首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hepatitis C virus is a major cause of chronic liver disease worldwide. Lack of culture system supporting virus production has been one of the major impediments in HCV research and vaccine development. Here, we use a HCV (1b) full-length cDNA clone that replicates and produces integrated and infectious virus particles in cultured Vero cells. Evidence shows that the replication of virus particles is robust, producing over 108 copies of positive RNA per milliliter of the culture cells within 48 h. Sucrose density gradient centrifugation of the cell lysate reveals that the HCV virions have a density of about 1.17 g/ml and a spherical morphology with an average diameter of about 55 nm. Secreted virus is infectious for Huh7 cells and can be neutralized by CD81- and E2-specific antibodies. This system establishes a powerful framework for studying the virus life cycle and developing vaccine research.  相似文献   

2.
There has been major progress in our understanding of hepatitis C virus (HCV) molecular virology in recent years. An essential prerequisite for this progress was the availability of functional molecular HCV clones, that serve as a starting point in order to establish cell culture systems. The first of these was the HCV replicon system, which used self-replicating subgenomic viral RNAs. However, these replicons only recapitulated the intracellular life cycle, and did not support production of infectious virus: this became possible with the identification of an HCV isolate that, for unknown reasons, replicates to very high levels in a human hepatoma cell line. Cells containing this genome release virus particles that are infectious in cell culture and in vivo. Without doubt, this system provides new possibilities for molecular studies of the HCV life cycle and the development of novel antiviral concepts.  相似文献   

3.
丙型肝炎病毒(HCV)是造成慢性肝炎、肝硬化及肝癌的重要病因之一,目前全世界约1.7亿人感染HCV.HCV的自然宿主范围很窄,由于缺少有效的HCV细胞培养系统和小动物模型,人们对其生活周期、作用机制等仍不是很清楚,从而严重阻碍了HCV疫苗及治疗药物的开发与研制.我们简要综述了近几年在HCV细胞和动物模型方面的进展,同时...  相似文献   

4.
丙型肝炎是由丙型肝炎病毒(hepatitis C virus,HCV)感染所导致的传染性肝病,呈现世界性流行态势,严重危害人类健康。由于病毒自身高度突变,以及广泛高效的细胞培养体系和合适的小动物模型缺乏,目前尚无可有效预防的疫苗。自1989年丙型肝炎病毒基因组首次被确定以来,Con1(1b)亚基因组复制子和JFH1(2a)毒株细胞培养体系相继建立。以此为工具,HCV生活周期多个关键环节得以阐明。近年来,研究者在Con1亚基因组复制子、JFH1和J6/JFH1细胞培养体系的基础上,构建出多个基因型和亚型的复制子和细胞培养体系。不同的体系在HCV复制与致病机制研究、抗病毒药物筛选方面,具有不同的用途及优缺点。针对HCV复制子与细胞培养体系的研究进展进行综述,可为HCV的相关研究提供参考。  相似文献   

5.
6.
Hepatitis C virus (HCV) infection causes chronic liver diseases and is a global public health problem. Detailed analyses of HCV have been hampered by the lack of viral culture systems. Subgenomic replicons of the JFH1 genotype 2a strain cloned from an individual with fulminant hepatitis replicate efficiently in cell culture. Here we show that the JFH1 genome replicates efficiently and supports secretion of viral particles after transfection into a human hepatoma cell line (Huh7). Particles have a density of about 1.15-1.17 g/ml and a spherical morphology with an average diameter of about 55 nm. Secreted virus is infectious for Huh7 cells and infectivity can be neutralized by CD81-specific antibodies and by immunoglobulins from chronically infected individuals. The cell culture-generated HCV is infectious for chimpanzee. This system provides a powerful tool for studying the viral life cycle and developing antiviral strategies.  相似文献   

7.
丙型肝炎病毒(HCV)是造成慢性肝炎,肝硬化及肝癌的重要原因之一,目前全球约有1.7亿人感染HCV。然而缺乏有效的HCV感染模型,严重阻碍了对HCV致病机制的认识。最近几年以JFH1株和Huh-7细胞系为基础,通过对不同病毒株基因组的重组和细胞系的优化,进一步提高其感染能力,在HCV感染系统的建立上取得了突破性进展。我们简要综述近几年在HCV感染细胞模型方面取得的进展。  相似文献   

8.
Inhibition of viruses at the stage of viral entry provides a route for therapeutic intervention. Because of difficulties in propagating hepatitis C virus (HCV) in cell culture, entry inhibitors have not yet been reported for this virus. However, with the development of retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the recent progress in amplification of HCV in cell culture (HCVcc), studying HCV entry is now possible. In addition, these systems are essential for the identification and the characterization of molecules that block HCV entry. The lectin cyanovirin-N (CV-N) has initially been discovered based on its potent activity against human immunodeficiency virus. Because HCV envelope glycoproteins are highly glycosylated, we sought to determine whether CV-N has an antiviral activity against this virus. CV-N inhibited the infectivity of HCVcc and HCVpp at low nanomolar concentrations. This inhibition is attributed to the interaction of CV-N with HCV envelope glycoproteins. In addition, we showed that the carbohydrate binding property of CV-N is involved in the anti-HCV activity. Finally, CV-N bound to HCV envelope glycoproteins and blocked the interaction between the envelope protein E2 and CD81, a cell surface molecule involved in HCV entry. These data demonstrate that targeting the glycans of HCV envelope proteins is a promising approach in the development of antiviral therapies to combat a virus that is a major cause of chronic liver diseases. Furthermore, CV-N is a new invaluable tool to further dissect the early steps of HCV entry into host cells.  相似文献   

9.
Hepatitis C virus (HCV) is a member of the Flaviviridae family and causes acute and chronic hepatitis. Chronic HCV infection may result in severe liver damage including liver cirrhosis and hepatocellular carcinoma. The liver is the primary target organ of HCV, and the hepatocyte is its primary target cell. Attachment of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between the virus and the target cell that is required for successful entry into the cell and initiation of infection. This step is an important determinant of tissue tropism and pathogenesis; it thus represents a major target for antiviral host cell responses, such as antibody-mediated virus neutralization. Following the development of novel cell culture models for HCV infection our understanding of the HCV entry process and mechanisms of virus neutralization has been markedly advanced. In this review we summarize recent developments in the molecular biology of viral entry and its impact on pathogenesis of HCV infection, development of novel preventive and therapeutic antiviral strategies.  相似文献   

10.
Hepatitis C virus (HCV) is a member of the Flaviviridae family and causes acute and chronic hepatitis. Chronic HCV infection may result in severe liver damage including liver cirrhosis and hepatocellular carcinoma. The liver is the primary target organ of HCV, and the hepatocyte is its primary target cell. Attachment of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between the virus and the target cell that is required for successful entry into the cell and initiation of infection. This step is an important determinant of tissue tropism and pathogenesis; it thus represents a major target for antiviral host cell responses, such as antibody-mediated virus neutralization. Following the development of novel cell culture models for HCV infection our understanding of the HCV entry process and mechanisms of virus neutralization has been markedly advanced. In this review we summarize recent developments in the molecular biology of viral entry and its impact on pathogenesis of HCV infection, development of novel preventive and therapeutic antiviral strategies.   相似文献   

11.
Hepatitis C virus (HCV) is a member of the Flaviviridae family and causes acute and chronic hepatitis. Chronic HCV infection may result in severe liver damage including liver cirrhosis and hepatocellular carcinoma. The liver is the primary target organ of HCV, and the hepatocyte is its primary target cell. Attachment of the virus to the cell surface followed by viral entry is the first step in a cascade of interactions between the virus and the target cell that is required for successful entry into the cell and initiation of infection. This step is an important determinant of tissue tropism and pathogenesis; it thus represents a major target for antiviral host cell responses, such as antibody-mediated virus neutralization. Following the development of novel cell culture models for HCV infection our understanding of the HCV entry process and mechanisms of virus neutralization has been markedly advanced. In this review we summarize recent developments in the molecular biology of viral entry and its impact on pathogenesis of HCV infection, development of novel preventive and therapeutic antiviral strategies.  相似文献   

12.
丙型肝炎病毒(Hepatitis C virus,HCV)感染的持久性引发慢性肝病疾病,并可能发展成为肝硬化和肝癌。目前对HCV的治疗不能达到理想的治疗效果,所以开发新型抗HCV药物迫在眉睫。抗HCV药物筛选的细胞模型,如复制子系统、假病毒系统、细胞培养系统,动物模型,如黑猩猩、uPA-SCID小鼠等,取得了快速的进展,并推动丙型肝炎的研究和抗HCV药物的发现。  相似文献   

13.
Infection by human hepatitis C virus (HCV) is the principal cause of post-transfusion hepatitis and chronic liver diseases worldwide. A reliable in vitro culture system for the isolation and analysis of this virus is not currently available, and, as a consequence, HCV pathogenesis is poorly understood. We report here the first robust in vitro system for the isolation and propagation of HCV from infected donor blood. This system involves infecting freshly prepared macrophages with HCV and then transmission of macrophage-adapted virus into freshly immortalized B-cells from human fetal cord blood. Using this system, newly isolated HCV have been replicated in vitro in continuous cultures for over 130 weeks. These isolates were also transmitted by cell-free methods into different cell types, including B-cells, T-cells and neuronal precursor cells. These secondarily infected cells also produced in vitro transmissible infectious virus. Replication of HCV-RNA was validated by RT-PCR analysis and by in situ hybridization. Although nucleic acid sequencing of the HCV isolate reported here indicates that the isolate is probably of type 1a, other HCV types have also been isolated using this system. Western blot analysis shows the synthesis of major HCV structural proteins. We present here, for the first time, a method for productively growing HCV in vitro for prolonged periods of time. This method allows studies related to understanding the replication process, viral pathogenesis, and the development of anti-HCV drugs and vaccines.  相似文献   

14.
Kato T  Wakita T 《Uirusu》2005,55(2):287-295
Hepatitis C virus (HCV) is a major public health problem, infecting an estimated 170 million people worldwide. Current therapy for HCV-related chronic hepatitis is based on the use of interferon. However, virus clearance rates are insufficient. Investigations to develop the anti-viral therapy or to understand the life cycle of this virus have been hampered by the lack of viral culture systems. We isolated the JFH-1 strain from a patient with fulminant hepatitis, and the JFH-1 subgenomic replicon could replicate efficiently in culture cell without adaptive mutation. Recently, we developed the HCV infection system in culture cells with this JFH-1 strain. The full-length JFH-1 RNA was transfected into Huh7 cells. Subsequently, viral RNA efficiently replicated in transfected cells and viral particles were secreted. Furthermore, secreted virus displayed infectivity for naive Huh7 cells. This system provides a powerful tool for studying the viral life cycle and constructing anti-viral strategies.  相似文献   

15.
The assembly of hepatitis C virus (HCV) is poorly understood, largely due to the lack of mammalian cell culture systems that are easily manipulated and produce high titers of virus. This problem is highlighted by the inability of the recently established HCV replicon systems to support HCV capsid assembly despite high levels of structural protein synthesis. Here we demonstrate that up to 80% of HCV core protein synthesized de novo in cell-free systems containing rabbit reticulocyte lysate or wheat germ extracts assembles into HCV capsids. This contrasts with standard primate cell culture systems, in which almost no core assembles into capsids. Cell-free HCV capsids, which have a sedimentation value of approximately 100S, have a buoyant density (1.28 g/ml) on cesium chloride similar to that of HCV capsids from other systems. Capsids produced in cell-free systems are also indistinguishable from capsids isolated from HCV-infected patient serum when analyzed by transmission electron microscopy. Using these cell-free systems, we show that HCV capsid assembly is independent of signal sequence cleavage, is dependent on the N terminus but not the C terminus of HCV core, proceeds at very low nascent chain concentrations, is independent of intact membrane surfaces, and is partially inhibited by cultured liver cell lysates. By allowing reproducible and quantitative assessment of viral and cellular requirements for capsid formation, these cell-free systems make a mechanistic dissection of HCV capsid assembly possible.  相似文献   

16.
17.
丙型肝炎病毒(hepatitis C virus,HCV)持续感染可导致慢性丙型肝炎,并可发展为肝硬化和肝细胞癌。HCV NS3/4A蛋白酶在HCV复制和致病机制中起着非常关键的作用,已成为HCV研究热点。由于候选药物分子必须具有易进入细胞、稳定性好等特征,建立一种细胞水平上酶活性的测定系统对于筛选抗NS3/4A药物无疑有着重要意义。目前已有多种NS3/4A蛋白酶筛选系统开发出来,本文将对此作一综述。  相似文献   

18.
Hepatitis C virus (HCV) infection causes chronic liver disease and is a worldwide health problem. Despite ever-increasing demand for knowledge on viral replication and pathogenesis, detailed analysis has been hampered by a lack of efficient viral culture systems. We isolated HCV genotype 2a strain JFH-1 from a patient with fulminant hepatitis. This strain replicates efficiently in Huh7 cells. Efficient replication and secretion of recombinant viral particles can be obtained in cell culture by transfection of in vitro-transcribed full-length JFH-1 RNA into Huh7 cells. JFH-1 virus generated in cell culture is infectious for both naive Huh7 cells and chimpanzees. The efficiency of viral production and infectivity of generated virus is substantially improved with permissive cell lines. This protocol describes how to use this system, which provides a powerful tool for studying viral life cycle and for the construction of antiviral strategies and the development of effective vaccines. Viral particles can be obtained in 12 days with this protocol.  相似文献   

19.
Hepatitis C virus (HCV), an RNA and a hepatotropic virus, is the leading cause of viral hepatitis worldwide. Infection with this virus causes a repertoire of liver diseases that include acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC), in addition to a number of extra-hepatic manifestations such as lichen planus, oral cancer, etc. At present, patients infected with this virus are treated with interferon either alone or in combination with ribavirin, a guanosine-like nucleoside analog. However, response to this treatment has been rather disappointing. For about a decade, lack of an alternative animal model other than chimpanzee, and an efficient cell culture system that could support long-term replication of the virus, hampered research on HCV. Despite this, a significant amount of information with regard to the molecular biology of the virus is available using bacterial cloning-expression systems, and based on computer predictions and analysis. Recent discovery of a cellular receptor to which the virus binds, identification of efficient cell culture/cell-free systems, HCV replicons and the development of a chimeric mouse model, provide a platform to verify the existing knowledge about this virus in the coming years. Additionally these developments aid the researchers in identifying novel therapeutic agents, apart from allowing us to reassess the efficiency of the currently available therapeutics. Presented in this article are a review of existing information with regard to the molecular biology of the virus, immunodiagnostic assays, genomic heterogeneity and the role of the virus in hepatocellular carcinoma. Likely therapeutic strategies other than those currently available are also introduced.  相似文献   

20.
Hepatitis C virus (HCV) is a major cause of liver disease throughout the world. The genome of this virus consists of approximately 10,000 bp and codes for 10 mature polypeptides. Genome sequence comparison has revealed the existence of six major genotypes and a large number of subtypes. The genotypes can be distinguished by whole genome or genome fragment sequencing, genotype specific amplification of a genomic region or PCR amplification, followed by hybridization or restriction digestion, among other methods. There is a markedly heterogeneous geographical distribution of the HCV genotypes in the world. Different genotypes have been linked to distinct clinical outcomes and to differences in the susceptibility of the virus to interferon treatment. Several studies have been conducted to determine the distribution of HCV genotypes among different groups of individuals in Brazil. Most of these studies indicate a higher prevalence of genotype 1, followed by genotypes 3 and 2. Differences in genotypes can affect serological detection as well as the clinical outcome of the disease and sensibility to interferon treatment. Further studies need to be conducted to determine the degree of differentiation of circulating HCV genotypes in different patient groups in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号