首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Two different factors control the mutability of an unstable allele (c2-m8810581) of the C2 gene of maize. Both an autonomous En/Spm element and an unrelated independent factor, named Mediator, are coordinately required for the excision of the insert in c2-m881058Y. According to genetic analysis, Mediator does not have the suppressor (S) function or mutator (M) function of En/Spm. Mediator has no effect on the timing or frequency of excision of Enl, En-low, or various I/dSpm elements. Hence, Mediator only mediates a specific interaction between En and the insert at c2m881058Y. Molecular analysis of c2-m881058Y has revealed a 3.3 kb, complex, En-related receptor element inserted into the second exon of the C2 gene. The ends of this element are homologous to the ends of En/Spm, but an internal l.7 kb region shows no En/Spm homology. A great degree (11–14%) of nucleotide changes, relative to Enl, occur within and between the 12 bp TNPA binding motifs. Alterations of these critical cis-determinants may account for the need for a helper factor for excision. This element is named Irma, for Inhibitor that requires Mediator also, and represents a unique, low copy number class of receptor element.  相似文献   

2.
The Enhancer-Inhibitor (En-I), also known as Suppressor-mutator (Spm-dSpm), transposable element system of maize was modified and introduced into Arabidopsis by Agrobacterium tumefaciens transformation. A stable En/Spm transposase source under control of the CaMV 35S promoter mediated frequent transposition of I/dSpm elements. Transposition occurred continuously throughout plant development over at least seven consecutive plant generations after transformation. New insertions were found at both linked and unlinked positions relative to a transposon donor site. The independent transposition frequency was defined as a transposition parameter, which quantified the rate of unique insertion events and ranged from 7.8% to 29.2% in different populations. An increase as well as a decrease in I/dSpm element copy number was seen at the individual plant level, but not at the population level after several plant generations. The continuous, frequent transposition observed for this transposon system makes it an attractive tool for use in gene tagging in Arabidopsis.  相似文献   

3.
4.
This review compares the activity of the plant transposable elements Ac, Tam3, En/Spm and Mu in heterologous plant species and in their original host. Mutational analysis of the autonomous transposable elements and two-element systems have supplied data that revealed some fundamental properties of the transposition mechanism. Functional parts of Ac and En/Spm were detected by in vitro binding studies of purified transposase protein and have been tested for their importance in the function of these transposable elements in heterologous plant species. Experiments that have been carried out to regulate the activity of the Ac transposable element are in progress and preliminary results have been compiled. Perspectives for manipulated transposable elements in transposon tagging strategies within heterologous plant species are discussed.  相似文献   

5.
Transposable elements have been widely used as mutagens in many organisms. Among them, the maize transposable element En/Spm has been shown to transpose efficiently in several plant species including the model plant Arabidopsis, where it has been used for large-scale mutagenesis. To determine whether we could use this transposon as a mutagen in the model legume plant Medicago truncatula, we tested the activity of the autonomous element, as well as two defective elements, in this plant, and in Arabidopsis as a positive control. In agreement with previous reports, we observed efficient excision of the autonomous En/Spm element in A. thaliana. This element was also active in M. truncatula, but the transposition activity was low and was apparently restricted to the tissue culture step necessary for the production of transgenic plants. The activity of one of the defective transposable elements, dSpm, was very low in A. thaliana and even lower in M. truncatula. The use of different sources of transposases suggested that this defect in transposition was associated with the dSpm element itself. Transposition of the other defective element, I6078 , was also detected in M. truncatula, but, as observed with the autonomous element, transposition events were very rare and occurred during tissue culture. These results suggest that the En/Spm element is rapidly inactivated in the regenerated plants and their progeny, and therefore is not suitable for routine insertion mutagenesis in M. truncatula.Communicated by M.-A. Grandbastien  相似文献   

6.
7.
A two-element Enhancer-Inhibitor transposon system in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
The Enhancer-Inhibitor (En-I), also known as Suppressor-mutator (Spm-dSpm), transposable element system of maize was modified and introduced into Arabidopsis by Agrobacterium tumefaciens transformation. A stable En/Spm transposase source under control of the CaMV 35S promoter mediated frequent transposition of I/dSpm elements. Transposition occurred continuously throughout plant development over at least seven consecutive plant generations after transformation. New insertions were found at both linked and unlinked positions relative to a transposon donor site. The independent transposition frequency was defined as a transposition parameter, which quantified the rate of unique insertion events and ranged from 7.8% to 29.2% in different populations. An increase as well as a decrease in I/dSpm element copy number was seen at the individual plant level, but not at the population level after several plant generations. The continuous, frequent transposition observed for this transposon system makes it an attractive tool for use in gene tagging in Arabidopsis.  相似文献   

8.
Many of the systems currently employed for heterologous transposon tagging in plants rely on an excision assay to monitor transposon activity. We have used the streptomycin phosphotransferase (SPT) reporter system to assayAc activity inPetunia hybrida. In other species, such as tobacco orArabidopsis, excision ofAc from the SPT gene in sporogenous tissue gives rise to streptomycin-resistant seedlings in the following generation. The frequency of fully streptomycin-resistant seedlings in petunia was low (0.4%) but molecular analysis of these indicated that the actual excision frequency may be as low as 0.05%. This indicates that the SPT assay is not a reliable selection criterion for germinal excision in petunia. Extensive molecular screening for reinsertion ofAc was consistent with a low primary transposition frequency (0%–0.6%). In contrast to these findings, the progeny of confirmed germinal transpositions for three independent transformants showed frequent transposition to new sites (9.5%–17.0%). This suggests a high frequency of secondary transposition compared with primary transposition from the T-DNA. Segregation analysis indicates that the high transposition activity is closely associated with transposed copies ofAc. No evidence was found for an altered methylation state forAc following transposition. The implications of these results for heterologous transposon tagging in petunia are discussed in the context of the reliability of excision reporter systems in general.  相似文献   

9.
Chromosome labeling with transposable elements in maize   总被引:1,自引:0,他引:1  
Transposable elements randomly insert into a targeted locus at a frequency of 10-6 to 10-5. The En element has been shown in previous studies to transpose more frequently into closely linked sites. Thus, it is appropriate to place an En element onto each of the 20 chromosome arms in maize to maximize tagging efficiency. This is called chromosome labeling for tagging purposes with transposons. After a chromosome arm has been labeled with a transposon, genes residing in that arm will have a greater chance to be tagged by the transposon. To date, all of the maize chromosome arms have been labeled with at least one of five Encontaining alleles. The elements were linked to the arms using reciprocal translocations. The usage of these arm-labeled lines is discussed in the context of gene tagging.Journal Paper No. 15224 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa; Project No. 3176  相似文献   

10.
The identification of a spontaneous mutable Hf1 allele in Petunia hybrida provided an opportunity to isolate and characterize a novel transposable element. This 9.9 kb element has features in common with members of the Spm family, such as homologous terminal inverted repeats and a 3 bp target site direct duplication within the Hf1 gene. The element is named Petunia Spm-like (Psl). The footprints left by excising elements have been isolated from several germinal revertants and sequence analysis shows similarities to those left by other Spm family members. Southern analysis shows that the transposon is present at low copy number in the genome of different inbred lines and species of Petunia. The germinal excision frequency of Psl was 21–33% in outcross populations. The element appears to be very mobile somatically in the inbred line V26, with 38% of plants from an inbred population showing new Psl-hybridizing bands by Southern analysis. The high somatic and germinal excision frequency demonstrated by Psl suggests that this element may have utility for gene tagging in petunia.  相似文献   

11.
To evaluate the prospects for transposon mutagenesis in the autogamous diploid legume Lotus japonicus, the behaviour of the maize transposable element Ac was analysed in the progeny of 38 independent transgenic plants. The conditions for monitoring donor site excision using histochemical localization of -glucuronidase activity or the alternative spectinomycin resistance assay were established, and used to follow Ac mobility through two generations. Somatic excision was monitored as variegated cotyledons in the T2 generation and germinal excision events were scored in segregating T3 families as complete -glucuronidase-mediated staining of cotyledons or as a fully green spectinomycin-resistant phenotype. Using these assays an average germinal excision frequency of 12% was estimated in the T3 offspring from variegated plants. The fidelity of the excision assays was ascertained by comparing the frequency of germinal excision to the frequency of Ac reinsertion at new positions of the genome. Transposition of Ac in 42% of the plants and detection of the characteristic Ac insertion/excision footprints suggests that insertion mutagenesis with the autonomous maize Activator element is feasible in Lotus japonicus. Parameters influencing Ac behaviour, such as dosage, position effects and modification of the element itself, were also investigated comparing homozygous and hemizygous plants from the same family and by analysing different transformants.Abbreviations W white - V variegated - FG fully green - FB fully blue - aadA spectinomycin adenyltransferase  相似文献   

12.
Summary Among the mobile element systems in maize, the En (Spm) system (En — the regulatory element and I the receptive element — a nonfunctional En) has several interesting aspects of control of gene expression (En and Spm are homologous in structure and activity). One of the alleles arising from the Spm group included the a-m2 8004 allele that has a low spotting pattern and unique ringed areas. The interest in this allele is that Spm or En will induce it to co-express the A phenotype and mutability. Several exceptions of the allele were analyzed. Two are Spm changes and two are I changes. The analysis shows that the heritable changes include I changes that are co-expressed in various grades of color and different degrees of mutability. All these changes occur with I at the locus. The Spm changes also include changes in mutability patterns and a mottling pattern.Journal Paper No., J-11792 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2381  相似文献   

13.
We isolated members of the retroposon family p-SINE1 in rice and found that one member contained an insertion. A 3-bp sequence at the insertion site within p-SINE1 appeared duplicated. The insertion sequence, 1536 bp in length, carried imperfect inverted repeats of about 13 bp at its termini which begin with 5-CACTA--- -3; these repeats are similar to those found in members of theEn/Spm transposable element family. These results indicate that the insertion sequence is a transposable element belonging to theEn/Spm family and is thus namedTnr3 (transposable element inrice no.3). In fact,Tnr3 carried long subterminal regions containing direct and inverted repeats of short DNA sequences of 15 bp, another characteristic of theEN/Spm family. The subterminal repeat sequences inTnr3 are, however, of two kinds, although they share homology with each other.Tnr3 and its relatives were present in multiple copies in rice. Considering the length ofTnr3, it cannot represent an autonomous type element, but is a non-autonomous element probably derived by deletion from an autonomous transposon.  相似文献   

14.
Effective transposon tagging with theAc/Ds system in heterologous plant species relies on the accomplishment of a potentially high transposon-induced mutation frequency. The primary parameters that determine the mutation frequency include the transposition frequency and the transposition distance. In addition, the development of a generally applicable transposon tagging strategy requires predictable transposition behaviour. We systematically analysedDs transposition frequencies andDs transposition distances in tobacco. An artificialDs element was engineered with reporter genes that allowed transposon excision and integration to be monitored visually. To analyse the variability ofDs transposition between different tobacco lines, eight single copy T-DNA transformants were selected. Fortrans-activation of theDs elements, differentAc lines were used carrying an unmodifiedAc + element, an immobilizedsAc element and a stableAc element under the control of a heterologous chalcone synthas (chsA) promoter. With allAc elements, eachDs line showed characteristic and heritable variegation patterns at the seedling level. SimilarDs line-specificity was observed for the frequency by whichDs transpositions were germinally transmitted, as well as for the distances of theDs transpositions. ThesAc element induced transposition ofDs late in plant development, resulting in low germinal transposition frequencies (0.37%) and high incidences of independent transposition (83%). The majority of theseDs elements (58%) transposed to genetically closed linked sites (10 cM).  相似文献   

15.
Belonging to Class II of transposable elements, En/Spm transposons are widespread in a variety of distantly related plant species. Here, we report on the sequence conservation of the transposase region from sequence analyses of En/Spm-like transposons from Poaceae species, namely Zingeria biebersteiniana, Zingeria trichopoda, Triticum monococcum, Triticum urartu, Hordeum spontaneum, and Aegilops speltoides. The transposase region of En/Spm-like transposons was cloned, sequenced, and compared with equivalent regions of Oryza and Arabidopsis from the gene bank database. Southern blot analysis indicated that the En/Spm transposon was present in low (Hordeum spontaneum, Triticum monococcum, Triticum urartu) through medium (Zingeria bieberstiana, Zingeria trichopoda) to relatively high (Aegilops speltoides) copy numbers in Poaceae species. A cytogenetic analysis of the chromosomal distribution of En/Spm transposons revealed the concurence of the chromosomal localization of the En/Spm clusters with mobile clusters of rDNA. An analysis of En/Spm-like transposase amino acid sequences was carried out to investigate sequence divergence between 5 genera — Triticum, Aegilops, Zingeria, Oryza and Arabidopsis. A distance matrix was generated; apparently, En/Spm-like transposase sequences shared the highest sequence homology intra-generically and, as expected, these sequences were significantly diverged from those of O. sativa and A. thaliana. A sequence comparison of En/Spm-like transposase coding regions defined that the intra-genomic complex of En/Spm-like transposons could be viewed as relatively independent, vertically transmitted, and permanently active systems inside higher plant genomes. The sequence data from this article was deposited in the EMBL/GenBank Data Libraries under the accession nos. AY707995-AY707996-AY707997-AY707998-AY707999-AY708000-AY708001-AY708002-AY708003-AY708004-AY708005-AY708005-AY265312.  相似文献   

16.
The concept of gene identification and cloning using insertional mutagenesis is well established. Many genes have been isolated using T-DNA transformation or transposable elements. Maize transposable elements have been introduced into heterologous plant species for tagging experiments. The behaviour of these elements in heterologous hosts shows many similarities with transposon behaviour in Zea mays. Site-specific recombination systems from lower organisms have also been shown to function efficiently in plant cells. Combining transposon and site-specific recombination systems in plants would create the possibility to induce chromosomal deletions. This transposition-deletion system could allow the screening of large segments of the genome for interesting genes and may also permit the cloning of the DNA corresponding to the deleted material by the same site-specific recombination reaction in vitro. This methodology may provide a unique means to construct libraries of large DNA clones derived from defined parts of the genome, the phenotypic contribution of which is displayed by the mutant carrying the deletion.  相似文献   

17.
Transgenic plants and cell lines of sugar beet carrying Spm/dSpm system of maize transposable elements have been obtained by Agrobacterium-mediated transformation. A heterologous system of mobile elements Spm/dSpm remains active in the genome of sugar beet that permit of transposon-based gene tagging and obtaining of marker-free transgenic sugar beet.  相似文献   

18.
An inducible transposable element, termed INAc (inducible Activator), was constructed for development of a gene tagging system in higher plants. The advantage of such an inducible element is that, unlike the native transposon, its excision can be induced at any time during plant development and the resulting mutants are stable after removal of the inducer. A fusion of the SA inducible promoter (PR-1a) with the Ac transposase gene was inserted together with a hygromycin resistance gene between ca. 400 bp sequences from each end of the maize Ac element, yielding INAc. The INAc element was introduced into tobacco and tomato plants. A high frequency of spontaneous transposition was apparent in primary transformed tomato calli but not in tobacco calli. Treatment of tobacco plants with salicylic acid induced transposition of INAc in both somatic and germinal tissue, with germinal transposition events being revealed by characterization of the progeny of transformed plants whose flowers were exposed to SA. The INAc element thus exhibits potential for development of an inducible transposon system suitable for gene isolation in heterologous plant species.  相似文献   

19.
A case of somatic instability affecting aleurone colour in a strain of maize from India with flint background was analysed. The somatic instability is localized to theC 1 (Inhibitor) allele ofC locus on the short arm of chromosome 9. Molecular tests indicated thatAc is not present in the Indian stock and the evidence is consistent with the involvement of theEn (Spm) transposable element in the instability. The presence of theEn (Spm)-like element in the stock would suggest that these elements have been present in the maize genome for a long time. A new allele ofshrunken (sh1) gene with a somewhat unorthodox breeding behaviour is also described.  相似文献   

20.
The transposition of the maize transposable element Enhancer (En) had been focused on one chromosome 3 for several generations. From the a1-m(Au) allele with an autonomous En, a new En reporter allele a1-m(r)3927-1, was isolated that undergoes very infrequent and late excision events, producing one or two small spots in the aleurone. This allele is seriously impaired in its capacity to excise. Coincident with the origin of this allele, an En was located at a site close to the a1 locus. From this initial insertion site, the movement of this En was followed for three to four generations in 974 families with a higher transposition rate of this En (50% of the testcross progeny) than that found in a previous study of En transposition. This is the first case reported where a particular En was followed for more than three generations. The higher rate of wanderings of this En along the same chromosome led to the term vagabond En (En vag ). Genetic evidence that En may transpose from a replicated donor site to an unreplicated site is provided. Speculative mechanisms on the origin of a1-m(r)3927-1 and En vag are discussed.Journal Paper No. J-15864 of Iowa Agricultural and Iowa Economical Experiment Station Project #3176  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号