首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Equations have been derived and plotted to describe apparent modifier effects of a single substrate which is randomly bound, in rapid binding equilibria, at two sites of an enzyme. Three special cases have been considered: independent, non-equivalent catalytic sites; equivalent, interacting catalytic sites; one catalytic site and one modifier site. In each case, the curvature of Lineweaver-Burk plots has been determined by evaluating the limits of the derivatives, d(1/υ0)/d(1/S) and d(S/υ0)/dS. The direction of curvature has been correlated with modifier effects by distinguishing between activating and inhibiting effects on maximal velocities (V), or on dissociation constants of enzyme-substrate complexes (K). Upward curvature, with a minimum in the plot, corresponds to V-inhibition. Upward curvature without a minimum corresponds to various combinations of activating effects. Downward curvature represents either K-inhibition, with or without simultaneous V-activation, or no interaction at all.  相似文献   

2.
3.
Glyoxalase I operates on a mixture of rapidly interconverting diasteriomeric thiohemiacetals, formed in a preequilibrium step between glutathione and alpha-ketoaldehyde. That both diasteriomers are directly used as substrates by the enzyme from yeast and from porcine erythrocytes is an outcome of a series of isotope-trapping experiments in which pulse solutions composed of the two diasteriomeric thiohemiacetals, due to [3H]glutathione and phenylglyoxal, are rapidly mixed with chase solutions containing excess unlabeled glutathione and successively increasing concentrations of glyoxalase I. As the enzyme approaches infinite concentration in the chase solution, the radioactivity incorporated into the S-mandeloylglutathione product approaches 100% of the total radioactivity due to both diasteriomers from the pulse solution. The special properties of the active site that allow the enzyme to accommodate both diasteriomeric substrate forms may also account for the fact that the cis and the trans isomers of various para-substituted S-(phenylethenyl)glutathione derivatives are both strong competitive inhibitors of the enzyme. A catalytic mechanism is proposed for glyoxalase I involving catalyzed interconversion of the bound diasteriomeric thiohemiacetals before transformation to final product.  相似文献   

4.
Streptomycin is an aminocyclitol glycoside antibiotic, which interferes with prokaryotic protein synthesis by interacting with the ribosomal RNA. We report here that streptomycin is also able to inhibit self splicing of the group I intron of the thymidylate synthase gene of phage T4. The inhibition is kinetically competitive with the substrate guanosine. Streptomycin and guanosine have in common a guanidino group, which has been shown to undergo hydrogen bonds with the ribozyme (Bass & Cech, Biochemistry, 25, 1986, 4473). The inhibitory effect of streptomycin extends to other group I introns, but does not affect group II introns. Mutating the bulged nucleotide in the conserved P7 secondary structure element of the td intron alters the affinity of the ribozyme for both guanosine and streptomycin. Myomycin, an antibiotic with similar effects on protein synthesis as streptomycin, is also able to inhibit splicing. In contrast, bluensomycin, which is structurally related to streptomycin, but contains only one guanidino group does not inhibit splicing. We discuss these findings in support of an evolutionary model that stresses the antiquity of antibiotics (J. Davies, Molecular Microbiology 4, 1990, 1227).  相似文献   

5.
6.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

7.
8.
9.
Proteins are targeted to the E3 RING ubiquitin ligase Siah through a PxAxVxP degron motif. In this issue of Structure, House et al. (2006) present the structural basis by which Siah recognizes its degron with high affinity and specificity.  相似文献   

10.
11.
The calpain inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) has been reported to have complex effects on the production of the beta-amyloid peptide (Abeta). In this study, the effects of ALLN on the processing of the amyloid precursor protein (APP) to Abeta were examined in 293 cells expressing APP or the C-terminal 100 amino acids of APP (C100). In cells expressing APP or low levels of C100, ALLN increased Abeta40 and Abeta42 secretion at low concentrations, decreased Abeta40 and Abeta42 secretion at high concentrations, and increased cellular levels of C100 in a concentration-dependent manner by inhibiting C100 degradation. Low concentrations of ALLN increased Abeta42 secretion more dramatically than Abeta40 secretion. ALLN treatment of cells expressing high levels of C100 did not alter cellular C100 levels and inhibited Abeta40 and Abeta42 secretion with similar IC50 values. These results suggest that C100 can be processed both by gamma-secretase and by a degradation pathway that is inhibited by low concentrations of ALLN. The data are consistent with inhibition of gamma-secretase by high concentrations of ALLN but do not support previous assertions that ALLN is a selective inhibitor of the gamma-secretase producing Abeta40. Rather, Abeta42 secretion may be more dependent on C100 substrate concentration than Abeta40 secretion.  相似文献   

12.
Studies were made on the ultraviolet difference-spectra of glucoamylase from Rhizopus niveus [EC 3.2.1.3] specifically produced by the substrate maltose and the inhibitors, glucose, glucono-1: 5-lactone (gluconolactone), methyl beta-D-glucoside, cellubiose, and cyclohexa-, and cyclohepta-amyloses. Of these, maltose and gluconolactone produced characteristic difference spectra with a trough near 300 nm. Based on studies with a model compound for a tryptophan residue, Ac-Trp, this trough was attributed to the effect of a negative charge upon the tryptophan residue. From the concentration dependency of the difference spectra, the dissociation constants of the complexes between the enzyme and maltose, glucose, and gluconolactone were evaluated to be 1.2 mM, 51 mM, and 1.5 mM, respectively. These values are in good agreement with the values of Km or K1 obtained from the steady-state kinetics. The difference-spectrophotometric data suggested that referring to the values of subsite affinities of glucoamylase, maltose, and gluconolactone occupy mainly Subsite 1, where the non-reducing-end glucose residue of a substrate is bound in a productive form and that a tryptophan residue with shows a trough near 300 nm in difference spectra is located in this subsite.  相似文献   

13.
Human arginase I is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to generate l-ornithine and urea. We demonstrate that N-hydroxy-l-arginine (NOHA) binds to this enzyme with Kd = 3.6 μM, and nor-N-hydroxy-l-arginine (nor-NOHA) binds with Kd = 517 nM (surface plasmon resonance) or Kd ≈ 50 nM (isothermal titration calorimetry). Crystals of human arginase I complexed with NOHA and nor-NOHA afford 2.04 and 1.55 Å resolution structures, respectively, which are significantly improved in comparison with previously-determined structures of the corresponding complexes with rat arginase I. Higher resolution structures clarify the binding interactions of the inhibitors. Finally, the crystal structure of the complex with l-lysine (Kd = 13 μM) is reported at 1.90 Å resolution. This structure confirms the importance of hydrogen bond interactions with inhibitor α-carboxylate and α-amino groups as key specificity determinants of amino acid recognition in the arginase active site.  相似文献   

14.
GTP cyclohydrolase I (GCH) is the rate-limiting enzyme for the synthesis of tetrahydrobiopterin and its activity is important in the regulation of monoamine neurotransmitters such as dopamine, norepinephrine and serotonin. We have studied the action of divalent cations on the enzyme activity of purified recombinant human GCH expressed in Escherichia coli. First, we showed that the enzyme activity is dependent on the concentration of Mg-free GTP. Inhibition of the enzyme activity by Mg2+, as well as by Mn2+, Co2+ or Zn2+, was due to the reduction of the availability of metal-free GTP substrate for the enzyme, when a divalent cation was present at a relatively high concentration with respect to GTP. We next examined the requirement of Zn2+ for enzyme activity by the use of a protein refolding assay, because the recombinant enzyme contained approximately one zinc atom per subunit of the decameric protein. Only when Zn2+ was present was the activity of the denatured enzyme effectively recovered by incubation with a chaperone protein. These are the first data demonstrating that GCH recognizes Mg-free GTP and requires Zn2+ for its catalytic activity. We suggest that the cellular concentration of divalent cations can modulate GCH activity, and thus tetrahydrobiopterin biosynthesis as well.  相似文献   

15.
Indoleamine 2,3-dioxygenase purified to apparent homogeneity from rabbit intestine was inhibited by scavengers for superoxide anion such as superoxide dismutase and 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron). On the other hand, beta-carotene and 1,4-diazobicyclo-(2,2,2)-octane, scavengers for singlet oxygen, did not affect the enzyme activity significantly. The degree of inhibition of the dioxygenase by superoxide dismutase preparations from bovine erythrocytes, green peas, spinach leaves, and Escherichia coli paralleled that observed with these dismutase preparations on the aerobic reduction of cytochrome c by xanthine oxidase and its substrate. The pH profiles of the inhibition by dismutase of the dioxygenase and cytochrome c reduction were also similar and the maximal inhibition was observed around pH 10 in both cases. The degree of inhibition was not affected by the concentration of substrate but was a function of the concentration of dismutase. It was inversely related to the concentrations of the dioxygenase and its cofactors, ascorbic acid and methylene blue, both of which were required for maximum activity. Ascorbic acid could be replaced either by xanthine oxidase and its substrate, or by tetrabutylammonium superoxide prepared by electrolytic reduction of molecular oxygen, or by potassium superoxide. When limited amounts of superoxide anion were added to the reaction mixture containing a substrate amount of the dioxygenase, the ratio of the amount of superoxide anion added to that of the product formed was approximately unity both under aerobic and anaerobic conditions. Taken together, these findings indicate that superoxide anion, rather than molecular oxygen, is utilized as substrate by indoleamine 2,3-dioxygenase.  相似文献   

16.
17.
Tryptases betaI and betaII were heterologously expressed and purified in yeast to functionally characterize the substrate specificity of each enzyme. Three positional scanning combinatorial tetrapeptide substrate libraries were used to determine the primary and extended substrate specificity of the proteases. Both enzymes have a strict primary preference for cleavage after the basic amino acids, lysine and arginine, with only a slight preference for lysine over arginine. betaI and betaII tryptase share similar extended substrate specificity, with preference for proline at P4, preference for arginine or lysine at P3, and P2 showing a slight preference for asparagine. Measurement of kinetic constants with multiple substrates designed for beta-tryptases reveal that selectivity is highly dependent on ground state substrate binding. Coupled with the functional determinants, structural determinants of tryptase substrate specificity were identified. Molecular docking of the preferred substrate sequence to the three-dimensional tetrameric tryptase structure reveals a novel extended substrate binding mode that involves interactions from two adjacent protomers, including P4 Thr-96', P3 Asp-60B' and Glu-217, and P1 Asp-189. Based on the determined substrate information, a mechanism-based tetrapeptide-chloromethylketone inhibitor was designed and shown to be a potent tryptase inhibitor. Finally, the cleavage sites of several physiologically relevant substrates of beta-tryptases show consistency with the specificity data presented here.  相似文献   

18.
Z Wang  H p Feng  S J Landry  J Maxwell  L M Gierasch 《Biochemistry》1999,38(39):12537-12546
The molecular chaperonins are essential proteins involved in protein folding, complex assembly, and polypeptide translocation. While there is abundant structural information about the machinery and the mechanistic details of its action are well studied, it is yet unresolved how chaperonins recognize a large number of structurally unrelated polypeptides in their unfolded or partially folded forms. To determine the nature of chaperonin-substrate recognition, we have characterized by NMR methods the interactions of GroEL with synthetic peptides that mimic segments of unfolded proteins. In previous work, we found using transferred nuclear Overhauser effect (trNOE) analysis that two 13 amino acid peptides bound GroEL in an amphipathic alpha-helical conformation. By extending the study to a variety of peptides with differing sequence motifs, we have observed that peptides can adopt conformations other than alpha-helix when bound to GroEL. Furthermore, peptides of the same composition exhibited significantly different affinities for GroEL as manifested by the magnitude of trNOEs. Binding to GroEL correlates well with the ability of the peptide to cluster hydrophobic residues on one face of the peptide, as determined by the retention time on reversed-phase (RP) HPLC. We conclude that the molecular basis of GroEL-substrate recognition is the presentation of a hydrophobic surface by an incompletely folded polypeptide and that many backbone conformations can be accommodated.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号