首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J M Hevel  M A Marletta 《Biochemistry》1992,31(31):7160-7165
Nitric oxide synthase (NOS) (EC 1.14.23) catalyzes the oxidation of L-arginine to citrulline and nitric oxide. The complex reaction carried out by NOS, which involves NADPH, O2, and enzyme-bound FAD, FMN, and tetrahydrobiopterin (BH4), has only recently begun to be elucidated. Herein we report the characterization of the pterin requirement of murine macrophage NOS. Although purified NOS activity was not dependent on BH4, activity was significantly enhanced by BH4 in a concentration-dependent fashion. NOS purified in the absence of added BH4 was found to contain substoichiometric concentrations of enzyme-bound pterin, where increased concentrations of bound pterin correlated with an increase in activity when assayed in the absence of exogenous BH4. However, NOS purified in the presence of BH4 followed by gel filtration exhibited a 1 mol of pterin:1 mol of NOS 130-kDa subunit stoichiometry and activity that was essentially independent of exogenous BH4. Experiments to probe a redox role for the pterin were carried out using pterin analogues. 6(R,S)-Methyltetrahydropterin was found to increase NOS activity in enzyme purified in the absence of BH4. However, the deaza analogue, 6(R,S)-methyl-5-deazatetrahydropterin, was not only incapable of supporting enzymatic turnover but also inhibited citrulline formation in a concentration-dependent manner. Overall, these results support a role for BH4 in the NOS reaction that involves stabilization of the enzyme and redox chemistry wherein a 1:1 stoichiometry between bound pterin and NOS subunit results in maximum activity.  相似文献   

2.
The dissociation constant (Kd) for CO from neuronal nitric oxide synthase heme in the absence of the substrate and cofactor was less than 10−3 μM. In the presence of

-Arg, it dramatically increased up to 1 μM. In the presence of inhibitors such as NG-nitro-

-arginine methyl ester and 7-nitroindazole (NI), the Kd value further increased up to more than 100 μM. Addition of the cofactor, 5,6,7,8-tetrahydrobiopterin (H4B), increased the Kd value by 10-fold in the presence of

-Arg, whereas it decreased the value to less than one 250th in the presence of NI. Addition of H4B increased the recombination rate constant (kon) for CO by more than two-fold in the presence of

-Arg or N6-(1-iminoethyl)-

-lysine, whereas it decreased the kon value by three-fold in the presence of

-thiocitrulline. Thus, the binding fashion of some of inhibitors, such as NI, may be different from that of

-Arg with respect to the H4B effect.  相似文献   

3.
Z Q Wang  C C Wei  S Ghosh  A L Meade  C Hemann  R Hille  D J Stuehr 《Biochemistry》2001,40(43):12819-12825
In nitric oxide synthase (NOS), (6R)-tetrahydrobiopterin (H(4)B) binds near the heme and can reduce a heme-dioxygen intermediate (Fe(II)O(2)) during Arg hydroxylation [Wei, C.-C., Wang, Z.-Q., Wang, Q., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) J. Biol. Chem. 276, 315-319]. A conserved Trp engages in aromatic stacking with H(4)B, and its mutation inhibits NO synthesis. To examine how this W457 impacts H(4)B redox function, we performed single turnover reactions with the mouse inducible NOS oxygenase domain (iNOSoxy) mutants W457F and W457A. Ferrous mutants containing Arg and H(4)B were mixed with O(2)-containing buffer, and then heme spectral transitions, H(4)B radical formation, and Arg hydroxylation were followed versus time. A heme Fe(II)O(2) intermediate was observed in W457A and W457F and had normal spectral characteristics. However, its disappearance rate (6.5 s(-1) in W457F and 3.0 s(-1) in W457A) was slower than in wild-type (12.5 s(-1)). Rates of H(4)B radical formation (7.1 s(-1) in W457F and 2.7 s(-1) in W457A) matched their rates of Fe(II)O(2) disappearance, but were slower than radical formation in wild-type (13 s(-1)). The extent of H(4)B radical formation in the mutants was similar to wild-type, but their radical decayed 2-4 times faster. These kinetic changes correlated with slower and less extensive Arg hydroxylation by the mutants (wild-type > W457F > W457A). We conclude that W457 ensures a correct tempo of electron transfer from H(4)B to heme Fe(II)O(2), possibly by stabilizing the H(4)B radical. Proper control of these parameters may help maximize Arg hydroxylation and minimize uncoupled O(2) activation at the heme.  相似文献   

4.
Berka V  Yeh HC  Gao D  Kiran F  Tsai AL 《Biochemistry》2004,43(41):13137-13148
Tetrahydrobiopterin (BH(4)), not dihydrobiopterin or biopterin, is a critical element required for NO formation by nitric oxide synthase (NOS). To elucidate how BH(4) affects eNOS activity, we have investigated BH(4) redox functions in the endothelial NOS (eNOS). Redox-state changes of BH(4) in eNOS were examined by chemical quench/HPLC analysis during the autoinactivation of eNOS using oxyhemoglobin oxidation assay for NO formation at room temperature. Loss of NO formation activity linearly correlated with BH(4) oxidation, and was recovered by overnight incubation with fresh BH(4). Thus, thiol reagents commonly added to NOS enzyme preparations, such as dithiothreitol and beta-mercaptoethanol, probably preserve enzyme activity by preventing BH(4) oxidation. It has been shown that conversion of L-arginine to N-hydroxy-L-arginine in the first step of NOS catalysis requires two reducing equivalents. The first electron that reduces ferric to the ferrous heme is derived from flavin oxidation. The issue of whether BH(4) supplies the second reducing equivalent in the monooxygenation of eNOS was investigated by rapid-scan stopped-flow and rapid-freeze-quench EPR kinetic measurements. In the presence of L-arginine, oxygen binding kinetics to ferrous eNOS or to the ferrous eNOS oxygenase domain (eNOS(ox)) followed a sequential mechanism: Fe(II) <--> Fe(II)O(2) --> Fe(III) + O(2)(-). Without L-arginine, little accumulation of the Fe(II)O(2) intermediate occurred and essentially a direct optical transition from the Fe(II) form to the Fe(III) form was observed. Stabilization of the Fe(II)O(2) intermediate by L-arginine has been established convincingly. On the other hand, BH(4) did not have significant effects on the oxygen binding and decay of the oxyferrous intermediate of the eNOS or eNOS oxygenase domain. Rapid-freeze-quench EPR kinetic measurements in the presence of L-arginine showed a direct correlation between BH(4) radical formation and decay of the Fe(II)O(2) intermediate, indicating that BH(4) indeed supplies the second electron for L-arginine monooxygenation in eNOS.  相似文献   

5.
H(4)B is an essential catalytic cofactor of the mNOSs. It acts as an electron donor and activates the ferrous heme-oxygen complex intermediate during Arg oxidation (first step) and NOHA oxidation (second step) leading to nitric oxide and citrulline as final products. However, its role as a proton donor is still debated. Furthermore, its exact involvement has never been explored for other NOSs such as NOS-like proteins from bacteria. This article proposes a comparative study of the role of H(4)B between iNOS and bsNOS. In this work, we have used freeze-quench to stop the arginine and NOHA oxidation reactions and trap reaction intermediates. We have characterized these intermediates using multifrequency electron paramagnetic resonance. For the first time, to our knowledge, we report a radical formation for a nonmammalian NOS. The results indicate that bsNOS, like iNOS, has the capacity to generate a pterin radical during Arg oxidation. Our current electron paramagnetic resonance data suggest that this radical is protonated indicating that H(4)B may not transfer any proton. In the 2nd step, the radical trapped for iNOS is also suggested to be protonated as in the 1st step, whereas it was not possible to trap a radical for the bsNOS 2nd step. Our data highlight potential differences for the catalytic mechanism of NOHA oxidation between mammalian and bacterial NOSs.  相似文献   

6.
Synthesis of 6(R)-5,6,7,8-tetrahydrobiopterin (BH(4)), a required cofactor for inducible nitric-oxide synthase (iNOS) activity, is usually coordinately regulated with iNOS expression. In C6 glioma cells, tumor necrosis factor-alpha (TNF-alpha) concomitantly potentiated the stimulation of nitric oxide (NO) and BH(4) production induced by IFN-gamma and interleukin-1beta. Expression of both iNOS and GTP cyclohydrolase I (GTPCH), the rate-limiting enzyme in the BH(4) biosynthetic pathway, was also markedly increased, as were their activities and protein levels. Ceramide, a sphingolipid metabolite, may mediate some of the actions of TNF-alpha. Indeed, we found that bacterial sphingomyelinase, which hydrolyzes sphingomyelin and increases endogenous ceramide, or the cell permeable ceramide analogue, C(2)-ceramide, but not C(2)-dihydroceramide (N-acetylsphinganine), significantly mimicked the effects of TNF-alpha on NO production and iNOS expression and activity in C6 cells. Surprisingly, although TNF-alpha increased BH(4) synthesis and GTPCH activity, neither BH(4) nor GTPCH expression was affected by C(2)-ceramide or sphingomyelinase in IFN-gamma- and interleukin-1beta-stimulated cells. It is likely that increased BH(4) levels results from increased GTPCH protein and activity in vivo rather than from reduced turnover of BH(4), because the GTPCH inhibitor, 2,4-diamino-6-hydroxypyrimidine, blocked cytokine-stimulated BH(4) accumulation. Moreover, expression of the GTPCH feedback regulatory protein, which if decreased might increase GTPCH activity, was not affected by TNF-alpha or ceramide. Treatment with the antioxidant pyrrolidine dithiocarbamate, which is known to inhibit NF-kappaB and sphingomyelinase in C6 cells, or with the peptide SN-50, which blocks translocation of NF-kappaB to the nucleus, inhibited TNF-alpha-dependent iNOS mRNA expression without affecting GTPCH mRNA levels. This is the first demonstration that cytokine-stimulated iNOS and GTPCH expression, and therefore NO and BH(4) biosynthesis, may be regulated by discrete pathways. As BH(4) is also a cofactor for the aromatic amino acid hydroxylases, discovery of distinct mechanisms for regulation of BH(4) and NO has important implications for its specific functions.  相似文献   

7.
Sanae R  Kurokawa F  Oda M  Ishijima S  Sagami I 《Biochemistry》2011,50(10):1714-1722
The thermodynamics of cofactor binding to the isolated reductase domain (Red) of nNOS and its mutants have been studied by isothermal titration calorimetry. The NADP(+) and 2',5'-ADP binding stoichiometry to Red were both 1:1, consistent with a one-site kinetic model instead of a two-site model. The binding constant (K(D) = 71 nM) and the large heat capacity change (ΔC(p) = -440 cal mol(-1) K(-1)) for 2',5'-ADP were remarkably different from those for NADP(+) (1.7 μM and -140 cal mol(-1) K(-1), respectively). These results indicate that the nicotinamide moiety as well as the adenosine moiety has an important role in binding to nNOS. They also suggest that the thermodynamics of the conformational change in Red caused by cofactor binding are significantly different from the conformational changes that occur in cytochrome c reductase, in which the nicotinamide moiety of the cofactor is not essential for binding. Analysis of the deletion mutant of the autoinhibitory helix (RedΔ40) revealed that the deletion resulted in a decrease in the binding affinity of 2',5'-ADP with more unfavorable enthalpy gain. In the case of RedCaM, which contains a calmodulin (CaM) binding site, the presence of Ca(2+)/CaM caused a 6.7-fold increase in the binding affinity for 2',5'-ADP that was mostly due to the favorable entropy change. These results are consistent with a model in which Ca(2+)/CaM induces a conformational change in NOS to a flexible "open" form from a "closed" form that locked by cofactor binding, and this change facilitates the electron transfer required for catalysis.  相似文献   

8.
Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.  相似文献   

9.
Inducible nitric oxide synthase (NOS II) efficiently catalyzes the oxidation of N-(4-chlorophenyl)N'-hydroxyguanidine 1 by NADPH and O2, with concomitant formation of the corresponding urea and NO. The characteristics of this reaction are very similar to those of the NOS-dependent oxidation of endogenous Nomega-hydroxy-L-arginine (NOHA), i.e., (i) the formation of products resulting from an oxidation of the substrate C=N(OH) bond, the corresponding urea and NO, in a 1:1 molar ratio, (ii) the absolute requirement of the tetrahydrobiopterin (BH4) cofactor for NO formation, and (iii) the strong inhibitory effects of L-arginine (L-arg) and classical inhibitors of NOSs. N-Hydroxyguanidine 1 is not as good a substrate for NOS II as is NOHA (Km = 500 microM versus 15 microM for NOHA). However, it leads to relatively high rates of NO formation which are only 4-fold lower than those obtained with NOHA (Vm = 390 +/- 50 nmol NO min-1 mg protein-1, corresponding roughly to 100 turnovers min-1). Preliminary results indicate that some other N-aryl N'-hydroxyguanidines exhibit a similar behavior. These results show for the first time that simple exogenous compounds may act as NO donors after oxidative activation by NOSs. They also suggest a possible implication of NOSs in the oxidative metabolism of certain classes of xenobiotics.  相似文献   

10.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by endothelial nitric oxide synthase (eNOS), and endothelial BH4 bioavailability is a critical factor in regulating the balance between NO and superoxide production (eNOS coupling). Biosynthesis of BH4 is determined by the activity of GTP-cyclohydrolase I (GTPCH). However, BH4 levels may also be influenced by oxidation, forming 7,8-dihydrobiopterin (BH2), which promotes eNOS uncoupling. Conversely, dihydrofolate reductase (DHFR) can regenerate BH4 from BH2, but whether DHFR is functionally important in maintaining eNOS coupling remains unclear. To investigate the mechanism by which DHFR might regulate eNOS coupling in vivo, we treated wild-type, BH4-deficient (hph-1), and GTPCH-overexpressing (GCH-Tg) mice with methotrexate (MTX), to inhibit BH4 recycling by DHFR. MTX treatment resulted in a striking elevation in BH2 and a decreased BH4:BH2 ratio in the aortas of wild-type mice. These effects were magnified in hph-1 but diminished in GCH-Tg mice. Attenuated eNOS activity was observed in MTX-treated hph-1 but not wild-type or GCH-Tg mouse lung, suggesting that inhibition of DHFR in BH4-deficient states leads to eNOS uncoupling. Taken together, these data reveal a key role for DHFR in regulating the BH4 vs BH2 ratio and eNOS coupling under conditions of low total biopterin availability in vivo.  相似文献   

11.
A series of 1,6-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase (NOS). By varying the basic amine side chain at the 1-position of the indole ring, several potent and selective inhibitors of human neuronal NOS were identified. In general compounds with bulkier side chains displayed increased selectivity for nNOS over eNOS and iNOS isoforms. One of the compounds, (R)-8 was shown to reduce tactile hyperesthesia (allodynia) after oral administration (30 mg/kg) in an in vivo rat model of dural inflammation relevant to migraine pain.  相似文献   

12.
A series of 1,5-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase. A variety of flexible and restricted basic amine side chain substitutions was explored at the 1-position of the indole ring, while keeping the amidine group fixed at the 5-position. Compounds having N-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)- (12, (R)-12, (S)-12 and 13) and N-(1-(1-methylazepan-4-yl)- side chains (14, 15, (-)-15 and (+)-15) showed increased inhibitory activity for the human nNOS isoform and selectivity over eNOS and iNOS isoforms. The most potent compound of the series for human nNOS (IC(50)=0.02 μM) (S)-12 showed very good selectivity over the eNOS (eNOS/nNOS=96-fold) and iNOS (iNOS/nNOS=850-fold) isoforms.  相似文献   

13.
In addition to its catalytic roles, the nitric oxide synthase (NOS) cofactor tetrahydrobiopterin (H4B) is required for substrate binding and for stabilization of the dimeric structure. We expressed and purified the core of the iNOS oxygenase domain consisting of residues 75-500 (CODiNOS) in the presence (H4B+) and absence (H4B-) of this cofactor. Both forms bound stoichiometric amounts of heme (>0.9 heme per protein subunit). H4B- CODiNOS was unable to bind arginine, gave an unstable ferrous carbonyl adduct, and was a mixture of monomer and dimer. H4B+ CODiNOS bound arginine, gave a stable ferrous carbonyl adduct, and was exclusively dimeric. The H4B cofactor content of this species was only one per dimer yet this was sufficient to form two competent arginine binding sites as determined by optical stoichiometric titrations.  相似文献   

14.
Dynamics of carbon monoxide binding with neuronal nitric oxide synthase.   总被引:1,自引:0,他引:1  
The dynamics of CO rebinding with neuronal NO synthase (nNOS) following laser flash photolysis have been investigated from 293 to 77 K in the absence and presence of its substrate L-arginine. The distribution functions of the rate parameters P(k) and of the activation enthalpy P(H) were determined using the maximum entropy method. In a fluid solvent near room temperature, bimolecular rebinding is biphasic, as previously reported by several groups. However, measurement of the rotational correlation time shows that the apparent biphasic rebinding is not relevant to the genuine dynamics of NOS. In addition to native dimeric nNOS, another species (possibly aggregated or partially unfolded conformation) with different hydrodynamic characteristics is responsible for the faster rebinding process. In a rigid environment at low temperature, the geminate internal rebinding is not affected by the presence of the nonnative species. nNOS exhibits a bimodal distribution of CO activation enthalpy with P(H) consisting of two distinct bands with temperature-dependent amplitudes down to 77 K. The similarity of these findings with those recently reported for cytochromes P-450 suggests a common hierarchical organization of conformational substates, with a splitting of each conformational substate into a doublet. Thus, thiolate-coordinated heme proteins are in clear contrast to histidine-coordinated oxygen-transport heme proteins. The present results with nNOS provide additional support to previous arguments incriminating the thiolate ligand as responsible for the splitting of conformational substates.  相似文献   

15.
Nitric oxide (NO) is an important second messenger molecule for blood pressure homeostasis, as a neurotransmitter, and in the immune defense system. Excessive NO can lead to neurodegeneration and connective tissue damage. Three different isozymes of the enzyme nitric oxide synthase regulate NO production in endothelial (eNOS), neuronal (nNOS), and macrophage (iNOS) cells. Whereas creating a lower level of NO in some cells could be beneficial, it also could be detrimental to the protective effects that NO has on other cells. Therefore, it is essential that therapeutic NOS inhibitors be made that are subtype selective. Previously, we reported a series of nitroarginine-containing dipeptide amides as potent and selective nNOS inhibitors. Here we synthesize peptidomimetic hydroxyethylene isosteres of these dipeptide amides for potential increased bioavailability. None of the compounds is as potent or selective as the dipeptide amides, but they exhibit good inhibition and selectivity. When the terminal amino group was converted to a hydroxyl group, potency and selectivity greatly diminished, supporting the importance of the terminal amino group for binding.  相似文献   

16.
How 6R-tetrahydrobiopterin (H(4)B) participates in Arg hydroxylation as catalyzed by the nitric oxide synthases (NOSs) is a topic of current interest. Previous work with the oxygenase domain of inducible NOS (iNOSoxy) demonstrated that H(4)B radical formation is kinetically coupled to disappearance of an initial heme-dioxy intermediate and to Arg hydroxylation in a single turnover reaction run at 10 degrees C [Wei, C.-C., Wang, Z.-Q., Wang, Q., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) J. Biol. Chem. 276, 315-319]. Here we used 5-methyl-H(4)B to investigate how pterin structure influences radical formation and associated catalytic steps. In the presence of Arg, the heme-dioxy intermediate in 5-methyl-H(4)B-bound iNOSoxy reacted at a rate of 35 s(-)(1), which is 3-fold faster than with H(4)B. This was coupled to a faster rate of 5-methyl-H(4)B radical formation (40 vs 12.5 s(-)(1)) and to a faster and more productive Arg hydroxylation. The EPR spectrum of the enzyme-bound 5-methyl-H(4)B radical had different hyperfine structure than the bound H(4)B radical and exhibited a 3-fold longer half-life after its formation. A crystal structure of 5-methyl-H(4)B-bound iNOSoxy revealed that there are minimal changes in conformation of the bound pterin or in its interactions with the protein as compared to H(4)B. Together, we conclude the following: (1) The rate of heme-dioxy reduction is linked to pterin radical formation and is sensitive to pterin structure. (2) Faster heme-dioxy reduction increases the efficiency of Arg hydroxylation but still remains rate limiting for the reaction. (3) The 5-methyl group influences heme-dioxy reduction by altering the electronic properties of the pterin rather than changing protein structure or interactions. (4) Faster electron transfer from 5-methyl-H(4)B may be due to increased radical stability afforded by the N-5 methyl group.  相似文献   

17.
The effects of substrates, inhibitors and tetrahydrobiopterin (H4B) on CO rebinding to the isolated heme-bound oxygenase domain (nNOSox) of neuronal nitric oxide synthase were examined by laser flash photolysis. The rate constant of CO recombination with substrate and inhibitor-free nNOSox in the absence of H4B was 1.0 x 10(6) M(-1) s(-1). The addition of H4B led to a marked decrease in the rate to 0.59 x 10(6) M(-1) s(-1). Interestingly, the substrates, L-Arg and N-hydroxy-L-Arg (NHA), altered CO binding behavior in that the binding rate was modified to CO concentration-independent, both with and without H4B. In the absence of H4B, agmatine, NG-monomethyl-L-Arg (NMMA) and NG-nitro-L-Arg methyl ester (NAME) decreased the CO concentration-dependent rate constants of rebinding by half (0.43 x 10(6) M(-1) s(-1) for the NMMA-bound complex), whereas N6-(l-iminoethyl)-L-Lys (NIL) and 7-nitro-1H-indazole (7-NI) increased the rate constants by more than 70% (up to 2.1 x 10(6) M(-1) s(-1) for the NIL-bound complex). In the presence of H4B, the binding rate was independent of CO concentration for the agmatine-bound complex. The differential effects of the inhibitors on the CO concentration-dependent rate constants were significantly diminished for the H4B-bound system. Interestingly, these variable effects of inhibitors on the CO binding rate were more pronounced in the absence of H4B. Accordingly, we suggest that H4B significantly influences CO binding by altering the CO access channel, and further reduces the divergent effects of different inhibitors.  相似文献   

18.
The kinetics of binding L-arginine and three alternative substrates (homoarginine, N-methylarginine, and N-hydroxyarginine) to neuronal nitric oxide synthase (nNOS) were characterized by conventional and stopped-flow spectroscopy. Because binding these substrates has only a small effect on the light absorbance spectrum of tetrahydrobiopterin-saturated nNOS, their binding was monitored by following displacement of imidazole, which displays a significant change in Soret absorbance from 427 to 398 nm. Rates of spectral change upon mixing Im-nNOS with increasing amounts of substrates were obtained and found to be monophasic in all cases. For each substrate, a plot of the apparent rate versus substrate concentration showed saturation at the higher concentrations. K(-)(1), k(2), k(-)(2), and the apparent dissociation constant were derived for each substrate from the kinetic data. The dissociation constants mostly agreed with those calculated from equilibrium spectral data obtained by titrating Im-nNOS with each substrate. We conclude that nNOS follows a two-step, reversible mechanism of substrate binding in which there is a rapid equilibrium between Im-nNOS and the substrate S followed by a slower isomerization process to generate nNOS'-S: Im-nNOS + S if Im-nNOS-S if nNOS'-S + Im. All four substrates followed this general mechanism, but differences in their kinetic values were significant and may contribute to their varying capacities to support NO synthesis.  相似文献   

19.
B Mayer  M John  E B?hme 《FEBS letters》1990,277(1-2):215-219
L-Arginine-derived nitric oxide acts as an inter- and intracellular signal molecule with cytosolic guanylyl cyclase as the effector system. Two NO synthase isoenzymes are postulated: a cytokine-inducible enzyme in macrophages and a constitutive, Ca2(+)-regulated enzyme in various other cells. An NO synthase was isolated from porcine cerebellum by ammonium sulfate precipitation and affinity chromatography on 2',5'-ADP-Sepharose. The enzyme was identified as an NO synthase with a specific NO-chemiluminescence method and with purified cytosolic guanylyl cyclase as an NO-sensitive detection system. The purified NO synthase was, besides Ca2+/calmodulin and NADPH, largely dependent on tetrahydrobiopterin as a cofactor.  相似文献   

20.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号