with no bound metals; however, at high protein concentrations the unfolding approaches a two-state transition with metal binding to both the native dimers and unfolded monomers. We show that the E100G, G93A and G85R mutations decrease overall protein stability, largely by decreasing monomer stability with little effect on dimer dissociation. Comparison of the chemical denaturation data with ALS disease characteristics suggests that aggregation of some mutant hSOD may occur through increased population of partially folded states that are less stable than the monomeric intermediate and accessed from the destabilized holo protein.  相似文献   

4.
The stability and kinetics of unfolding and refolding of the P167T mutant of the TEM-1 β-lactamase have been investigated as a function of guanidine hydrochloride concentration. The activity of the mutant enzyme was not significantly modified, which strongly suggests that the Glu166–Thr167 peptide bond, like the Glu166–Pro167, is cis. The mutation, however, led to a significant decrease in the stability of the native state relative to both the thermodynamically stable intermediate and the fully unfolded state of the protein. In contrast to the two slower phases seen in the refolding of the wild-type enzyme, only one phase was detected in the refolding of the mutant, indicating a determining role of proline 167 in the kinetics of folding of the wild-type enzyme. The former phases are replaced by rapid refolding when the enzyme is unfolded for short periods of time, but the latter is independent of the time of unfolding. The monophasic refolding reaction of the mutant is proposed to reflect mainly the transcis isomerization of the Glu166–Thr167 peptide bond. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
ABSTRACT

First raised some 60 years ago, the question of whether chemically denatured proteins are fully unfolded has, in recent years, seen significantly renewed interest. This increased attention has been spurred, in large part, by new spectroscopic and computational approaches that suggest even the most highly denatured polypeptides contain significant residual structure. In contrast, the most recent scattering results uphold the long-standing view that chemically denatured proteins adopt random coil configurations. Here we review the evidence both for and against residual structure in chemically denatured proteins, and attempt to reconcile these seemingly contradictory observations.  相似文献   

6.
    
The recombinant human nerve growth factor (hNGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin 4/5 (NT4/5), and murine NGF (mNGF) dimers all undergo rapid unfolding and dissociation to monomer in GdnHCl. Fluorescence spectroscopy, reversed-phase high-performance liquid chromatography, and size-exclusion chromatography were used to show that this monomer M1 converts slowly to a more fully unfolded monomer, M2, by a first order process with half-lives of 22, 2.5, 1.6, and 0.73 h for hNGF, mNGF, NT-3, and BDNF, respectively, at 25 degrees C. Linear Arrhenius plots for the conversion of M1 to M2 yielded activation energies of 27, 22, 24, and 24 kcal/mol for hNGF, mNGF, NT-3, and BDNF, respectively. The refolding of these neurotrophins from 5 M GdnHCl was also first order with NT-3 the slowest to refold and BDNF the fastest. Threading of the N-terminus out through the cystine-knot loop present in each of these proteins is proposed as the slow step in unfolding. The number of amino acids in the cystine-knot loop (14 for hNGF, mNGF, NT-3, and BDNF; 21 for NT4/5), and the number and position of the proline residues in this loop (2 for hNGF; 1 for mNGF, NT-3, BDNF, and NT4/5) correlate with the relative rates of unfolding. The smaller the loop and the greater the number of prolines, the more hindered and slower the unfolding.  相似文献   

7.
  总被引:8,自引:6,他引:8  
Denaturant m values, the dependence of the free energy of unfolding on denaturant concentration, have been collected for a large set of proteins. The m value correlates very strongly with the amount of protein surface exposed to solvent upon unfolding, with linear correlation coefficients of R = 0.84 for urea and R = 0.87 for guanidine hydrochloride. These correlations improve to R = 0.90 when the effect of disulfide bonds on the accessible area of the unfolded protein is included. A similar dependence on accessible surface area has been found previously for the heat capacity change (delta Cp), which is confirmed here for our set of proteins. Denaturant m values and heat capacity changes also correlate well with each other. For proteins that undergo a simple two-state unfolding mechanism, the amount of surface exposed to solvent upon unfolding is a main structural determinant for both m values and delta Cp.  相似文献   

8.
Production of seven single surface histidine variants of yeast iso-1-cytochrome c allowed measurement of the apparent pK(a), pK(a)(obs), for histidine-heme loop formation for loops of nine to 83 amino acid residues under varying denaturing conditions (2 M to 6 M guanidine hydrochloride, gdnHCl). A linear correlation between pK(a)(obs) and the log of the loop size is expected for a random coil, pK(a)(obs) proportional to k log(n), where k is a scaling factor and n is the number of monomers in the loop. For small loops of nine, 16, and 22 monomers, no dependence of pK(a)(obs) on loop size was observed at any denaturant concentration indicating effects from chain stiffness. For larger loops of 37, 56, 72, and 83 monomers, the dependence of pK(a)(obs) on log(n) was linear and the slope of that dependence decreased with increasing concentration of denaturant. The scaling factor obtained at 5 M and 6 M gdnHCl for the larger loop sizes was approximately -2.0, close to the value of -2.2 expected for a random coil with excluded volume. However, scaling factors obtained under less harsh denaturing conditions (2 M to 4.5 M gdnHCl) deviated strongly from that expected for a random coil, being in the range -3 to -4. The gdnHCl dependence of pK(a)(obs) at each loop size was also evaluated to obtain denaturant m-values. Short loops where chain stiffness dominates had similar m-values of approximately 0.25 kcal/mol M. For larger loops m-values decrease with increasing loop size indicating that less hydrophobic area is sequestered when larger loops form. It is known that the earliest events in protein folding involve the formation of simple loops. The data from these studies provide direct insight into the relative probability with which loops of different sizes will form, as well as the factors which affect loop formation.  相似文献   

9.
10.
In several studies, viscogenic osmolytes have been suggested to decrease the folding rate constant of polypeptides by slowing their motion through the solvent. Here, we show that osmolytes may slow protein folding by prematurely collapsing the coil. At low or moderate concentrations of osmolytes (<30%), folding of the two-state protein CI2 becomes faster with increasing osmolyte concentrations, suggesting that the kinetics are governed by protein stability. However, at higher concentrations of osmolyte, the coil collapses in the dead-time of the refolding experiment, causing a dramatic drop in the folding rate. The collapsed state is non-native and appears to be different for different osmolytes.  相似文献   

11.
Here we investigate the time-resolved folding and assembly mechanism of the heptameric co-chaperonin protein 10 (cpn10) in vitro. The structure of cpn10 is conserved throughout nature: seven beta-barrel subunits are non-covalently assembled through beta-strand pairings in an overall doughnut-like shape. Kinetic folding/assembly experiments of chemically denatured cpn10 from Homo sapiens (hmcpn10) and Aquifex aeolicus (Aacpn10) were monitored by far-UV circular dichroism and fluorescence. We find the processes to be complex, involving several kinetic steps, and to differ between the mesophilic and hyper-thermophilic proteins. The hmcpn10 molecules partition into two parallel pathways, one involving polypeptide folding before protein-protein assembly and another in which inter-protein interactions take place prior to folding. In contrast, the Aacpn10 molecules follow a single sequential path that includes initial monomer misfolding, relaxation to productive intermediates and, subsequently, final folding and heptamer assembly. An A. aeolicus variant lacking the unique C-terminal extension of Aacpn10 displays the same kinetic mechanism as Aacpn10, signifying that the tail is not responsible for the rapid misfolding step. This study demonstrates that molecular details can overrule similarity of native-state topology in defining apparent protein-biophysical properties.  相似文献   

12.
    
The conformation changes of dihydrofolate reductase (DHFR) from chicken liver in guanidine hy-drochloride were monitored by protein intrinsic fluorescence, hydrophobic fluorescence probe TNS and limited proteol-ysis by proteinase K. The kinetics of the enzyme denaturation were also studied and compared with its activity changes. It was indicated by the enhanced fluorescence of 2-p-toluidinylnaphthalene (TNS) that a subtle conforma-tional change of the enzyme in dilute GuHCl parallels GuHCl-induced activation. At GuHCl concentration higher than 0.75 mol/L, the conformational change can be detected by increased susceptibility of the enzyme to proteinase K, but no significant gross conformational change of the enzyme molecule is observed by intrinsic fluorescence up to a GuHCl concentration of 1.2 mol/L. The results suggest that the denaturation of DHFR by GuHCl does not follow strictly the two-state model. The enzyme seems to open up sequentially with increasing concentrations of denaturants, mainly at th  相似文献   

13.
    
An analysis of the folding of the 94 residue tenth fibronectin type III (fnIII) domain of human fibronectin (FNfn10) is presented. Use of guanidine isothiocyanate as a denaturant allows us to obtain equilibrium and kinetic data across a broad range of denaturant concentrations that are unavailable in guanidine hydrochloride. Equilibrium unfolding experiments show that FNfn10 is significantly more stable than has been reported previously. Comparison of equilibrium and kinetic parameters reveals the presence of an intermediate that accumulates at low denaturant concentrations. This is the first demonstration of three-state folding kinetics for a fnIII domain. We have previously shown that a homologous domain from human tenascin (TNfn3) folds by a two-state mechanism, but this does not necessarily indicate that the two proteins fold by different folding pathways.  相似文献   

14.
It has been suggested that, while the globular native forms of proteins are a side-chain-dominated compact structure evolved by pursuing a unique fold with optimal packing of amino acid residues, amyloid fibrils are a main-chain-dominated structure with an extensive hydrogen bond network. To address this issue, the effects of hydrostatic pressure on amyloid fibrils of beta2-microglobulin (beta2-m), involved in dialysis-related amyloidosis, were studied. A systematic analysis at various pressures and concentrations of guanidine hydrochloride conducted by monitoring thioflavin T fluorescence, light-scattering, and tryptophan fluorescence revealed contrasting conformational changes occurring consecutively: first, a pressure-induced reorganization of fibrils and then a pressure-induced unfolding. The changes in volume as well as the observed structural changes indicate that the beta2-m amyloid fibrils under ambient pressure are less tightly packed with a larger number of cavities, consistent with the main-chain-dominated amyloid structure. Moreover, the amyloid structure without optimal packing will enable various isoforms to form, suggesting the structural basis of multiple forms of amyloid fibrils in contrast to the unique native-fold.  相似文献   

15.
  总被引:3,自引:0,他引:3  
To study the role of Pro residues in the conformation and conformational stability of a protein, nine mutant alpha subunits of tryptophan synthase from Escherichia coli, in which Ala or Gly was substituted for each of six Pro residues (positions 28, 57, 62, 96, 132, and 207) that are conserved in 10 microorganisms, were constructed by means of site-directed mutagenesis. The far-ultraviolet (UV) CD spectra of five mutant alpha subunits with Ala in place of Pro were identical to the spectrum of the wild-type protein, the exception being the mutant at position 207 (P207A). CD values in the far-UV region were less negative for P207A, indicating that the Pro residue at position 207 plays a role in maintaining the intact structure of the alpha subunit. The negative CD values of the Gly mutants examined (P28G, P96G, and P132G) were also decreased. Calorimetric measurements showed that the two mutants at position 28 (P28G and P28A) gave two peaks in the excess heat capacity curve, whereas the wild type and other Pro mutants had only a single peak. The stability of each mutant protein relative to that of the wild type was about the same for P57A, less for P62A and P132A, and markedly decreased for P96A and P207A, which are substituted at less mobile positions. The changes of denaturation entropy (delta delta dS) at the denaturation temperature of the wild-type protein (54.1 degrees C at pH 9.0) were positive for P57A, P62A, and P132A, but negative for P96A, P207A, and P132G.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
    
The fungicide dodine combines the cooperative denaturation properties of guanidine with the mM denaturation activity of SDS. It was previously tested only on two small model proteins. Here we show that it can be used as a chemical denaturant for phosphoglycerate kinase (PGK), a much larger two‐domain enzyme. In addition to its properties as a chemical denaturant, dodine facilitates thermal denaturation of PGK, and we show for the first time that it also facilitates pressure denaturation of a protein. Much higher quality circular dichroism and amide I′ infrared spectra of PGK can be obtained in dodine than in guanidine, opening the possibility for use of dodine as a denaturant when UV or IR detection is desirable. One caution is that dodine denaturation, like other detergent‐based denaturants, is less reversible than guanidine denaturation.  相似文献   

17.
The equilibria and kinetics of urea-induced unfolding and refolding of the alpha subunit of tryptophan synthase of E. coli have been examined for their dependences on viscosity, pH, and temperature in order to investigate the properties of one of the rate-limiting steps, domain association. A viscosity enhancer, 0.58 M sucrose, was found to slow unfolding and accelerate refolding. This apparently anomalous result was shown to be due to the stabilizing effect of sucrose on the folding reaction. After accounting for this stabilization effect by using linear free-energy plots, the unfolding and refolding kinetics were found to have a viscosity dependence. A decrease in pH was found to stabilize the domain association reaction by increasing the refolding rate and decreasing the unfolding rate. This effect was accounted for by protonation of a single residue with a pK value of 8.8 in the native state and 7.1 in the intermediate, in which the two domains are not yet associated. The activation energy of unfolding is 4.8 kcal/mol, close to the diffusion limit. The negative activation entropy of unfolding, -47 cal/deg-mol, which controls this reaction, may result from ordering of solvent about the newly exposed domain interface of the transition state. These results may provide information on the types of noncovalent interactions involved in domain association and improve the ability to interpret the folding of mutants with single amino-acid substitutions at the interface.  相似文献   

18.
The unfolding of bovine thyroglobulin (Tg) in guanidine hydrochloride (GuHCl) solution was studied by following the fluorescence and circular dichroism. With increasing GuHCl concentrations, the emission maximum of the intrinsic fluorescence clearly red-shifted in two stages. At concentrations of GuHCl less than 1.2 M or more than 1.6 M, the red shift showed a cooperative manner. At concentrations of GuHCl between 1.2 and 1.6 M, an unfolding intermediate was observed. It was further characterized by the increased binding of the fluorescence probe 1-anilinonaphthalene-8-sulfonic acid (ANS). No significant changes of the secondary structure were indicated by CD spectra at the concentrations of GuHCl between 1.2 and 1.6 M. The conformation of this state has properties similar to those of a molten globule state which may exist in the folding pathway of the protein. Further changes in fluorescence properties occurred at concentrations of denaturant higher than 1.6 M with a significant red shift of the emission maximum from 340 to 347 nm and a marked decrease in ANS binding. This in vitro study gave a clue to understand the biochemical mechanism for the occurrence of aggregation and molecular chaperone binding during Tg maturation in vivo.  相似文献   

19.
The activity and conformational change of human placental cystatin (HPC), a low molecular weight thiol proteinase inhibitor (12,500) has been investigated in presence of guanidine hydrochloride (GdnHCl) and urea. The denaturation of HPC was followed by activity measurements, fluorescence spectroscopy and Circular Dichroism (CD) studies. Increasing the denaturant concentration significantly enhanced the inactivation and unfolding of HPC. The enzyme was 50% inactivated at 1.5 M GdnHCl or 3 M urea. Up to 1.5 M GdnHCl concentration there was quenching of fluorescence intensity compared to native form however at 2 M concentration intensity increased and emission maxima had 5 nm red shift with complete unfolding in 4–6 M range. The mid point of transition was in the region of 1.5–2 M. In case of urea denaturation, the fluorescence intensity increased gradually with increase in the concentration of denaturant. The protein unfolded completely in 6–8 M concentration of urea with a mid-point of transition at 3 M. CD spectroscopy shows that the ellipticity of HPC has increased compared to that of native up to 1.5 M GdnHCl and then there is gradual decrease in ellipticity from 2 to 5 M concentration. At 6 M GdnHCl the protein had random coil conformation. For urea the ellipticity decreases with increase in concentration showing a sigmoidal shaped transition curve with little change up to 1 M urea. The protein greatly loses its structure at 6 M urea and at 8 M it is a random coil. The urea induced denaturation follows two-state rule in which Native→Denatured state transition occurs in a single step whereas in case of GdnHCl, intermediates or non-native states are observed at lower concentrations of denaturant. These intermediate states are possibly due to stabilizing properties of guanidine cation (Gdn+) at lower concentrations, whereas at higher concentrations it acts as a classical denaturant.  相似文献   

20.
    
Hydrophilic to hydrophobic mutations have been made at 11 solvent exposed sites on the surface of iso-1-cytochrome c. Most of these mutations involve the replacement of lysine with methionine, which is nearly isosteric with lysine. Minimal perturbation to the native structure is expected, and this expectation is confirmed by infrared amide I spectroscopy. Guanidine hydrochloride denaturation studies demonstrate that these variants affect the magnitude of the m-value, the rate of change of free energy with respect to denaturant concentration, to different degrees. Changes in m-values are indicative of changes in the equilibrium folding mechanism of a protein. Decreases in m-values are normally thought to result either from an increased population of intermediates during unfolding or from a more compact denatured state. When cytochrome c is considered in terms of its thermodynamic substructures, the changes in the m-value for a given variant appear to depend upon the substructure in which the mutation is made. These data indicate that the relative stabilities and physical properties of substructures of cytochrome c play an important determining role in the equilibrium folding mechanism of this protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号