首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the greenhouse effect increases, the development of systems able to convert with high efficiency CO2 to energetically rich molecules owns a crucial weight in the technological and environmental domain. As catalyst, rhenium complexes, of the type fac-[Re(L)(CO)3Cl] (i.e. L = 2,2′-bipyridyl or 4,4′-bipyridyl), have attracted a large interest demonstrating promising catalytic properties. fac-[Re(v-bpy)(CO)3Cl]-based polymer deposited onto a solid support has been already investigated as heterogeneous catalyst in the reduction of CO2. Here, we deposited by electrochemical polymerization fac-[Re(v-bpy)(CO)3Cl] onto a nanocrystalline TiO2 film on glass and we investigated by cyclic voltammetry the properties of such heterogeneous catalyst in the electrochemical reduction of CO2. We demonstrated that the nanoporous nature of the substrate allows to increase the two-dimensional number of redox sites per surface area and hence to get a significant enhancement of the catalytic yield.  相似文献   

2.
Electrogenic sucrose transport in developing soybean cotyledons   总被引:19,自引:15,他引:4       下载免费PDF全文
Addition of sucrose to a solution bathing an excised developing soybean cotyledon causes a transient depolarization of the membrane potential, as measured using standard electrophysiological techniques. The magnitude of the depolarization is dependent on the concentration of both sucrose and protons in a manner which suggests carrier mediation; this process has an apparent Km for sucrose of about 10 millimolar. Agents interfering with the generation or maintenance of a proton electrochemical gradient eliminate these depolarizations. Electrogenic sugar transport is sensitive to sulfhydryl-modifying reagents; their effect appears to be through a direct interaction with the carrier protein and/or with the process establishing the proton electrochemical gradient across the plasma membrane. p-Chloromercuribenzene sulfonate appears to be a selective inhibitor of the carrier-mediated process itself.  相似文献   

3.
《Inorganica chimica acta》1986,125(3):135-142
The electrochemical behavior of μ-oxo-N,N-bis- (5-(o-phenyl)-10,15,20-triphenylporphinatoiron(III))- urea mono hydrate, [(FF)Fe]20, was investigated at a platinum electrode in both 1,2-dichloroethane and pyridine. In EtCl2, electroreduction of this oxo-bridged and urea-linked dimer produced a binuclear ferrous hydroxide porphyrin. This latter species could be oxidized to regenerate the μ-oxo dimer in quantitative yield. In pyridine, [(FF)Fe]2O underwent a chemically irreversible electroreduction producing a hexacoordinate binuclear ferrous porphyrin with pyridine occupying the axial positions of each iron atom. Oxidation of this species also produced the μ-oxo and urea-linked dimer in quantitative yield. These results are in contrast to the redox behavior of [(TPP)Fe]2O in these solvents. Electron transfer pathways, consistent with voltammetric and spectroelectrochemical results, are proposed for [(FF)Fe]2O and compared with those found for [(TPP)Fe]2O. The redox behavior observed for [(FF)Fe]2O implicates the steric constraint of the urea linkage and hydrogen bonding of the protonated bridging oxygen atom with the amide groups. This marks the first evidence of molecular environmental effects in the redox chemistry of hematin dimers.  相似文献   

4.
Soil salinity inhibits seed germination and reduces seedling survival rate,resulting in significant yield reductions in crops.Here,we report the identification of a polyamine oxidase,OsPAO3,conferring salt tolerance at the germination stage in rice(Oryza sativa L.),through map-based cloning approach.OsPAO3 is up-regulated under salt stress at the germination stage and highly expressed in various organs.Overexpression of OsPAO3 increases activity of polyamine oxidases,enhancing the polyamine cont...  相似文献   

5.
Quantitative trait loci conferring high grain yield under drought in rice are important genomic resources for climate resilient breeding. Major and consistent drought grain yield QTLs usually co-locate with flowering and/or plant height QTLs, which could be due to either linkage or pleiotropy. Five mapping populations used for the identification of major and consistent drought grain yield QTLs underwent multiple-trait, multiple-interval mapping test (MT-MIM) to estimate the significance of pleiotropy effects. Results indicated towards possible linkages between the drought grain yield QTLs with co-locating flowering and/or plant height QTLs. Linkages of days to flowering and plant height were eliminated through a marker-assisted breeding approach. Drought grain yield QTLs also showed interaction effects with flowering QTLs. Drought responsiveness of the flowering locus on chromosome 3 (qDTY3.2) has been revealed through allelic analysis. Considering linkage and interaction effects associated with drought QTLs, a comprehensive marker-assisted breeding strategy was followed to develop rice genotypes with improved grain yield under drought stress.  相似文献   

6.
Here we describe artificial help for the respiratory electron flow supporting anaerobic growth of Thiobacillus ferrooxidans through exogenous electrolysis. Flux between H(2) and a anode through cells was accomplished with electrochemical regeneration of iron. The electrochemical help resulted in a 12-fold increase in yield compared with the yield observed in its absence.  相似文献   

7.
Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from −0.31 to −0.95 MPa, and ΨMD ranged from −1.02 to −2.67 MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.  相似文献   

8.
Influence of growth temperature on the capacity of the mitochondrial alternative pathway of electron transport was investigated using etiolated corn (Zea mays L.) seedlings. These seedlings were grown to comparable size in either a warm (30°C) or a cold (13°C) temperature regime, and then their respiration rates were measured as O2 uptake at 25°C. The capacity of the alternative pathway (KCN-insensitive O2 uptake) was found essentially to double in shoots of cold-grown seedlings. This increased capacity slowly developed over several days growth in the cold, but was lost within 1 day when the seedlings were exposed to a warm regime. When mitochondria were isolated from the shoots of these seedlings, a greater potential for flow through the alternative path was observed in mitochondria from the cold-grown seedlings with all substrates used (an average increase of 84%). Using exogenous NADH as the substrate, the effect of the electrochemical gradient on measurable capacities of the cytochrome and alternative pathways was investigated in mitochondria from both etiolated seedlings and thermogenic spadices. The uncoupler FCCP (p-trifluoromethoxycarbonylcyanide phenylhydrazone) was used to diminish the electrochemical gradient when desired. In corn (Zea mays L.) shoot and mung bean (Vigna radiata L.) hypocotyl mitochondria, which have relatively low capacities of the alternative pathway, increased flow through the cytochrome chain in the absence of the electrochemical gradient was found not to influence the potential for flow through the alternative path. However, in mitochondria from skunk cabbage (Symplocarpus foetidus L.) and voodoo lily (Sauromatum guttatum Schott) spadices, which have high capacities of the alternative pathway, increased flow through the cytochrome chain in the absence of the gradient occurred at the expense of flow through the alternative pathway. These results suggest that in mitochondria of thermogenic spadices, the combined capacities of the cytochrome and alternative paths exceed the capacity of the exogenous NADH dehydrogenase. The effect of assay pH on measurable capacities of the cytochrome and alternative paths was determined over a pH range of 5.6 to 8.8 using exogenous NADH as the mitochondrial substrate. When the electrochemical gradient was present, it limited the electron transport rate and little effect of assay pH was observed. However, when formation of the gradient was prevented through inclusion of FCCP, measurable capacities of the cytochrome and alternative paths were found to be greatly influenced by pH. This experiment also revealed that the potential for respiratory control is largely dependent upon the assay pH.  相似文献   

9.
New 5-nitroindazole derivatives were developed and their antichagasic properties studied. Eight compounds (14–18, 20, 26 and 28) displayed remarkable in vitro activities against Trypanosoma cruzi (T. cruzi). Its unspecific cytotoxicity against macrophages was evaluated being not toxic at a concentration at least twice that of T. cruzi IC50, for some derivatives. The electrochemical studies, parasite respiration studies and ESR experiment showed that 5-nitroindazole derivatives not be able to yield a redox cycling with molecular oxygen such as occurs with nifurtimox (Nfx). The study on the mechanism of action proves to be related to the production of reduced species of the nitro moiety similar to that observed with benznidazole.  相似文献   

10.
Peterson RB 《Plant physiology》1991,97(4):1388-1394
The interactive effects of irradiance and O2 and CO2 levels on the quantum yields of photosystems I and II have been studied under steady-state conditions at 25°C in leaf tissue of tobacco (Nicotiana tabacum). Assessment of radiant energy utilization in photosystem II was based on changes in chlorophyll fluorescence yield excited by a weak measuring beam of modulated red light. Independent estimates of photosystem I quantum yield were based on the light-dark in vivo absorbance change at 830 nanometers, the absorption band of P700+. Normal (i.e. 20.5%, v/v) levels of O2 generally enhanced photosystem II quantum yield relative to that measured under 1.6% O2 as the irradiance approached saturation. Photorespiration is suspected to mediate such positive effects of O2 through increases in the availability of CO2 and recycling of orthophosphate. Conversely, at low intercellular CO2 concentrations, 41.2% O2 was associated with lower photosystem II quantum yield compared with that observed at 20.5% O2. Inhibitory effects of 41.2% O2 may occur in response to negative feedback on photosystem II arising from a build-up in the thylakoid proton gradient during electron transport to O2. Covariation between quantum yields of photosystems I and II was not affected by concentrations of either O2 or CO2. The dependence of quantum yield of electron transport to CO2 measured by gas exchange upon photosystem II quantum yield as determined by fluorescence was unaffected by CO2 concentration.  相似文献   

11.
The dimethylaminopyridine (DMAP) promoted reaction between [Os(bpy)2(CO)(OTf)]OTf (where ) and methylene chloride is reported. C-Cl bond breaking of a solvent molecule leads to the formation of the [Os(bpy)2(CO)(Cl)]OTf complex. The reactivity and redox properties of [Os(bpy)2(CO)(OTf)]OTf were investigated by means of room- and low-temperature electrochemical experiments. In CH2Cl2, at low temperature, the complex undergoes two 1e electrochemical and chemical reversible reductions (ErEr mechanism), but at room temperature a more complex electrochemical mechanism is observed, leading to the electro-synthesis of [Os(bpy)2(CO)(Cl)]OTf via electrochemical reversible and chemical irreversible reduction processes (ErCi mechanism). The DMAP nucleophilicity was used to produce the new [Os(bpy)2(CO)(Br)]OTf and [Os(bpy)2(CO)(I)]OTf complexes which have been fully characterized.  相似文献   

12.
Polycaprolactone (PCL) was synthesized by ring-opening polymerization of ε-caprolactone through two different enzymatic processes. The lipase from Candida antarctica B, immobilized on macroporous acrylic acid beads, was employed either untreated or coated with small amounts of ionic liquids (ILs). Monocationic ionic liquids, [C n MIm][NTf2] (n = 2, 6, 12), as well as a dicationic ionic liquid, ([C4(C6Im)2][NTf2]2), were used to coat the immobilized lipase and also as the reaction medium. In both methods, the polarity, anion of the ILs concentration and viscosity strongly influenced the reaction. Coating the immobilized enzyme with ILs improved catalytic activity and less ILs was required to produce PCL with a higher molecular weight and reaction yield. At 60 °C and ILs/Novozyme-435 coating ratio of 3:1 (w/w) for 48 h, the highest M w and reaction yield of PCL were 35,600 g/mol and 62 % in the case of [C12MIm][NTf2], while the M w and reaction yield of PCL was 20,300 g/mol and 54 % with [C12MIm][NTf2] and catalyzed by untreated lipase.  相似文献   

13.
Release factor 2 (RF2), encoded by the prfB gene in Escherichia coli, catalyzes translational termination at UGA and UAA codons. Termination at UGA competes with selenocysteine (Sec) incorporation at Sec-dedicated UGA codons, and RF2 thereby counteracts expression of selenoproteins. prfB is an essential gene in E. coli and can therefore not be removed in order to increase yield of recombinant selenoproteins. We therefore constructed an E. coli strain with the endogenous chromosomal promoter of prfB replaced with the titratable PBAD promoter. Knockdown of prfB expression gave a bacteriostatic effect, while two- to sevenfold overexpression of RF2 resulted in a slightly lowered growth rate in late exponential phase. In a turbidostatic fermentor system the simultaneous impact of prfB knockdown on growth and recombinant selenoprotein expression was subsequently studied, using production of mammalian thioredoxin reductase as model system. This showed that lowering the levels of RF2 correlated directly with increasing Sec incorporation specificity, while also affecting total selenoprotein yield concomitant with a lower growth rate. This study thus demonstrates that expression of prfB can be titrated through targeted exchange of the native promoter with a PBAD-promoter and that knockdown of RF2 can result in almost full efficiency of Sec incorporation at the cost of lower total selenoprotein yield.  相似文献   

14.
l-arginine, a semi essential amino acid, is an important amino acid in food flavoring and pharmaceutical industries. Its production by microbial fermentation is gaining more and more attention. In previous work, we obtained a new l-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through mutation breeding. In this work, we enhanced l-arginine production through improvement of the intracellular environment. First, two NAD(P)H-dependent H2O2-forming flavin reductases Frd181 (encoded by frd1 gene) and Frd188 (encoded by frd2) in C. glutamicum were identified for the first time. Next, the roles of Frd181 and Frd188 in C. glutamicum were studied by overexpression and deletion of the encoding genes, and the results showed that the inactivation of Frd181 and Frd188 was beneficial for cell growth and l-arginine production, owing to the decreased H2O2 synthesis and intracellular reactive oxygen species (ROS) level, and increased intracellular NADH and ATP levels. Then, the ATP level was further increased by deletion of noxA (encoding NADH oxidase) and amn (encoding AMP nucleosidase), and overexpression of pgk (encoding 3-phosphoglycerate kinase) and pyk (encoding pyruvate kinase), and the l-arginine production and yield from glucose were significantly increased. In fed-batch fermentation, the l-arginine production and yield from glucose of the final strain reached 57.3 g/L and 0.326 g/g, respectively, which were 49.2% and 34.2% higher than those of the parent strain, respectively. ROS and ATP are important elements of the intracellular environment, and l-arginine biosynthesis requires a large amount of ATP. For the first time, we enhanced l-arginine production and yield from glucose through reducing the H2O2 synthesis and increasing the ATP supply.  相似文献   

15.
The electrochemical impedance spectroscopy (EIS) technique has been used as a sensitive method to explore the effect of antibacterial molecules on immobilized bacteria and biofilm formation. In this work, we describe the electrochemical spectroscopy as a powerful method to monitor the effect of Chlorhexidine Digluconate (CHX-Dg) on polyelectrolyte immobilized Escherichia coli K12 MG1655 and the kinetics of cell adhesion on gold electrodes. The experimental impedance data were modelised with a Zview program to find the best equivalent electrical circuit and analyse its parameter's properties. Polyelectrolyte multilayer formation on the electrode surface and bacteria immobilization greatly increased the electron-transfer resistance (Ret) and reduced the constant phase element (CPEdl). The effect of CHX-Dg was studied in a 0.5 × 10−4 mmol l−1 to 0.5 mmol l−1 range. The relation between the evolution of Ret and CHX-Dg concentration was found to be negatively correlated. When CHX-Dg was added, the electrochemical monitoring of the bacterial kinetic adhesion showed that the electrode's capacity (CP) variation remained stable, demonstrating that the addition of CHX-Dg in the broth inhibited bacterial adhesion.  相似文献   

16.
A series of cis and trans tetradentate copper macrocyclic complexes, of ring size 14-16, that employ amine and thioether donor groups are reported. Apart from 5,6,15,16-bisbenzo-8,13-diaza-1,4-dithia-cyclohexadecane copper(I) (cis-[Cu(H4NbuSen)]+) all of the complexes are obtained in the copper(II) form. Crystallographic analysis shows that the copper(II) complexes all adopt a distorted planar geometry around the copper. In contrast, cis-[Cu(H4NbuSen)]+ is found to adopt a distorted tetrahedral geometry. The complexes were subjected to electrochemical analysis in water and acetonitrile. The effect of the solvent, positions of the donor atoms (cis/trans) on E1/2 is discussed as is the comparison of the electrochemical behaviour of these complexes with their parent Schiff base macrocycles.  相似文献   

17.

Key message

A minor QTL for heading date located on the long arm of rice chromosome 1 was delimitated to a 95.0-kb region using near isogenic lines with sequential segregating regions.

Abstract

Heading date and grain yield are two key factors determining the commercial potential of a rice variety. In this study, rice populations with sequential segregating regions were developed and used for mapping a minor QTL for heading date, qHd1. A total of 18 populations in six advanced generations through BC2F6 to BC2F11 were derived from a single BC2F3 plant of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The QTL was delimitated to a 95.0-kb region flanked by RM12102 and RM12108 in the terminal region of the long arm of chromosome 1. Results also showed that qHd1 was not involved in the photoperiodic response, having an additive effect ranging from 2.4 d to 2.9 d observed in near isogenic lines grown in the paddy field and under the controlled conditions of either short day or long day. The QTL had pleiotropic effects on yield traits, with the ZS97 allele delaying heading and increasing the number of spikelets per panicle, the number of grains per panicle and grain yield per plant. The candidate region contains ten annotated genes including two genes with functional information related to the control of heading date. These results lay a foundation for the cloning of qHd1. In addition, this kind of minor QTLs could be of great significance in rice breeding for allowing minor adjustment of heading date and yield traits.  相似文献   

18.
The genetic basis of high grain yield under reproductive-stage drought was studied using an F3-derived population generated from the cross of upland rice (Oryza sativa L.) cultivars Vandana and Way Rarem. Contributed by the susceptible parent Way Rarem, locus qDTY 12.1 was hypothesized to have interaction with loci from the Vandana genome to enhance the grain yield of tolerant line Vandana under drought. A test of the digenic interaction of qDTY 12.1 showed that two loci, qDTY 2.3 on chromosome 2 and qDTY 3.2 on chromosome 3, significantly increased the yield and harvest index of qDTY 12.1 -positive lines under severe upland and lowland drought conditions. qDTY 2.3 and qDTY 3.2 , in interaction with qDTY 12.1 , reduced days to flowering and plant height of qDTY 12.1 -positive lines under stress and non-stress conditions in upland. BC2F3-derived backcross inbred lines (BILs) were used to validate these results and identify new quantitative trait loci. Lines with qDTY 2.3 and qDTY 12.1 showed increased yield over Way Rarem under severe and moderate stress conditions, in upland. IR84996-50-4-B-4, a selection from one of the BILs, yielded more than the popular drought-tolerant cultivars Apo, UPLRi7, and IR74371-54-1-1 under severe stress conditions. Introgressed segments from Vandana also improved yield under non-stress conditions. The results indicate that digenic interactions can explain the genetic control of complex quantitative traits such as grain yield under drought, and a few interacting loci with large effects on grain yield or yield-related traits may enhance drought response across a wide range of genetic backgrounds and environments when introgressed together.  相似文献   

19.
《Process Biochemistry》2014,49(2):290-294
Microorganisms capable of extracellular electron transfer play important roles in biogeochemical redox processes and have been of great interest in the fields of energy recovery, waste treatment, and environmental remediation. In this study, a new electrochemically active bacterium was identified with a high-throughput method using WO3 nanoclusters as probes. The 16S rRNA gene sequence designated the strain as Lysinibacillus sphaericus D-8, a Gram-positive bacterium. Its electrochemical activity was characterized in a two-chamber microbial fuel cell and a three-electrode electrochemical cell. Strain D-8 produced 92 mW/m2 of power using lactate as the electron donor. The electrochemical impedance spectroscopy results confirmed the electrochemical activity of this strain. Cyclic voltammetry analysis indicated that the presence of soluble redox active compounds might play an important role in the extracellular electron transfer by L. sphaericus D-8. This work might be the first report that demonstrates the electrochemical activity of Lysinibacillus species.  相似文献   

20.
Leaf angles, frequency distribution of leaf area inclinations, leaf area index, amount of intercepted radiation, biological, vegetative and grain yields and grain yield proportion of biological yield were determined in maize stands of two population densities, 55 555 plants ha?1 (S 1), and 80 000 plants ha?1 (S 2). Also the effect of the artificial change of leaf angle upon these indices was studied. We classified normal maize stand (N) as the interstage between a planophile and a plagiophile type of canopy, that with artificially changed leaf angle (V) as an erectophile type of canopy. The relative interception of the incoming radiation in the variantsV S 1 andV S 2 was lower than in the variantsN S 1 andN S 2. The variantsV in comparison with variants N increased grain yield and biological yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号