首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to evaluate the oxidative status in healthy full-term children and piglets. Urinary excretion of 8-oxoGua (8-oxoguanine) and 8-oxodG (8-oxo-2′-deoxyguanosine) were determined using HPLC/GS/MS methodology and concentrations of vitamins A, C and E with HPLC technique. The levels of 8-oxoGua in urine samples were about 7–8 times higher in newborn children and piglets when compared with the level of adult subjects, while in the case of 8-oxodG the difference was about 2.5 times. The levels of vitamin C and E in umbilical cord blood of newborn children significantly depend on the concentration of these compounds in their mother's blood. However, the values of vitamin C in human's cord blood were about 2-times higher than in respective mother blood, while the level of vitamin E showed an opposite trend. The results suggest that: (i) healthy, full-term newborns are under potential oxidative stress; (ii) urinary excretion of 8-oxoGua and 8-oxodG may be a good marker of oxidative stress in newborns; and (iii) antioxidant vitamins, especially vitamin C, play an important role in protecting newborns against oxidative stress.  相似文献   

2.
The potential use of oxidative stress products as disease markers and progression is an important aspect of biomedical research. In the present study, the quantification of urine 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) concentration has been used to express the oxidation status of hypertensive subjects.

8-oxo-dG has been simultaneously isolated and assayed in nuclear (nDNA) and mitochondrial DNA (mtDNA). In addition, oxidative stress of mononuclear cells has been estimated by means of GSH and GSSG levels and GSSG/GSH ratio in hypertensive subjects before and after antihypertensive treatment. It is shown that oxidative stress decreases significantly in hypertensive patients after treatment the effect being accompanied by reduction of their blood pressure.

A significant correlation is observed comparing the yield of urine 8-oxo-dG and that isolated from mitochondria DNA. Moreover, urinary excretion of 8-oxo-dG also correlates with the GSSG/GSH ratio of cells. Conclusion: urine 8-oxo-dG assay is a good marker for monitoring oxidative stress changes in hypertensives.  相似文献   

3.

Background

DNA and RNA oxidations have been linked to diseases such as cancer, arteriosclerosis, neurodegeneration and diabetes. The prototype base modification studied is the 8-hydroxylation of guanine. DNA integrity is maintained by elaborate repair systems and RNA integrity is less studied but relies mainly on degradation.

Scope of review

DNA and RNA oxidations are measured by very similar techniques. The scope of this review is to highlight the preferred methods of measurement of oxidized nucleic acid metabolites, to highlight novel findings particularly in RNA oxidation, and to present the interpretation of the measurements.

Major conclusions

Tissue levels are snap-shots of the level in a specific organ or cell system and reflect the balance between formation rate and elimination rate (repair), and must be interpreted as such. Urinary excretion is a global measure of oxidative stress in an organism and is therefore best suited for situations or diseases where large parts or the entire organism is stressed by oxidation. It represents the body average rate by which either RNA or DNA is oxidized and is interpreted as oxidative stress. Oxidations of RNA and DNA precursors have been demonstrated and the quantitative importance is debated.

General significance

Careful experimental designs and appropriate choice of methodology are paramount for correct testing of hypotheses related to oxidative stress, and pitfalls are plentiful. There is accumulating evidence that DNA oxidation is associated with disease, particularly cancer, and recent evidence points at an association between RNA oxidation and neurodegenerative diseases and diabetes. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

4.
5.
Liver microsomal functions related to xenobiotic biotransformation and free radical production were studied in control rats and in animals subjected to L-3,3′,5-triiodothyronine (T3) and/or lindane administration as possible mechanisms contributing to oxidative stress, in relation to the activity of enzymes (superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glucose-6-phosphate dehydrogenase (G-6PDH)) and content of lipid-soluble vitamins (α-tocopherol, β-carotene, and lycopene) affording antioxidant protection. Lindane treatment in euthyroid rats at a dosage of 20 mg/kg did not modify the content of liver microsomal cytochromes P450 and b5, the activity of NADPH-cytochrome P450 reductase and NADH-cytochrome b5 reductase, and the production of superoxide radical (O·-2), as well as antioxidant systems, except for the reduction in lycopene levels. Hyperthyroidism elicited a calorigenic response and increased specific and molecular activities of NADPH-cytochrome P450 reductase, O·-2 generation, and G-6PDH activity, concomitantly with diminution in liver SOD and catalase activities and in α-tocopherol, β-carotene, and lycopene levels. The administration of lindane to hyperthyroid animals led to a further increase in the molecular activity of NADPH-cytochrome P450 reductase and in the O·-2 production/SOD activity ratio, and decrease of hepatic α-tocopherol content, in a magnitude exceeding the sum of effects elicited by the separate treatments, as previously reported for reduced glutathione depletion. Collectively, these data support the contention that the increased susceptibility of the liver to the toxic effects of acute lindane treatment in hyperthyroid state is conditioned by potentiation of the hepatic oxidative stress status.  相似文献   

6.
Objectives: Salivary advanced glycation end-products (AGEs), advanced oxidation protein products (AOPP), total antioxidant capacity (TAC), and ferric reducing ability of saliva (FRAS) are increased in various diseases. Little data exist for these markers in the healthy population. The aim of this study was to assess the inter-individual and intra-individual variability of AGEs, AOPP, TAC, and FRAS in the saliva of young healthy individuals.

Methods: Unstimulated saliva samples were collected from 16 females and 18 males daily over a period of 30 days. Markers were measured using spectrophotometric and spectrofluorometric microplate-based methods.

Results: All salivary markers measured were significantly higher in men than in women (P?<?0.05 for AGEs; P?<?0.001 for AOPP, TAC, and FRAS). The inter-individual variability was approximately 60% for AGEs and AOPP and 30–40% for TAC and FRAS in both genders. The inter-individual variability of FRAS was higher in men vs. women (P?<?0.01). Intra-individual variability ranged from 20% for TAC, to 30% for AGES and FRAS and 45% for AOPP.

Discussion: Intra-individual variability of salivary AGEs, AOPP, TAC, and FRAS indicates that their use is currently limited to large cohort studies. Identifying the underlying factors related to the high inter-individual and intra-individual variability is needed. Sex differences should be considered in future studies.  相似文献   

7.
The aim of this paper is to evaluate at a histopathological level the effect of the most commonly used copper (Cu) supplementation (15 mg/kg dry matter (DM)) in the liver of intensively reared beef cattle. This was done by a histochemistry evaluation of (i) the antioxidant capacity in the liver – by the determination of metallothioneins (MT) and superoxide dismutase (SOD) expression – as well as (ii) the possible induction of oxidative damage – by the determination of inducible nitric oxide synthase (iNOS), nitrotyrosine (NITT), malondialdehyde (MDA) and 8-oxoguanine (8-oxo) – that (iii) could increase apoptotic cell death – determined by cytochrome-c (cyto-c), caspase 1 (casp1) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Liver samples from Cu-supplemented (15 mg Cu sulphate/kg DM, n = 5) and non-supplemented calves (n = 5) that form part of other experiments to evaluate Cu status were collected at slaughter and processed for immunohistochemistry and TUNEL. MT expression was diffuse and SOD showed slight changes although without statistical significance. iNOS and NITT positive (+) cells significantly increased, mainly around the central veins in the animals from the Cu-supplemented group, whereas no differences were appreciated for the rest of the oxidative stress and apoptosis markers. Under the conditions of this study, which are the conditions of the cattle raised in intensive systems in NW Spain and also many European countries, routinely Cu supplementation increased the risk of the animals to undergo subclinical Cu toxicity, with no significant changes in the Cu storage capacity and the antioxidant defensive system evaluated by MT and SOD expression, but with a significant and important increase of oxidative damage measured by iNOS and NITT. The results of this study indicated that iNOS and NITT could be used as early markers of initial pathological changes in the liver caused by Cu supplementation in cattle, although more studies in cattle under different levels of Cu supplementation are needed.  相似文献   

8.
Antioxidant enzymes form the first-line defense against free radicals damage in organisms. Their regulation depends mainly on the oxidant and antioxidant status of the cell, given that oxidants are their principal modulators. Therefore, the aim of the present study was to investigate the effect of melatonin on synthetic pyrethroid insecticide-induced antioxidative enzymes activity in Spodoptera litura larvae. In addition, activities of enzymatic antioxidants viz. superoxide dismutase (SOD), glutathione S-transferase (GST), catalase (CAT), glutathione reductase (GR), α, β-esterase, and acetylcholine esterase (AChE) were assessed. There was no significant change in GST levels in the melatonin-treated groups. Melatonin modulates cypermethrin-induced changes in the activities of esterase and AChE, whereas SOD, CAT, and GR activity was significantly increased in melatonin-treated samples when compared to control. In conclusion, the results of the current study revealed that SP toxicity activated oxidant systems in all antioxidant systems in some tissues of insects. Melatonin administration led to a marked increase in antioxidant activity and inhibited GST and AChE in most of the tissues studied.  相似文献   

9.
Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), as a measure of oxidative stress, was measured before and after 12 weeks of progressive resistance strength training in 8 healthy elderly (65–80 yr) and eight healthy young (22–30 yr) men and women, and in eight adults (25–65 yr) with rheumatoid arthritis (RA).Training subjects exercised at 80% of their one-repetition maximum and performed eight repetitions per set, three sets per session, on a twice-weekly basis. 8-OHdG was measured at baseline and follow-up (at least 24 hr after the last exercise session) in the RA and elderly subject groups, and at baseline only in young subjects.Baseline 8-OHdG levels were greater among subjects with RA compared to both healthy young (P < 0.001) and elderly (P < 0.05) subjects. There were no changes in 8-OHdG levels in either RA or elderly subjects as a result of the strength training intervention.These results suggest that subjects with RA have higher levels of oxidative stress than young and elderly healthy individuals. Furthermore, there is no change in oxidative stress, measured by urinary 8-OHdG, in elderly healthy individuals or in subjects with RA after a 12-week strength training intervention.  相似文献   

10.
《Free radical research》2013,47(5):511-525
Abstract

Electromagnetic radiations are reported to produce long-term and short-term biological effects, which are of great concern to human health due to increasing use of devices emitting EMR especially microwave (MW) radiation in our daily life. In view of the unavoidable use of MW emitting devices (microwaves oven, mobile phones, Wi-Fi, etc.) and their harmful effects on biological system, it was thought worthwhile to investigate the long-term effects of low-level MW irradiation on the reproductive function of male Swiss strain mice and its mechanism of action. Twelve-week-old mice were exposed to non-thermal low-level 2.45-GHz MW radiation (CW for 2 h/day for 30 days, power density = 0.029812 mW/cm2 and SAR = 0.018 W/Kg). Sperm count and sperm viability test were done as well as vital organs were processed to study different stress parameters. Plasma was used for testosterone and testis for 3β HSD assay. Immunohistochemistry of 3β HSD and nitric oxide synthase (i-NOS) was also performed in testis. We observed that MW irradiation induced a significant decrease in sperm count and sperm viability along with the decrease in seminiferous tubule diameter and degeneration of seminiferous tubules. Reduction in testicular 3β HSD activity and plasma testosterone levels was also noted in the exposed group of mice. Increased expression of testicular i-NOS was observed in the MW-irradiated group of mice. Further, these adverse reproductive effects suggest that chronic exposure to nonionizing MW radiation may lead to infertility via free radical species-mediated pathway.  相似文献   

11.
Mice selected for aggression and coping (long attack latency (LAL), reactive coping strategy; short attack latency (SAL), pro-active coping strategy) are a useful model for studying the physiological background of animal personalities. These mice also show a differential stress responsiveness, especially in terms of hypothalamic-pituitary-adrenal axis reactivity, to various challenges. Since the stress response can increase the production of reactive oxygen species, we predicted that the basic oxidative status of the lines could differ. We found that LAL showed higher serum antioxidant capacity (OXY) than SAL, while no differences emerged for reactive oxygen metabolites (ROMs) or the balance between ROMs and OXY, reflecting oxidative stress. Moreover, the lines showed inverse relationships between ROMs or OXY and body mass corrected for age. The results indicate that variation in oxidative status is heritable and linked to personality. This suggests that different animal personalities may be accompanied by differences in oxidative status, which may predict differences in longevity.  相似文献   

12.
13.
The etiology of fibromyalgia is not clearly understood. In recent years, a few studies have investigated the possible role of reactive oxygen species (ROS) in the etiology and pathogenesis of fibromyalgia. The aim of this study was to investigate plasma antioxidant vitamins, lipid peroxidation (LP), and nitric oxide (NO) levels in patients with fibromyalgia and controls. The study was performed on the blood plasma of 30 female patients and 30 age‐matched controls. After a fast of 12 h, blood samples were taken, and plasma samples were obtained for measurement of vitamins A, C, E, and β‐carotene concentrations and levels of LP and NO. Concentrations of vitamins A (p < 0.01) and E (p < 0.001) were significantly lower in patients with fibromyalgia than in controls, and LP levels were significantly (p < 0.05) higher in the plasma of the patients than in controls. Concentrations of vitamin C and β‐carotene and levels of NO did not change significantly. These results provide some evidence for a potential role of LP and fat‐soluble antioxidants in the patients with fibromyalgia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
《Biomarkers》2013,18(8):670-678
The need for minimally invasive biomarkers to predict the progression of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis is a priority. Oxidative stress and mitochondrial dysfunction contribute in this physiopathological process. The aim of this study was to analyze the potential role of erythrocytes as surrogate biomarkers of hepatic mitochondrial oxidative status in an animal model under different dietary oxidative conditions. Interestingly, we found that erythrocyte antioxidant status correlated with triglyceride content (p?<?0.05–p?<?0.001), thiobarbituric acid reactive species levels (p?<?0.001) and with liver mitochondrial antioxidant levels (p?<?0.001). These data suggest that erythrocyte antioxidant defenses could be used as sensitive and minimally invasive biomarkers of mitochondrial status in diverse oxidative conditions.  相似文献   

15.
Mitochondrial dysfunction and oxidative damage may play a role in the pathogenesis of Huntington's disease (HD). We examined concentrations of 8-hydroxy-2-deoxyguanosine (OH(8)dG), a well-established marker of oxidative damage to DNA, in a transgenic mouse model of HD (R6/2). Increased concentrations of OH(8)dG were found in the urine, plasma and striatal microdialysates of the HD mice. Increased concentrations were also observed in isolated brain DNA at 12 and 14 weeks of age. Immunocytochemistry showed increased OH(8)dG staining in late stages of the illness. These results suggest that oxidative damage may play a role in the pathogenesis of neuronal degeneration in the R6/2 transgenic mouse model of HD.  相似文献   

16.
The present experiment was performed to assess if hypomagnesemia can influence antioxidant status in mice heart. The results could explain possibly a free radical theory of heart damage in magnesium deficiency. We used a rodent model of hypomagnesemia. The magnesium sufficient group received a standard diet whereas a magnesium deficient group received the diet containing a trace amount of magnesium. The activities of the most important antioxidant enzymes – catalase, glutathione peroxidase and superoxide dismutase were assessed in mice heart and liver in a time dependent manner, on the 10th and the 20th day of experiment. The level of magnesium in plasma of animals receiving the magnesium deficient diet dropped twice after the 8th day and four times after the 13th day and then reached a plateau value. The activity of catalase in heart in the magnesium deficient group increased gradually and was significantly (P<0.05) elevated by 27% on the 20th day of experiment whereas the superoxide dismutase activity was significantly decreased by 17% on the 20th day. Glutathione peroxidase activity was insignificantly elevated. The alterations of antioxidant enzyme activities in the heart indicate cardiomyocytes's exposure to oxidative stress, which can be responsible for the cardiac lesions observed during hypomagnesemia.  相似文献   

17.
18.
This is the first report on the development of an immunohistochemical technique, combined with quantitative image analysis, for the assessment of oxidative stress quantitatively in nuclear DNA in situ, and its application to measure DNA damage in Duchenne muscular dystrophic (DMD) muscles. Three sequential staining procedures for cell nuclei, a cell marker, and a product of oxidative DNA damage, 8-oxoguanine (8-oxoG), were performed. First, the nuclei in muscle sections were stained with Neutral Red followed by the capture of their images with an image analysis system used for absorbance measurements. Second, the same sections were then immunostained for laminin in basement membranes as the cell marker. Next, the sections were treated with 2 N HCl to remove the bound Neutral Red and to denature tissue DNA. Third, the sections were immunostained for 8-oxoG in DNA, using diaminobenzidine (DAB) to reveal the antibody complex. This was followed by capture of the images of the immunostained sections as previously. The absorbances at 451.2 nm of bound Neutral Red and DAB polymer oxides, the final product of 8-oxoG immunostaining, were measured in the same myonuclei in the sections. Analysis of these absorbances permitted indices of the 8-oxoG content, independent of the nuclear densities, to be determined in nuclear DNA in single myofibres and myosatellite cells surrounded by basement membranes. We found that the mean index for the myonuclei in biceps brachii muscles of 2- to 7-year-old patients was 14% higher than that in age-matched normal controls. This finding of the increased oxidative stress in the myonuclei in young DMD muscles agrees with the previous reports of increased oxidative stress in the cytoplasm in the DMD myofibres and myosatellite cells. The present technique for the quantitative assessment of oxidative stress in nuclear DNA in situ is applicable not only in biomedical research but also in the development of effective drugs for degenerative diseases related to oxidative stress.  相似文献   

19.
《Free radical research》2013,47(12):1469-1478
ABSTRACT

Animal studies have shown that exposure to nonylphenol (NP) increases oxidative/nitrative stress, but whether it does so in humans is unknown. This study examines prenatal exposure to NP and its effects on oxidatively/nitratively damaged DNA, lipid peroxidation, and the activities of antioxidants. A total of 146 urine and blood specimens were collected during gestational weeks 27–38 and hospital admission for delivery, respectively. Urinary NP was analyzed by high-performance liquid chromatography (HPLC). Urinary biomarkers of oxidatively/nitratively damaged DNA and lipid peroxidation, including 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG), 8-nitroguanine (8-NO2Gua), 8-iso-prostaglandin F (8-isoPF) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), were simultaneously analyzed using isotope-dilution liquid-chromatography/electron spray ionization tandem mass spectrometry. The activities of maternal plasma superoxide dismutase and glutathione peroxidase were analyzed by enzyme-linked immunosorbent assay. Urinary NP level was significantly associated with 8-oxodG and 8-NO2Gua levels in late pregnancy, suggesting that NP may enhance oxidatively and nitratively damaged DNA. The adjusted odds ratios for high 8-oxodG level exhibited a significantly dose–response relationship with NP levels, stratified into four quartiles. 8-oxodG appears to be a more sensitive and effective biomarker of NP exposure than 8-NO2Gua. These relationships suggest NP may play a role in the pregnancy complications.  相似文献   

20.
8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) is one of the mutagenic base modifications produced in DNA by the reaction of reactive oxygen species. The biological significance of 8-oxo-dG is shown by the existence of repair pathways that are able to recognize and remove this lesion from both DNA and the nucleotide pool. The final outcome of these evolutionarily conserved repair mechanisms in man is excretion of 8-oxo-dG/8-oxo-Gua from the intracellular to extracellular milieu including the blood plasma and urine. The aim of this investigation was to establish dose response relations for radiation-induced appearance of extracellular 8-oxo-dG in cellular model systems. Here we report on excretion of 8-oxo-dG after in vitro irradiation of whole blood and isolated lymphocytes with clinically relevant doses. We find that this excretion is dependent on dose and individual repair capacity, and that it saturates above doses of 0.5-1 Gy of gamma radiation. Our data also suggest that the nucleotide pool is a significant target that contributes to the levels of extracellular 8-oxo-dG; hence the mutagenic target for oxidative stress is not limited to the DNA molecule only. We conclude that extracellular 8-oxo-dG levels after in vitro irradiation have a potential to be used as a sensitive marker for oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号