首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Summary A histochemical analysis of the monoamines which are strongly accumulated in the median eminence and the proximal part of infundibular stem of all species examined (mouse, rat, guinea pig, hamster, rabbit, and cat) was performed with the help of a highly specific and sensitive fluorescence method. Strong evidence was obtained for the view that the monoamines are localized in very high concentrations to the terminal parts of non-sympathetic nerve fibres, which — mainly at least — converge to the primary plexus of the hypophyseal portal system. The capillaries are densely and closely surrounded by the nerve fibres.Pharmacological experiments, involving the administration of reserpine, nialamide, m-tyrosine and -methyl-m-tyrosine, furnished good evidence for the view that primary catecholamines, probably mainly DA but also NA, are the predominant monoamines present. The experiments also revealed the existence of catecholamine-containing nerve cells in the arcuate nuclei and the ventral portion of the anterior periventricular nuclei. These nerve cells, situated in the regions where the tubero-infundibular tract arises, may be the cell bodies of adrenergic neurons to which the amine-containing nerve fibres at least partly belong.The findings indicate that primary catecholamines are released to the primary plexus of the hypophyseal portal system and thus transported to the anterior lobe. These amines may consequently act as neuro-humoral transmittors for the regulation of the activity of the anterior pituitary. — No direct adrenergic innervation of the cells in the pars tuberalis and anterior lobe was found. The portal vesstes in the pars tuberalis receive a very sparse adrenergic innervation and the vessels in the anterior lobe receive no or very few adrenergic nerves. Pars intermedia, on the other hand, may have a non-sympathetic adrenergic innervation.The Following Abbreviations are Used DA Dopamine - NA Noradrenaline - A Adrenaline - 5-HT 5-hydroxytryptamine For generous supplies of drugs we are indepted to Swedish Ciba, Stockholm (reserpine), and Swedish Pfizer, Stockholm (nialamide). The investigation was supported by research grants from the United States Public Health Service (NB 02854-03), the Swedish Medical Research Council, and the Therese and Johan Andersson Memorial Foundation. The excellent technical assistance of Miss M. Gustafsson is gratefully acknowledged.  相似文献   

2.
Summary The adrenergic nerve fibres running from the ganglia to the innervated tissues usually have too low a content of noradrenaline to be clearly visualized with the histochemical fluorescence method of Falck and Hillarp. They can easily be demonstrated, however, as early as 24 hours after axotomy (crushing or constriction of the nerves) due to the rapid accumulation of what is probably noradrenaline taking place proximally to the lesion. The fibres can be visualized even more clearly if axotomy is combined with the administration of l-dopa and with monoamine oxidase inhibition. In this way the presence, distribution and direction of adrenergic fibres can be directly studied in peripheral nerves.For generous supplies of drugs we are indepted to Swedish Ciba, Stockholm (reserpine) and Swedish Pfizer, Stockholm (nialamide). The investigation has been supported by research grants from the United States Public Health Service (NB 02854-04), the Swedish Medical Research Council, and Knut and Alice Wallenbergs Foundation.  相似文献   

3.
Summary The distribution of certain catecholamines and indoleamines in the ventral nerve cord and the body segments of the medical leech, Hirudo medicinalis, was studied with the fluorescence microscope technique of Falck and Hillarp, with microspectrofluorometry, and with chemical determinations of the amines. The six cells of the segmental ganglia previously shown to be chromaffin were found to contain an amine, most probably 5-hydroxytryptamine. In the two giant cells, the amine was found on the surface of coarse intracellular granules, lying mainly at the cell membrane, and at the nucleus. The two giant cells send their axons to the body muscles, which thus seem to have a 5-hydroxytryptaminergic innervation. The four smaller amine-containing cells of the segmental ganglia send their axons to the neuropil of the ganglion.The only cell type found to contain a catecholamine (probably noradrenaline) was situated in the anterior segmental nerve in the cell cluster anterior of the nephridial duct, one cell in each nerve. The axon of this cell terminates in two or more segmental ganglia; thus these neurons seem to be afferent.This work was supported by grants from the Swedish Natural Science Research Council (project no. 99-35) and the Swedish Medical Research Council (projects no. B 68-12 X-712-03 B and B 68-14 X-56-04 B).  相似文献   

4.
Adrenergic innervation of the gut musculature in vertebrates   总被引:2,自引:0,他引:2  
Summary The adrenergic innervation of the gut musculature has been compared in various vertebrates (two teleost fish, an amphibian, a reptile and a mammal) by the fluorescent histochemical localization of certain monoamines. Very few, if any, adrenergic nerves occur within the longitudinal gut muscle of any of these animals, except for the taenia coli of the guinea-pig caecum. In contrast, the circular smooth muscle coat is supplied by varicose adrenergic nerves. These nerve fibres are particularly numerous in the toad large intestine, guinea-pig caecum, and throughout the eel gut, but are generally sparse or absent from the musculature of the stomach and small intestine of the trout, toad, lizard and guinea-pig. The extent of adrenergic innervation of the muscle has been discussed in relation to the physiology of the different muscle coats and to the general structure of the enteric plexuses in the vertebrate gut.  相似文献   

5.
Summary The adrenergic nerves in the pancreas of mice, rats, guinea-pigs, rabbits, and cats were investigated with the fluorescence method of Falck and Hillarp. The relations between the adrenergic fibres and the vessels were studied by the injection of india ink into the vessels.Besides the normal manifestation of adrenergic fibres at the large vessels, some vessels of capillary size were also accompanied by adrenergic fibres. These fibres had a very weak fluorescence, and showed up regularly only when the animal had been treated with Nialamide and L-DOPA or dopamine to increase the catecholamine content of the adrenergic fibres. The weakness of the fluorescence is perhaps due to low transmitter concentration or to small size of the nerve fibres, or to both. A rough estimate indicated that either the transmitter concentration of the nerve fibre is at least approximately 100 times below that seen in adrenergic nerves in other tissues, or that the radius of the varicosities of the nerve fibres is less than 0.2 . Neither alternative has previously been recognized.The secretory acini of the pancreas seem to lack a direct adrenergic supply. In the intrapancreatic ganglia, non-fluorescent nerve cells were reached by adrenergic terminals. No adrenergic nerve cells were detected in the pancreas of rats and cats. Small intensely fluorescent catecholamine-containing cells were observed in connexion with the intrapancreatic ganglia of rats.The research reported in this document has been sponsored by the Air Force Office of Scientific Research under grant AF EOAR 67-15 through the European Office of Aerospace Research (OAR), United States Air Force, by the United States Public Health Service (grant NB 06701-01) by the Swedish Medical Research Council (project B 67-12X-712-02A), and by the Faculty of Medicine, University of Lund, Sweden.  相似文献   

6.
Summary The development of the adrenergic sympathetic innervation of the rabbit choroid plexus system was studied prenatally and up to two months after birth by a combination of fluorescence histochemistry (formaldehyde and glyoxylic acid methods) and quantitative enzymatic determinations of noradrenaline. The first signs of adrenergic nerves are found in the plexus of the third ventricle within the first day after birth. Fluorescent fibres subsequently appear in the choroid plexuses of the lateral ventricles (five days post partum) and the fourth ventricle (two weeks post partum). During the following development nerve fibres grow along blood vessels to form a plexus located between small vessels and the overlying epithelium. The nerve plexus, with varicose axon terminals, is fully developed at three weeks post partum, and maturation is then established by an increase in the number of terminals within the network of axons. There is a good agreement between (a) the development of the fluorescent nerves and histochemically visible adrenergic innervation, and (b) the tissue level of noradrenaline in the various choroid plexuses. Against the background of available information on the development of the secretory functions in choroid plexus, it is concluded that possibilities for a sympathetic neurogenic influence on the formation of cerebrospinal fluid exist already a few weeks after birth.  相似文献   

7.
The adrenergic innervation of structures in the gills of brown and rainbow trout was studied with catecholamine fluorescence histochemistry. In the arterio-arterial vascular pathway, there was an innervation of the afferent and efferent lamellar arterioles, but the afferent and efferent filamental arteries and the secondary lamellae were devoid of any fluorescent nerve fibres. In S. trutta only, there was an additional innervation of the afferent and efferent branchial arteries and the base of the efferent filamental artery. The innervation of the arterio-venous vascular pathway was similar in both trout species. Many fluorescent nerve fibres were found on nutritive arterioles in the gill arch and interbranchial septum, and in the core of each filament between the surface epithelium and the wall of the filament venous sinus. No fluorescent nerve fibres were observed at the origins of the capillaries arising from the efferent filamental artery. The sympathetic nerve supply is provided to the gills mainly through the posttrematic nerve, with an occasional small contribution through the pretrematic nerve. The presence of adrenergic nerves in the gills is discussed in relation to the regulation of blood flow through the arterio-arterial and arterio-venous pathways.  相似文献   

8.
Summary The localization of catecholamines has been investigated in the extrahepatic biliary duct system of cats, guinea-pigs and rhesus monkeys. In fluorimetric determinations noradrenaline was found to be the main primary catecholamine present in the biliary tract of rhesus monkeys. There exist regional differences in the noradrenaline content: Fairly low amounts were detected in the lower fundus of the gall-bladder (0.28 g/g). Increasing concentrations were measured in the corpus vesicae felleae (0.35 g/g), reaching a maximum level in the collum vesicae (0.49 g/g) and the ductus cysticus (0.50 g/g). The noradrenaline content of the choledochus and the choledocho-duodenal junction including Oddi's sphincter was much lower: 0,27 and 0,25 g/g respectively. The noradrenaline level in the small intestine of the rhesus monkey amounted to less than half the concentration found in the biliary ducts. Neither dopamine nor adrenaline have been detected. Fluorescence microscopical analysis reveals the presence of adrenergic nerves in the bile ducts which correspond to the measured noradrenaline concentrations: All parts of the biliary duct system in the different species investigated contain an elaborate perivascular adventitial plexus and adrenergic fibres confined to adventitial non-adrenergic ganglia. In guinea-pigs adrenergically innervated ganglia extend into the smooth muscle layer. The smooth muscle layer of the gall-bladder and the terminal choledochus in cats and rhesus monkeys is penetrated by a wide-meshed adrenergic ground plexus. This plexus was absent in guinea-pigs. The smooth musculature of the sphincter Oddi lacks a specialized adrenergic nerve supply in all species investigated. Finally, bound to the arterial vascular bed inside the propria in all parts of the biliary tract from all species investigated a prominent perivascular plexus is present. It is concluded that the smooth musculature of the gall-bladder and the terminal choledochus (the sphincter region excluded) in cats and monkeys receives 1. a direct sympathetic noradrenergic inhibitory innervation and 2. an indirect sympathetic noradrenergic inhibitory innervation which acts on intrinsic excitatory neurons and is present in all species investigated. The functional significance of the direct and indirect inhibitory innervation to the smooth musculature of the gall-bladder is discussed in detail.Dedicated to Professor Bengt Falck.Supported by the Deutsche Forschungsgemeinschaft and Joachim-Jungius-Gesellschaft zur Förderung der Wissenschaften, Hamburg.  相似文献   

9.
Adrenergic and cholinesterase-containing neurons of the heart   总被引:2,自引:0,他引:2  
Summary The adrenergic and acetylcholinesterase-containing nerves of the hearts of mice, rats, guinea-pigs, rabbits, and cats were studied. The fluorescence technique of Falck and Hillarp was used for the demonstration of adrenergic nerves, whereas a modified Koelle cholinesterase technique was used for the cholinesterase-containing nerves. The inhibitors used were Mipafox, iso-OMPA and Nu 683. Microspectrofluorometry was used to identify the structures containing dopamine.Adrenergic as well as acetylcholinesterase-containing fibres were found in all parts of the heart, most abundantly in the atria. Dense nerve plexa supplied the sinoarial and atrioventricular nodes. There was a plexus of both fibre types in the endocardium and on the atrial side of the valves. In the valves, it could be shown that adrenergic and cholinesterase-containing fibres ran closely parallel to each other. Indirect evidence suggested that this applies also to the myocardium.No nerve fibres containing dopamine were revealed in the microspectrofluorometer. The dopamine previously found in the atria seems, instead, to be situated in so-called small intensely fluorescent cells.No adrenergic ganglion cells were found in the heart despite extensive search. The vagus of rabbits was found to contain only few adrenergic preterminals.  相似文献   

10.
Summary The distribution of monoamines in the pharynx and oesophagus of the rhesus monkey (Macacus rhesus) and the cat (Felis domestica) was investigated by means of fluorescence microscopical and chemical methods. Fluorimetric determinations reveal the presence of varying amounts of noradrenaline in the pharynx and oesophagus of the rhesus monkey. The lowest amount (0.05 (g/g) was found in the lower part of the oesophagus, the so-called sphincter-segment. The middle and upper part of the oesophagus contain medium amounts of noradrenaline (0.06–0.09 g) whereas the highest concentration was detected in the pharynx (0.14 (g/g). Neither dopamine nor adrenaline occurred in the tissue pieces analyzed. Fluorescence microscopically noradrenaline was found to be located in varicose intramural nerve fibre plexus which innervate mucous glands and blood vessels in the pharynx of both species. In the rhesus monkey, the lamina muscularis mucosae of all parts of the oesophagus is supplied by a well developed noradrenergic ground-plexus. Preterminal and terminal varicose nerve fibres are distributed in myenteric and submucous ganglia of the oesophagus; the number of such ganglia decreases towards the lower segment. The density of the adrenergic innervation is higher in myenteric when compared to submucous ganglia. The arrangement of the intraganglionic terminals suggests that both axosomatic and axodendritic contacts occur in Auerbach's ganglia whereas axodendritic contacts seem to predominate in Meissner's ganglia. Myenteric ganglia situated close to the submucosa as well as true submucous ganglia may be occasionally seen to be traversed by faintly fluorescent non-varicosed fibres which do not establish any synaptic contacts. The fluorescence intensity of intraganglionic varicosities varies considerably; accordingly the transmitter content of individual varicosities seems to be very variable. The adrenergic innervation of the lamina muscularis is restricted to single contorted fibres being sparsely distributed throughout the longitudinal smooth muscle layer. The circularly arranged smooth musculature of the sphincter-segment lacks an adrenergic nerve supply. The vagus nerve carries sympathetic adrenergic fibres to the lower oesophagus and the cardia. Species differences between the innervation pattern in rhesus monkeys and cats are outlined: No adrenergically innervated ganglia occur in the submucosa of the cat. However, part of the myenteric ganglia in cats exhibit an adrenergic innervation pattern similar to that seen in submucous ganglia of the rhesus monkey. They might therefore be regarded as morphologically equivalent to the plexus submucosus which is, however, present in the whole gut. The density of the noradrenergic ground-plexus in the muscularis mucosae of the cat's oesophagus is less than that of the corresponding plexus in rhesus monkeys.The influence of noradrenaline upon the smooth musculature and the neurons from myenteric as well as submucous ganglia is discussed. From the point of view of the adrenergic innervation there is no structure corresponding to the sphincterlike lower oesophageal segment.Supported by the Deutsche Forschungsgemeinschaft and the Joachim-Jungius-Gesellschaft zur Förderung der Wissenschaften, Hamburg.  相似文献   

11.
Summary A detailed study of the origin and distribution of sympathetic fibres in the distal colon of the guinea-pig has been made using the fluorescent histochemical method for localizing catecholamines. The extrinsic adrenergic fibres of the colonie sympathetic nerves follow the inferior mesenteric artery and its branches to the colon. Some of the extrinsic adrenergic fibres are associated with the parasympathetic fibres of the pelvic nerves near the colon. Complete adrenergic denervation follows the removal of the inferior mesenteric ganglion or the destruction of the nerves running with the inferior mesenteric artery.No fluorescent fibres, other than those associated with blood vessels, were observed in air-dried stretch preparations of the isolated longitudinal muscle. However, a substantial number of varicose, terminal fibres, not associated with blood vessels, were observed in the circular muscle. Some varicose fibres, apart from those associated with ganglion cells, were observed in the myenteric plexus. These fibres were seen in the bundles of nerves running between the nodes of the plexus and also as single fibres which branched from the plexus to end in areas free of ganglion cells.Three plexuses of adrenergic nerve fibres have been distinguished in the submucosa: a dense plexus of terminal fibres innervating both the veins and arteries; a plexus consisting of innervated nodes of ganglion cells, connected by bundles of fluorescent and non-fluorescent nerves; and a plexus of varicose and non-varicose fibres, which is not associated with ganglion cells. Some groups of ganglion cells in the submucosa were without adrenergic innervation.A plexus of varicose fibres forms a meshwork in the lamina propria of the mucosa. The muscularis mucosae is sparsely innervated. Most of the blood vessels in the mucosa are not associated with adrenergic fibres.  相似文献   

12.
As determined by light microscopic autoradiography, parts of the nervous system of Phocanema decipiens have selective and high affinity mechanisms for the uptake of tritiated noradrenaline, dihydroxyphenylalanine (dopa) and 5-hydroxytryptamine. In the nervous system, noradrenaline is accumulated only by the four papillary nerves and two fibers in the nerve ring. The precursor dopa is also taken up by these neurons and, in addition, by the lateral nerves. 5-Hydroxytryptamine is accumulated by the three pharyngeal nerves, two cells in each lateral ganglion, and two other fibers in the nerve ring. With adjacent ultrathin sections, the labelled papillary nerve and lateral ganglion were examined ultrastructurally and found to contain various dense core vesicles which are similar to those in other aminergic neurons. The adjoining unlabelled cells of the same neurons are found, on the other hand, to contain dense agranular vesicles. With these results, the noradrenaline accumulating neurons are suggested to be noradrenergic and to contain the amine synthesizing enzymes. The lateral nerves are regarded, for the present, as dopaminergic neurons. These suggestions are in agreement with the previous demonstration of catecholaminergic neurons in this nematode. The 5-hydroxytryptamine accumulating neurons are tentatively identified as tryptaminergic.  相似文献   

13.
The adrenergic innervation of the urinary bladder of normal female and pregnant rats has been studied using a fluorescence histochemical method. The bladder is richly innervated by adrenergic nerve fibres as is evidenced by the presence of numerous adrenergic nerves in the adventitia, musculosa and submucosa. However, adrenergic nerve cells could not be observed. During pregnancy, adrenergic nerve fibres showed signs of degeneration, as most of the nerve fibres disappeared and the surviving fibres were much swollen. 10 days after parturition the pattern and density of adrenergic innervation became almost similar to those of the control animals.  相似文献   

14.
Summary The serotoninergic innervation of the corpus cardiacum (CC) of Locusta migratoria was investigated using two antisera against serotonin. A dense network of immunoreactive nerve fibres was present in the storage lobe of the CC. Immunopositive fibres only sporadically crossed the border between the storage lobe and the glandular lobe of the CC. Immunopositive fibres entered the storage lobe of the CC via the nervus corporis cardiaci I (NCCI); NCCII was immunonegative. Unilateral retrograde fillings of the NCCI with the fluorescent tracer Lucifer yellow, followed by antiserotonin immunocytochemistry, revealed about 20 double-labelled neurones in the anterior part of the pars intercerebralis. The double-labelled neurones were scattered between fluorescent non-immunoreactive neurones. Additionally, 5–7 neurones labelled only with Lucifer yellow were found at the ventrolateral side of the tritocerebrum. No immunopositive neurones were observed in the hypocerebral ganglion. Immunopositive fibres from neurones in the frontal ganglion ran via the recurrent nerve and the neuropile of the hypocerebral ganglion into the paired oesophageal nerve. At most, a few immunopositive nerve fibres occurred in the cardiostomatogastric nerves II, which connect the storage lobe of the CC with the paired oesophageal nerve at the caudal end of the hypocerebral ganglion.  相似文献   

15.
Summary The development of the nerve supply of the pituitary pars intermedia (PI) of C3H mice was studied by electron microscopy. Nerve fibres and terminal structures, most probably adrenergic, first appear in the newborn. The adult innervation pattern is achieved by the end of the first postnatal week.In the adult animal two types of nerve terminals were distinguished; type A (peptidergic or neurosecretory) and type B (adrenergic). The peptidergic fibres were scarce and exhibited no synapse-like contacts. It is suggested that they are of secondary importance in a direct nervous hypothalamic control of PI function. Type B terminals were found throughout the PI. They formed synapse-like contacts with the glandular cells, indicating that the primary innervation is exerted by adrenergic neurons.An autonomous differentiation of the glandular cells and in the adult a combined direct nervous and neurohumoral control of PI function is suggested.This investigation was supported by grant No B 2180-026 from the Swedish Natural Science Research Council. The skilful technical assistance of Mrs Ulla Wennerberg is gratefully acknowledged  相似文献   

16.
The innervation of the dorsal aorta and renal vasculature in the toad (Bufo marinus) has been studied with both fluorescence and ultrastructural histochemistry. The innervation consists primarily of a dense plexus of adrenergic nerves associated with all levels of the preglomerular vasculature. Non-adrenergic nerves are occasionally found in the renal artery, and even more rarely near the afferent arterioles. Many of the adrenergic nerve profiles in the dorsal aorta and renal vasculature are distinguished by high proportions of chromaffin-negative, large, filled vesicles. Close neuromuscular contacts are common in both the renal arteries and afferent arterioles. Possibly every smooth muscle cell in the afferent arterioles is multiply innervated. The glomerular capillaries and peritubular vessels are not innervated, and only 3-5% of efferent arterioles are accompanied by single adrenergic nerve fibres. Thus, nervous control of glomerular blood flow must be exerted primarily by adrenergic nerves acting on the preglomerular vasculature. The adrenergic innervation of the renal portal veins and efferent renal veins may play a role in regulating peritubular blood flow. In addition, glomerular and postglomerular control of renal blood flow could be achieved by circulating agents acting via contractile elements in the glomerular mesangial cells, and in the endothelial cells and pericytes of the efferent arterioles. Some adrenergic nerve profiles near afferent arterioles are as close as 70 nm to distal tubule cells, indicating that tubular function may be directly controlled by adrenergic nerves.  相似文献   

17.
Summary The adrenergic retinal neurons of perch and trout were studied with the fluorescence microscopical method of Falck and Hillarp. Pilot studies were also performed on pike, plaice, cod, eel, goldfish, cunner, black moor, cichlid and carp. Only minor differences were noted between the species.Adrenergic varicose terminals occur in three sublayers of the inner plexiform layer. The layer adjacent to the ganglion cells is the most elaborate. Adrenergic perikarya occur in the innermost cell rows of the inner nuclear layer, sending branches to all sublayers of the inner plexiform layer. Adrenergic perikarya also occur among the ganglion cells, sending their branches to the innermost sublayer of adrenergic fibres in the inner plexiform layer. Weakly fluorescent adrenergic fibres can be seen running through the entire depth of the inner nuclear layer. They originate from the adrenergic perikarya of the inner nuclear layer, and they end in an elaborate plexus of adrenergic terminals among the horizontal cells. Either of the horizontal cell types can be in contact with adrenergic terminals, but the middle horizontal cells have the greatest density about them, being surrounded by baskets of adrenergic terminals of presumably synaptic character. It cannot be excluded that some horizontal cells contain a catecholamine.Microspectrofluometry revealed dopamine in the perch and trout retinal neurons.The research reported in this document has been sponsored by USPHS Grant No. 06092 and by a Research Professorship from Research to Prevent Blindness, Inc. to A.M.L. and by the Swedish Medical Research Council (B69-14X-712-04C and B68-14X-2321-01).  相似文献   

18.
Summary Dual innervation of snake cerebral blood vessels by adrenergic and cholinergic fibres was demonstrated with the use of histochemical methods. Although the nerve plexuses are somewhat less dense, the essential features of innervation of the blood vessels are similar to those of mammals with the exception that the adrenergic plexuses are more prominent than the cholinergic plexuses. The major arteries of the cerebral carotid system have a rich nerve supply. However, the innervation is less rich in the basilar and poor in the spinal (vertebral) arteries. Although the arteries supplying the right side of head are poorly developed, three pairs of arteries, cerebral carotids, ophthalmics and spinals, supply the snake brain. The carotids and ophthalmics are densely innervated and are accompanied by thick nerve bundles, suggesting that the nerves preferentially enter the skull along those arteries. Some parenchymal arterioles are also dually innervated. Connection between the brain parenchyma and intracerebral capillaries via both cholinergic and adrenergic fibres was observed. In addition cholinergic nerve fibres, connecting capillaries and the intramedullary nerve fibre bundles, were noticed. Capillary blood flow may be influenced by both adrenergic and cholinergic central neurons. The walls of capillaries also exhibit heavy acetylcholinesterase activity. This may indicate an important role for the capillary in the regulation of intracerebral blood flow.  相似文献   

19.
Summary The adrenergic innervation in the submaxillary gland, heart, kidney, small intestine, and accessory male genital organs and the development of the adrenal chromaffin cells and the sympathetic ganglia were studied in the rat from 15 days post coitum to 16 days post partum using the fluorescence histochemical method of Falck and Hillarp. The postnatal development of the noradrenaline concentrations in the heart and vas deferens was followed by fluorometric determinations.At about 15 days post coitum, the anlagen of the sympathetic chains were well visible in the form of two dorsal segmented columns of small branching sympathicoblasts exhibiting an intense catecholamine fluorescence. In the midline, ventrally to these two anlagen, another column of sympathicoblasts developed; this seemed to give rise to the prevertebral ganglia and to the short adrenergic neurons supplying the internal genital organs. At the level of the adrenal anlagen, small intensely fluorescent chromaffin cells were collected in two bilateral groups which became enclosed by adreno-cortical cells. This enclosure was, however, not complete even at two weeks post partum.Bundles of growing sympathetic nerves were visible in the periphery of the various organs studied at 19–21 days post coitum. A terminal innervation of the organs suggestive of a functional transmitter mechanism did not start to establish until at or immediately after birth. The final pattern of innervation was usually reached at about one week post partum, and the following development proceeded largely in the form of a quantitative increase in the number of nerves participating in the innervation apparatus. The adult level of noradrenaline in the heart and vas deferens was reached three to five weeks after birth. The small intestine was an exception in that the final pattern of innervation in the wall was attained immediately after birth.There was no overt difference in the rate of development of the terminal sympathetic innervation in organs supplied by short adrenergic neurons (accessory male genital organs) compared to the innervation of the submaxillary gland, heart and kidney, which receive classical long adrenergic neurons.The work was supported by a grant from the Association for the Aid of Crippled Children, New York, and was carried out within a research organization sponsored by the Swedish Medical Research Council (grants No. B71-14X-56-07A and B71-14X-712-06A).  相似文献   

20.
Summary The distribution of 5-hydroxytryptamine in the gut of several species of birds and reptiles, and of a prototherian mammal, the platypus, was studied using a monoclonal antibody. 5-Hydroxytryptamine-like immunoreactivity was found in enterochromaffin cells and, in birds, in thrombocytes. Immunoreactivity was not found in enteric neurons fixed immediately after dissection. A detailed study was made on one avian species, the budgerigar. Following incubation of intestine in physiological solution, immunore-activity was found in nerve fibres in the gut wall that was more marked after incubation with the monoamine oxidase inhibitor pargyline. These fibres took up exogenous 5-hydroxytryptamine. Similar fibres were found in the intestinal nerves and in perivascular plexuses on mesenteric arteries. Both the uptake of 5-hydroxytryptamine and the appearance of neuronal immunoreactivity after incubation were inhibited by the amine uptake inhibitors desmethylimipramine or fluoxetine. Fibres taking up 5-hydroxytryptamine were damaged by pretreatment with 6-hydroxydopamine. It was concluded that the fibres showing immunoreactivity after incubation were adrenergic fibres that had taken up 5-hydroxytryptamine released in vitro from enterochromaffin cells or thrombocytes. These, and more limited observations made on the other species, suggest that birds, reptiles and prototherian mammals lack enteric neurons that use 5-hydroxytryptamine as a transmitter substance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号