首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of reactive oxygen species in cell growth: lessons from root hairs   总被引:3,自引:0,他引:3  
Reactive oxygen species (ROS) play a diversity of roles in plants. In recent years, a role for NADPH oxidase-derived ROS during cell growth and development has been discovered in a number of plant model systems. These studies indicate that ROS are required for cell expansion during the morphogenesis of organs such as roots and leaves. Furthermore, there is evidence that ROS are required for root hair growth where they control the activity of calcium channels required for polar growth. The role of ROS in the control of root hair growth is reviewed here and results are highlighted that may provide insight into the mechanism of plant cell growth in general.  相似文献   

2.
Mechanisms that govern the size of plant organs are not well understood but believed to involve both sensing and signaling at the cellular level. We have isolated loss-of-function mutations in the four genes comprising the transmembrane kinase TMK subfamily of receptor-like kinases (RLKs) in Arabidopsis. These TMKs have an extracellular leucine-rich-repeat motif, a single transmembrane region, and a cytoplasmic kinase domain. While single mutants do not display discernable phenotypes, unique double and triple mutant combinations result in a severe reduction in organ size and a substantial retardation in growth. The quadruple mutant displays even greater severity of all phenotypes and is infertile. The kinematic studies of root, hypocotyl, and stamen filament growth reveal that the TMKs specifically control cell expansion. In leaves, TMKs control both cell expansion and cell proliferation. In addition, in the tmk double mutants, roots and hypocotyls show reduced sensitivity to applied auxin, lateral root induction and activation of the auxin response reporter DR5: GUS. Thus, taken together with the structural and biochemical evidence, TMKs appear to orchestrate plant growth by regulation of both cell expansion and cell proliferation, and as a component of auxin signaling.  相似文献   

3.
Significant root growth inhibition was observed during the very short 5 minute exposure time of barley roots to the low 10 μM concentration of cadmium. In addition to the cadmium-induced root growth inhibition, considerable radial expansion of roots was observed as a characteristic symptom of transient short-term exposure of roots to cadmium. The cadmium-induced radial expansion of roots was observed mainly the cortical cells of elongation zone that were twice as large as in control roots. Similarly as in cadmium-treated roots, short-term treatment with ACC significantly inhibited root growth and caused a marked radial expansion of cortical cells. The ethylene synthesis inhibitor cobalt significantly alleviated both the cadmium- and ethylene precursor-induced root growth inhibition and radial root expansion. The results indicate that ethylene probably plays a crucial role in the short-term cadmium-induced inhibition of root growth and radial cell expansion of barley root tips, which are the very early symptoms of cadmium toxicity.  相似文献   

4.
Highly organized interphase cortical microtubule (MT) arrays are essential for anisotropic growth of plant cells, yet little is known about the molecular mechanisms that establish and maintain the order of these arrays. The Arabidopsis thaliana spiral1 (spr1) mutant shows right-handed helical growth in roots and etiolated hypocotyls. Characterization of the mutant phenotypes suggested that SPR1 may control anisotropic cell expansion through MT-dependent processes. SPR1 was identified by map-based cloning and found to encode a small protein with unknown function. Proteins homologous to SPR1 occur specifically and ubiquitously in plants. Genetic complementation with green fluorescent protein fusion proteins indicated that the SPR1 protein colocalizes with cortical MTs and that both MT localization and cell expansion control are conferred by the conserved N- and C-terminal regions. Strong SPR1 expression was found in tissues undergoing rapid cell elongation. Plants overexpressing SPR1 showed enhanced resistance to an MT drug and increased hypocotyl elongation. These observations suggest that SPR1 is a plant-specific MT-localized protein required for the maintenance of growth anisotropy in rapidly elongating cells.  相似文献   

5.
植物根系和叶片生长对水分亏缺的原初反应   总被引:14,自引:0,他引:14  
细胞扩张生长是植物受水分亏缺影响最敏感的生理过程之一。主要在对细胞水分导性、细胞壁特性和延伸组织中溶质传输结果分析的基础上 ,从细胞、组织和器官水平上对细胞扩展生长进行了探讨。根系和叶片细胞主要通过以下 2个过程来补偿水分胁迫的作用 :调节扩展生长需要的细胞临界膨压 ;溶质在延伸组织中的运移。此外 ,还探讨了植物根系和叶片生长对水分亏缺的生理适应机制  相似文献   

6.
During the development of roots, internodes and leaves, closely correlated changes occur in the rates of cell expansion, specific activities of acid invertase and concentrations of hexose sugars and sucrose. Rates of cell growth and acid invertase activities frequently exhibit closely coupled responses to environmental changes and to growth regulator treatments. The possibility is considered that, by controlling the availability of hexose substrates for cellular metabolism, acid invertase may regulate cell growth. Potential mechanisms regulating the in vivo activity of acid invertases are reviewed and attention is drawn to the need for more information on the sub-cellular localization of the enzyme.  相似文献   

7.
Excised tomato roots infected with Meloidogyne javanica produced ethylene at 3-6 times the rate of noninfected roots. This increase in ethylene production started 5 days after inoculation. Gall growth and ethylene production in infected roots were accelerated by 1-aminocyclopropane-1-carboxylic acid (ACC), indole acetic acid (IAA), and ethrel known as ethylene production stimulators. When inhibitors of ethylene production, like aminoethoxyvinylglycine (AVG) or aminoxyacetic acid (AOA), or inhibitors of ethylene action like silver thiosulfate (STS), were applied, gall growth and ethylene production were inhibited. Enhanced expansion of parenchymatous cells was observed in sections from nematode-induced galls and ethylene-treated roots. Lignification of xylem elements and fibers in the vascular cylinder was markedly inhibited in the gall, compared with noninfected root tissue. Because ethylene is known to induce cell expansion and to inhibit lignification, it is suggested that this plant hormone plays a major role in the development of M. javanica-induced galls. Ethylene affects gall size by enhancing parenchymatous tissue development and allows expansion of giant cells and the nematode body by reducing tissue lignification.  相似文献   

8.
Vanadate is beneficial to plant growth at low concentration. However, plant exposure to high concentrations of vanadate has been shown to arrest cell growth and lead to cell death. We are interested in understanding the signalling pathways of rice roots in response to vanadate stress. In this study, we demonstrated that vanadate induced rice root cell death and suppressed root growth. In addition, we found that vanadate induced ROS accumulation, increased lipid peroxidation and elicited a remarkable increase of MAPKs and CDPKs activities in rice roots. In contrast, pre-treatment of rice roots with ROS scavenger (sodium benzoate), serine/threonine protein phosphatase inhibitor (endothall), and CDPK antagonist (W7), reduced the vanadate-induced MAPKs activation. Furthermore, the expression of a MAPK gene (OsMPK3) and four tyrosine phosphatase genes (OsDSP3, OsDSP5, OsDSP6, and OsDSP10) were regulated by vanadate in rice roots. Collectively, these results strongly suggest that ROS, protein phosphatase, and CDPK may function in the vanadate-triggered MAPK signalling pathway cause cell death and retarded growth in rice roots.  相似文献   

9.
Measurements of the growth and water relations of expanding grape (Vitis vinifera L.) leaves have been used to determine the relationship between leaf expansion rate and leaf cell turgor. Direct measurement of turgor on the small (approximately 15 micrometer diameter) epidermal cells over the midvein of expanding grape leaves was made possible by improvements in the pressure probe technique. Leaf expansion rate and leaf water status were perturbed by environmentally induced changes in plant transpiration. After establishing a steady state growth rate, a step decrease in plant transpiration resulted in a rapid and large increase in leaf cell turgor (0.25 megapascal in 5 minutes), and leaf expansion rate. Subsequently, leaf expansion rate returned to the original steady state rate with no change in cell turgor. These results indicate that the expansion rate of leaves may not be strongly related to the turgor of the leaf cells, and that substantial control of leaf expansion rate, despite changes in turgor, may be part of normal plant function. It is suggested that a strictly physical interpretation of the parameters most commonly used to describe the relationship between turgor and growth in plant cells (cell wall extensibility and yield threshold) may be inappropriate when considering the process of plant cell expansion.  相似文献   

10.
To understand the control of spatial patterns of expansion, we have studied root growth in wild type and in the stunted plant 1 mutant, stp1, of Arabidopsis thaliana. We measured profiles of cell length and calculated the distribution of elongation rate. Slow growth of stp1 results both from a failure of dividing cell number to increase and from low elongation rates in the zone of rapid expansion. However, elongation of dividing cells was not greatly affected, and stp1 and wild-type callus grew at identical rates. Thus, rapid cellular expansion differs in mechanism from expansion in dividing cells and is facilitated by the STP1 gene. Additionally, there was no difference between stp1 and wild-type roots for elongation in response to abscisic acid, auxin, ethylene, or gibberellic acid or for radial expansion in response to ethylene; however, stp1 responded to cytokinin much less than wild type. In contrast, both genotypes responded comparably to hormones when explants were cultured; in particular, there was no difference between genotypes in shoot regeneration in response to cytokinin. Thus, effects on root expansion mediated by cytokinin, but not effects mediated by other hormones or effects on other cytokinin-mediated responses, require the STP1 locus.  相似文献   

11.
The co-ordination of cell wall synthesis with plant cell expansion is an important topic of contemporary plant biology research. In studies of cell wall synthesis pathways, cellulose synthesis inhibitors are broadly used. It is demonstrated here that ancymidol, known as a plant growth retardant primarily affecting gibberellin biosynthesis, is also capable of inhibiting cellulose synthesis. Its ability to inhibit cellulose synthesis is not related to its anti-gibberellin action and possesses some unique features never previously observed when conventional cellulose synthesis inhibitors were used. It is suggested that ancymidol targets the cell wall synthesis pathway at a regulatory step where cell wall synthesis and cell expansion are coupled. The elucidation of the ancymidol target in plant cells could potentially contribute to our understanding of cell wall synthesis and cell expansion control.  相似文献   

12.
Expansins are unique plant cell wall proteins that are involved in cell wall modifications underlying many plant developmental processes. In this work, we investigated the possible biological role of the root-specific α-expansin gene OsEXPA8 in rice growth and development by generating transgenic plants. Overexpression of OsEXPA8 in rice plants yielded pleiotropic phenotypes of improved root system architecture (longer primary roots, more lateral roots and root hairs), increased plant height, enhanced leaf number and enlarged leaf size. Further study indicated that the average cell length in both leaf and root vascular bundles was enhanced, and the cell growth in suspension cultures was increased, which revealed the cellular basis for OsEXPA8-mediated rice plant growth acceleration. Expansins are thought to be a key factor required for cell enlargement and wall loosening. Atomic force microscopy (AFM) technology revealed that average wall stiffness values for 35S::OsEXPA8 transgenic suspension-cultured cells decreased over six-fold compared to wild-type counterparts during different growth phases. Moreover, a prominent change in the wall polymer composition of suspension cells was observed, and Fourier-transform infrared (FTIR) spectra revealed a relative increase in the ratios of the polysaccharide/lignin content in cell wall compositions of OsEXPA8 overexpressors. These results support a role for expansins in cell expansion and plant growth.  相似文献   

13.
This work is devoted to the study of mechanisms of substrate regulation of extracellular peroxidase (ECPOX) activity at a distant stress (wounding) signal transmission from aboveground organ (leaf) of wheat (Triticum aestivum L., cv. Kazanskaya Yubileinaya) seedlings to the roots. Along with the high dianizidine peroxidase activity, the extracellular solution manifested 3,4-dihydrooxi-L-phenylalanine peroxidase, ascorbate peroxidase, and catalase activities. Dianizidine peroxidases were represented by several isoforms and had broad substrate specificity. It was found that ECPOX was released from the roots into the growing solution and its activity in the solution increased with root growth. Excision of the apical leaf parts in seedlings induced a sharp activation of root ECPOX in the growing solution. The interaction between ECPOX substrates at oxidation in two- and three-component systems is demonstrated. The role of ECPOX in the control of ROS balance in the plant cell apoplast might be determined by competitive and complementary interactions between different peroxidase substrates. Such substrate-substrate regulation of peroxidase activities may be important for stress-induced oxidative burst in plant cells.  相似文献   

14.
The effects of partial flooding on the partial pressure of oxygen and carbon dioxide in water around the roots, ethylene production by intact maize (Zea mays L.) seedlings, the activities of hydrolytic enzymes (pectinase, xylanase, and cellulase) in adventitious roots, and the growth of adventitious and main roots were studied. Aggravated hypoxia resulted in the accelerated ethylene production and the activation of enzymes destroying cell walls in the adventitious roots; as a result, the latter changed their growth pattern. The conclusion is that the interrelated responses are adaptive ones, and the adventitious roots play a key role in plant adaptation.  相似文献   

15.
The production of hydrolytic enzymes from external mycelia associated with roots and colonized soybean roots (Glycine max L.) inoculated with different arbuscular-mycorrhizal (AM) fungi of the genus GLOMUS:, and the possible relationship between these activities and the capacity of the AM fungi to colonize plant roots was studied. There were differences in root colonization and plant growth between the GLOMUS: strains, and also between two isolates of G. mosseae. Hydrolytic activities in the root and external mycelia associated with roots differed in the AM fungi tested. Correlations were only found between the endoxyloglucanase activity of the external mycelia associated with roots of the AM fungi tested and the percentage root colonization or plant growth. However, hydrolytic activities of roots colonized by the different endophytes correlated with those of external mycelia. The hydrolytic activities were not qualitatively different because the endoxyloglucanase from AM colonized roots and the external mycelia did not show a high degree of polymorphism in the different species of fungus tested. The possible role of the hydrolytic activity of external hyphae of AM fungi was discussed as a factor affecting fungal ability to colonize the root and influence plant growth.  相似文献   

16.
Elevated CO2 and plant structure: a review   总被引:4,自引:0,他引:4  
Consequences of increasing atmospheric CO2 concentration on plant structure, an important determinant of physiological and competitive success, have not received sufficient attention in the literature. Understanding how increasing carbon input will influence plant developmental processes, and resultant form, will help bridge the gap between physiological response and ecosystem level phenomena. Growth in elevated CO2 alters plant structure through its effects on both primary and secondary meristems of shoots and roots. Although not well established, a review of the literature suggests that cell division, cell expansion, and cell patterning may be affected, driven mainly by increased substrate (sucrose) availability and perhaps also by differential expression of genes involved in cell cycling (e.g. cyclins) or cell expansion (e.g. xyloglucan endotransglycosylase). Few studies, however, have attempted to elucidate the mechanistic basis for increased growth at the cellular level. Regardless of specific mechanisms involved, plant leaf size and anatomy are often altered by growth in elevated CO2, but the magnitude of these changes, which often decreases as leaves mature, hinges upon plant genetic plasticity, nutrient availability, temperature, and phenology. Increased leaf growth results more often from increased cell expansion rather than increased division. Leaves of crop species exhibit greater increases in leaf thickness than do leaves of wild species. Increased mesophyll and vascular tissue cross-sectional areas, important determinates of photosynthetic rates and assimilate transport capacity, are often reported. Few studies, however, have quantified characteristics more reflective of leaf function such as spatial relationships among chlorenchyma cells (size, orientation, and surface area), intercellular spaces, and conductive tissue. Greater leaf size and/or more leaves per plant are often noted; plants grown in elevated CO2 exhibited increased leaf area per plant in 66% of studies, compared to 28% of observations reporting no change, and 6% reported a decrease in whole plant leaf area. This resulted in an average net increase in leaf area per plant of 24%. Crop species showed the greatest average increase in whole plant leaf area (+ 37%) compared to tree species (+ 14%) and wild, nonwoody species (+ 15%). Conversely, tree species and wild, nontrees showed the greatest reduction in specific leaf area (– 14% and – 20%) compared to crop plants (– 6%). Alterations in developmental processes at the shoot apex and within the vascular cambium contributed to increased plant height, altered branching characteristics, and increased stem diameters. The ratio of internode length to node number often increased, but the length and sometimes the number of branches per node was greater, suggesting reduced apical dominance. Data concerning effects of elevated CO2 on stem/branch anatomy, vital for understanding potential shifts in functional relationships of leaves with stems, roots with stems, and leaves with roots, are too few to make generalizations. Growth in elevated CO2 typically leads to increased root length, diameter, and altered branching patterns. Altered branching characteristics in both shoots and roots may impact competitive relationships above and below the ground. Understanding how increased carbon assimilation affects growth processes (cell division, cell expansion, and cell patterning) will facilitate a better understanding of how plant form will change as atmospheric CO2 increases. Knowing how basic growth processes respond to increased carbon inputs may also provide a mechanistic basis for the differential phenotypic plasticity exhibited by different plant species/functional types to elevated CO2.  相似文献   

17.
The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. ETHYLENE INSENSITVE 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion.  相似文献   

18.
Tip growth, a spatially focused cell expansion, has been best characterized in two plant cell types: pollen tubes and root hairs. It has long been established that both cell types require three intracellular components for this process: a tip-high calcium gradient, a polarized actin cytoskeleton, and tip-directed vesicle trafficking. More recently, additional mechanistic parallels have been observed between the two cell types, including roles for ROP and Rab GTPase signaling, phosphoinositides, calcium-dependent protein kinases, and the exocyst. Uncovering pathways that control the three components is beginning to reveal a highly interconnected network, which we call the tip growth LENS (for localization enhancing network, self-sustaining), that coordinates the required cellular activities to allow regulated tip growth, and to maintain itself as the tip advances.  相似文献   

19.
20.
Cytochrome oxidase and ascorbic acid oxidase activities were investigated in rye, wheat, barley and oat plants. The variations in the activity of both enzymes was followed in the course of the initial 28 days of growth, as well as at the phase of milk ripeness, namely in the cytoplasmic and mitochondrial cell fractions of roots, leaves and spikes. Both enzymes were active in all measurements. Cytochrome oxidase mostly exhibited a higher activity than ascorbio acid oxidase. The activity of the former enzyme was substantially higher in the mitochondrial fraction of leaves, roots and spikes of the four experimental plants in comparison with the cytoplasmic fraction. On the contrary, the ascorbic acid oxidase activity varied in both cell fractions according to the plant species, organ and growth phase. The variations in the activity of both enzymes exhibited on the whole a course similar to that of the respiration rate. During the first 14 to 21 days of growth the enzyme activities increased up to the maximum. This was thon followed at first by a rapid, later on by a slow decrease. The course of variations in the enzyme activities was, with certain exceptions, alike in all the four plant species investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号