首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R J Parry  A Muscate  L J Askonas 《Biochemistry》1991,30(41):9988-9997
The acetylenic analogue of adenosine 9-(5',6'-dideoxy-beta-D-ribo-hex-5'-ynofuranosyl)adenine has been synthesized, and its behavior as an inhibitor of bovine S-adenosylhomocysteine hydrolase has been examined. Incubation of the enzyme with excess inhibitor caused a time-dependent, irreversible inactivation of the enzyme that was accompanied by the reduction of two equivalents of NAD+ to NADH and the loss of the two remaining equivalents of NAD+. With use of radiolabeled inhibitor, it was established that 4 equiv of the acetylenic analog bind irreversibly to the enzyme and that 4 equiv were required to inactivate the enzyme completely. The inactivated enzyme could not be reactivated by incubation with NAD+. Denaturation studies revealed that 2 equiv of the inhibitor are bound more tightly to the enzyme than the remainder, suggesting the formation of a covalent linkage between the oxidized inhibitor and the enzyme. The putative covalent linkage was found to be acid sensitive but stable to mild base. The linkage could not be stabilized by treatment of the enzyme-inhibitor complex with either borohydride or cyanoborohydride. A Kl of 173 nM was measured for the inhibitor, making it one of the more potent inhibitors that have been reported. The enzyme used in these studies was isolated by modification of an affinity chromatography method reported by Narayanan and Borchardt [(1988) Biochim. Biophys. Acta 965, 22-28]. The affinity chromatography unexpectedly led to the isolation of two forms of the enzyme. The major form contained 4.0 mol of nucleotide cofactor/mol of enzyme tetramer, while the minor form carried only 2.0 mol/tetramer.  相似文献   

2.
1. The inhibition of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) by compounds containing trifluoromethyl-carbonyl groups was investigated and related to the effects observed with structurally similar, non-fluorinated chemicals. 2. Compounds that in aqueous solution readily form hydrates inhibit acetylcholinesterase in a time-dependent process. On the other hand non-hydrated, carbonyl-containing compounds showed rapid and reversible, time-independent enzyme inactivation when assayed under steady state conditions. 3. m-N,N,N-Trimethylammonium-acetophenone acts as a rapid and reversible, time-independent, linear competitive inhibitor of acetylcholinesterase (Ki = 5.0 . 10(-7) M). 4. The most potent enzyme inhibitor tested in this series was N,N,N,-trimethylammonium-m-trifluoroacetophenone. It gives time-dependent inhibition and the concentration which inactivates eel acetylcholinesterase to 50% of the original activity after 30 min exposure is 1.3 . 10(-8) M. The bimolecular rate constant for this reaction is 1.8 . 10(6) 1 . mol-1 . min-1. The enzyme-inhibitor complex is very stable as the inhibited enzyme after 8 days of dialysis is reactivated to 20% only. This compound represents a quasi-substrate inhibitor of acetylcholinesterase.  相似文献   

3.
L Frick  R Wolfenden  E Smal  D C Baker 《Biochemistry》1986,25(7):1616-1621
Experiments with radioactive deoxycoformycin indicate that the inhibitor is released from calf intestinal adenosine deaminase after the enzyme-inhibitor complex is disrupted by denaturation. Experiments with 2H2O and H218O indicate that the enzyme does not catalyze elimination-addition reactions that could have led to reversible covalent derivatization of the enzyme. Ultraviolet difference spectra and the influence of pH on inhibitor binding indicate that deoxycoformycin is bound intact as the neutral species, at a binding site that is less polar than solvent water. The enzyme-inhibitor complex appears to be held together by hydrogen bonds of extraordinary stability (ca. 10 kcal/mol). These results suggest that deamination proceeds by direct water attack, the enzyme acting as a general-base catalyst.  相似文献   

4.
T A Alston  R H Abeles 《Biochemistry》1987,26(13):4082-4085
L-Histidine methyl ester inactivates histidine decarboxylase in a time-dependent manner. The possibility was considered that an irreversible reaction between enzyme and inhibitor occurs [Recsei, P. A., & Snell, E. E. (1970) Biochemistry 9, 1492-1497]. We have confirmed time-dependent inactivation by histidine methyl ester and have investigated the structure of the enzyme-inhibitor complex. Upon exposure to either 8 M guanidinium chloride or 6% trichloroacetic acid, unchanged histidine methyl ester is recovered. Formation of the complex involves Schiff base formation, most likely with the active site pyruvyl residue [Huynh, Q. K., & Snell, E. E. (1986) J. Biol. Chem. 261, 4389-4394], but does not involve additional irreversible covalent interaction between inhibitor and enzyme. Complex formation is a two-step process involving rapidly reversible formation of a loose complex and essentially irreversible formation of a tight complex. For the formation of the tight complex, Ki = 80 nM and koff = 2.5 X 10(-4) min-1. Time-dependent inhibition was also observed with L-histidine ethyl ester, L-histidinamide, and DL-3-amino-4-(4-imidazolyl)-2-butanone. No inactivation was observed with glycine methyl ester or histamine. We propose that in the catalytic reaction the carboxyl group of the substrate is in a hydrophobic region. The unfavorable interaction between the carboxylate group and the hydrophobic region facilitates decarboxylation [Crosby, J., Stone, R., & Liehard, G. E. (1970) J. Am. Chem. Soc. 92, 2891-2900]. With histidine methyl ester this unfavorable interaction is no longer present; hence, there is tight binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The flavoprotein nitroalkane oxidase from Fusarium oxysporum catalyzes the oxidation of nitroalkanes to the respective aldehydes or ketones with production of nitrite and hydrogen peroxide. The enzyme is irreversibly inactivated by incubation with tetranitromethane, a tyrosine-directed reagent, at pH 7.3. The inactivation is time-dependent and shows first-order kinetics for two half-lives of inactivation. Further inactivation can be achieved upon a second addition of tetranitromethane. A saturation kinetic pattern is observed when the rate of inactivation is determined versus the concentration of tetranitromethane, indicating that a reversible enzyme-inhibitor complex is formed before irreversible inactivation occurs. Values of 0.096 +/- 0.013 min(-1) and 12.9 +/- 3.8 mM were determined for the first-order rate constant for inactivation and the dissociation constant for the reversibly formed complex, respectively. The competitive inhibitor valerate protects the enzyme from inactivation by tetranitromethane, suggesting an active-site-directed inactivation. The UV-visible absorbance spectrum of the inactivated enzyme is perturbed with respect to that of the native enzyme, suggesting that treatment with tetranitromethane resulted in nitration of the enzyme. Comparison of tryptic maps of nitroalkane oxidase treated with tetranitromethane in the presence and absence of valerate shows a single peptide differentially labeled in the inactivated enzyme. The spectral properties of the modified peptide are consistent with nitration of a tyrosine residue. The amino acid sequence of the nitrated peptide is L-L-N-E-V-M-C-(NO(2)-Y)-P-L-F-D-G-G-N-I-G-L-R. The possible role of this tyrosine in substrate binding is discussed.  相似文献   

6.
The inhibition of steroid 5alpha-reductase (5AR) by Delta(1)-4-azasteroids is characterized by a two-step time-dependent kinetic mechanism where inhibitor combines with enzyme in a fast equilibrium, defined by the inhibition constant K(i), to form an initial reversible enzyme-inhibitor complex, which subsequently undergoes a time-dependent chemical rearrangement, defined by the rate constant k(3), leading to the formation of an apparently irreversible, tight-binding enzyme-inhibitor complex (Tian, G., Mook, R. A., Jr., Moss, M. L., and Frye, S. V. (1995) Biochemistry 34, 13453-13459). A detailed kinetic analysis of this process with a series of Delta(1)-4-azasteroids having different C-17 substituents was performed to understand the relationships between the rate of time-dependent inhibition and the affinity of the time-dependent inhibitors for the enzyme. A linear correlation was observed between ln(1/K(i)), which is proportional to the ligand binding energy for the formation of the enzyme-inhibitor complex, and ln(1/(k(3)/K(i))), which is proportional to the activation energy for the inhibition reaction under the second order reaction condition, which leads to the formation of the irreversible, tight-binding enzyme-inhibitor complex. The coefficient of the correlation was -0.88 +/- 0.07 for type 1 5AR and -1.0 +/- 0.2 for type 2 5AR. In comparison, there was no obvious correlation between ln(1/K(i)) and ln(1/k(3)), which is proportional to the activation energy of the second, time-dependent step of the inhibition reaction. These data are consistent with a model where ligand binding energies provided at C-17 of Delta(1)-4-azasteroids is fully expressed to lower the activation energy of k(3)/K(i) with little perturbation of the energy barrier of the second, time-dependent step.  相似文献   

7.
The glucose-derived alkylating agent N-bromoacetylglucosamine (GlcNBrAc) is shown to cause a time-dependent irreversible inactivation of rat muscle hexokinase type II. The kinetics of inactivation are in accord with the reversible formation of an enzyme-inhibitor complex prior to modification, indicating that the reagent is active-site-directed. A Ki of 0.57 mM obtained for this reversible complexing is in agreement with a Ki of 0.65 mM obtained for the inhibition caused by N-propionylglucosamine, an isosteric analogue of GlcNBrAc and a competitive inhibitor with respect to glucose. Glucose itself protects competitively against inactivation. A KG of 0.26 mM obtained for the formation of enzyme-glucose complex from these studies is in agreement with the kinetically-determined Km of 0.2 mM. The substrate-unrelated but chemically similar alkylating agents bromoacetic acid and N-bromoacetylgalactosamine inactivate the enzyme at 20% of the rate caused by GlcNBrAc. The inactivation rate increases rapidly over the pH range 7--9. Analysis of this pH dependence shows that a single residue of pKa 8.9 is reacting with GlcNBrAc with a kmax (pH corrected, pseudo-first-order rate constant) of 1.5 x 10(-3) S-1. These values are typical of the reaction of model thiols with alkylating agents and suggests the reacting residue is probably a cysteine. Use of radioactively labelled GlcNBrAc indicates that uptake of 1 mol of reagent per mol protein causes complete activity loss. Finally the behaviour of this enzyme with active-site-directed alkylating agents is compared with published results of similar experiments carried out with yeast hexokinase and bovine brain hexokinase type I.  相似文献   

8.
D-Tubocurarine, a reversible peripheral inhibitor of cholinesterases accelerates methanesulfonylation of Drosophila melanogaster wild type and W359L mutant. The kinetic evaluation of the process was performed in a step-by-step analysis. The second order overall sulfonylation rate constants, determined from classical residual activity measurements, were used in the subsequent analysis of progress curves. The latter were obtained by measuring the hydrolysis of acetylthiocholine in a complex reaction system of enzyme, substrate, irreversible and reversible inhibitor. The underlying kinetic mechanisms, from such a complex data, could only be untangled by targeted inspection and successive incorporation of reaction steps for which experimental evidence existed. The study showed that the peripheral ligand D-tubocurarine, by binding at the entrance into the active site of the two investigated enzymes (Golicnik et al., Biochemistry 40 (2001) 1214), enhances the affinity for small methanesulfonylfluoride, rather to speeding up the formation of a stable covalent enzyme-inhibitor complex. The specific arrangements at the rim of the active site of each individual enzyme dictate the actual events which can be detected by kinetic means.  相似文献   

9.
7 alpha-Substituted 4-androstene-3,17-diones are effective inhibitors of aromatase. The microsomal enzyme complex has a greater affinity for several of these inhibitors than for the substrate androstenedione, with 7 alpha-(4'amino)phenylthio-4-androstene-3,17-dione being the most potent competitive inhibitor of the series. A potential affinity analog, the bromoacetamide derivative of the amino compound, has been synthesized in both unlabeled and 14C-labeled forms via a condensation of bromoacetic acid with the amino compound using DCC. Inactivation studies with the unlabeled inhibitor showed a time-dependent, first-order inactivation of aromatase enzymatic activity. Androstenedione, when incubated in varying concentrations with the irreversible inhibitor, provided protection from inactivation. Binding studies with radiolabeled inhibitor and microsomal aromatase preparations showed that irreversible binding had occurred. SDS-electrophoresis, followed by fluorography, identified four major microsomal proteins that were radiolabeled, with the protein band at 52,000 mol. wt predominating. Similar studies with a solubilized aromatase preparation decreased the amount of nonspecific binding. Thus, covalent bonds between the irreversible inhibitor and the aromatase cytochrome P450 molecule were formed.  相似文献   

10.
Thymidylate synthetase (TS) and dihydrofolate reductase (DHFR) in Leishmania tropica exist as a bifunctional protein. By use of a methotrexate-resistant strain, which overproduces the bifunctional enzyme, the protein was purified 80-fold to apparent homogeneity in two steps. The native protein has an apparent molecular weight of 110 000 and consists of two subunits with identical size and charge. Available data indicate that each of the subunits possesses TS and DHFR. The TS of the bifunctional protein forms a covalent 5-fluoro-2'-deoxyuridylate (FdUMP)-(+/-)-5,10-methylenetetrahydrofolate-enzyme complex in which 2 mol of FdUMP is bound per mole of enzyme. In contrast, titration of DHFR with methotrexate indicated that only 1 mol of the inhibitor is bound per mole of dimeric enzyme. Both TS and DHFR activities of the bifunctional enzyme were inactivated by the sulfhydryl reagent N-ethylmaleimide. Substrates of the individual enzymes afforded protection against inactivation, indicating that each enzyme requires at least one cysteine for catalytic activity. Kinetic evidence indicates that most, if not all, of the 7,8-dihydrofolate produced by TS is channeled to DHFR faster than it is released into the medium. Although the mechanism of channeling is unknown, the possibility that the two enzymes share a common folate binding site has been ruled out.  相似文献   

11.
Dihydrofolate reductase has been purified from a trimethoprim-resistant strain of Neisseria gonorrhoeae. The enzyme showed a single component on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 18,000) and on isoelectric focusing in 5 M urea (pI = 6.8). Although gel electrophoresis under nondenaturing conditions resolved the preparation into two enzymatically active proteins (called form 1 and form 2), they were not genetically determined isozymes. Both had a similar dihydrofolate Km (2 microM), NADPH Km (10 microM), and trimethoprim Ki (20 nM), and form 2 (the slower migrating species) was shown to be generated from form 1 by the electrophoresis conditions. The complete covalent structure of the enzyme has also been determined. It is a single polypeptide composed of 162 residues and containing 4 cysteines. The gonococcal dihydrofolate reductase shares a 35% homology with the chicken liver enzyme and a 40% homology with the Escherichia coli enzyme. Most of these identities are residues that have been implicated in the binding of NADPH and methotrexate to the E. coli and Lactobacillus casei reductases.  相似文献   

12.
2-Ethynylnaphthalene (2EN) is an effective mechanism-based inhibitor of CYP2B4. There are two inhibitory components: (1) irreversible inactivation of CYP2B4 (a typical time-dependent inactivation), and (2) a reversible component. The reversible component was unusual in that the degree of inhibition was not simply a characteristic of the enzyme-inhibitor interaction, but dependent on the size of the substrate molecule used to monitor residual activity. The effect of 2EN on the metabolism of seven CYP2B4 substrates showed that it was not an effective reversible inhibitor of substrates containing a single aromatic ring; substrates with two fused rings were competitively inhibited by 2EN; and larger substrates were non-competitively inhibited. Energy-based docking studies demonstrated that, with increasing substrate size, the energy of 2EN and substrate co-binding in the active site became unfavorable precisely at the point where 2EN became a competitive inhibitor. Hierarchical docking revealed potential allosteric inhibition sites separate from the substrate binding site.  相似文献   

13.
The kinetics of slow onset inhibition of Proteinase K by a proteinaceous alkaline protease inhibitor (API) from a Streptomyces sp. is presented. The kinetic analysis revealed competitive inhibition of Proteinase K by API with an IC50 value 5.5 +/- 0.5 x 10-5 m. The progress curves were time-dependent, consistent with a two-step slow tight binding inhibition. The first step involved a rapid equilibrium for formation of reversible enzyme-inhibitor complex (EI) with a Ki value 5.2 +/- 0.6 x 10-6 m. The EI complex isomerized to a stable complex (EI*) in the second step because of inhibitor-induced conformational changes, with a rate constant k5 (9.2 +/- 1 x 10-3 s-1). The rate of dissociation of EI* (k6) was slower (4.5 +/- 0.5 x 10-5 s-1) indicating the tight binding nature of the inhibitor. The overall inhibition constant Ki* for two-step inhibition of Proteinase K by API was 2.5 +/- 0.3 x 10-7 m. Time-dependent dissociation of EI* revealed that the complex failed to dissociate after a time point and formed a conformationally altered, irreversible complex EI**. These conformational states of enzyme-inhibitor complexes were characterized by fluorescence spectroscopy. Tryptophanyl fluorescence of Proteinase K was quenched as a function of API concentration without any shift in the emission maximum indicating a subtle conformational change in the enzyme, which is correlated to the isomerization of EI to EI*. Time-dependent shift in the emission maxima of EI* revealed the induction of gross conformational changes, which can be correlated to the irreversible conformationally locked EI** complex. API binds to the active site of the enzyme as demonstrated by the abolished fluorescence of 5-iodoacetamidofluorescein-labeled Proteinase K. The chemoaffinity labeling experiments lead us to hypothesize that the inactivation of Proteinase K is because of the interference in the electronic microenvironment and disruption of the hydrogen-bonding network between the catalytic triad and other residues involved in catalysis.  相似文献   

14.
The nature of the interaction between Escherichia coli cytidine deaminase and the phosphapyrimidine nucleoside 1 has been studied kinetically and spectrophotometrically. Compound 1 was designed as a transition-state analog, and is a potent, slow-binding inhibitor of cytidine deaminase (Ashley, G. W., and Bartlett, P. A. (1982) Biochem. Biophys. Res. Commun. 108, 1467-1474). We present evidence that the binding of 1 is reversible, with no covalent linkage between the enzyme and 1. At pH 6, the rate of recovery of enzyme activity from dissociation of the E X I complex is strongly dependent on the concentration of E X I, indicating that the inhibitor dissociates reversibly. UV difference spectroscopy reveals that the chromophore of 1 is unaltered on binding to the enzyme, thus eliminating the possibility of reversible, covalent modification of the enzyme. For the binding of the active beta-anomers of 1 to cytidine deaminase, the following kinetic parameters were determined at pH 6: kon = 8300 M-1 S-1, koff = 7.8 X 10(-6) S-1, Ki = 0.9 nM. We were also able to observe and characterize time-dependent inhibition of E. coli cytidine deaminase by tetrahydrouridine, 3. This interaction involves involves initial formation of a loose complex (KD = 1.2 microM), followed by isomerization in a slow step to give a more tightly bound complex (Ki = 0.24 microM) with forward and reverse rate constants kf = 3.81 min-1 and kr = 0.95 min-1, respectively.  相似文献   

15.
D. Bar-Zvi  N. Shavit 《BBA》1984,765(3):340-346
3′-O-(4-benzoyl)benzoyl ADP (BzADP) acts as a reversible inhibitor of the chloroplast coupling factor 1 ATPase (CF1) when incubated with the enzyme in the dark. The Vmax of ATP hydrolysis is decreased and the kinetics of the reaction are altered from noncooperative to cooperative with respect to ATP. Photoactivation of the benzophenone group in BzADP by irradiation with ultraviolet light (366 nm) results in the covalent binding of BzADP to the enzyme and inactivation of its enzymic activity. Polyacrylamide gel electrophoresis of CF1-ATPase in the presence of sodium dodecyl sulfate shows that the analog is bound primarily to the enzyme's β subunit. Complete inactivation of the activated CF1-ATPase occurs upon covalent binding of 2.45 mol BzADP/mol CF1. Binding of BzADP and inactivation of the ATPase are prevented if ADP, but not ATP, is present during the photoactivation step. The presence of Ca2+ during irradiation enhances the rate of BzADP covalent binding as well as the rate of inactivation of the enzyme.  相似文献   

16.
When dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B, MB 1428, is treated with approximately a 5 mol ratio of N-bromosuccinimide (NBS) to enzyme at pH 7.2 and assayed at the same pH, there is a 40% loss of activity due to the modification of 1 histidine residue and possibly 1 methionine residue before oxidation of tryptophan occurs. The initial modification is accompanied by a shift of the pH for maximal enzymatic activity from pH 7.2 to pH 5.5 Upon further treatment with N-bromosuccinimide, the activity is gradually reduced from 60 to 0% as tryptophan residues become oxidized. An NBS to enzyme mole ratio of approximately 20 results in 90% inactivation of the enzyme. When the enzyme is titrated with NBS in 6 M guanidine HCl, 5 mol of tryptophan react per mol of enzyme, a result in agreement with the total tryptophan content as determined by magnetic circular dichroism. The 40% NBS-inactivated sample posses full binding capacity for methotrexate and reduced triphosphopyridine nucleotide, and the Km values for dihydrofolate and TPNH are the same as for the native enzyme. After 90% inactivation, only half of the enzyme molecules bind methotrexate, and the dissociation constant for methotrexate is 40 nM as compared to 4 nM for native enzyme in solutions of 0.1 M ionic strength, pH 7.2 Also, TPNH is not bound as tightly to the modified enzyme-methotrexate complex as to the unmodified enzyme-methotrexate complex. Circular dichroism studies indicate the 90% NBS-inactivated enzyme has the same alpha helix content as the native enzyme but less beta structure, while the 40% inactivated enzyme is essentially the same as the native enzyme. Protection experiments were complicated by the fact that NBS reacts with the substrates and cofactors of the enzyme. Although protection of specific residues was not determined, it was clear that TPNH was partially protected from NBS reaction when bound to the enzyme, and the enzyme, and the enzyme was not inactivated by NBS until the TPNH had reacted.  相似文献   

17.
Dihydrofolate reductases from different species contain several highly conserved arginines, some of which have been shown by x-ray crystallography to have their guanido groups near the p-aminobenzoyl glutamate moiety of enzyme-bound methotrexate. The orientation of one of these (Arg-52) appears to be completely reversed in comparing the crystal structures of Escherichia coli with Lactobacillus casei enzyme (Bolin, J. T., Filman, D. J., Matthews, D. A., Hamlin, R. C., and Kraut, J. (1982). J. Biol. Chem. 257, 13650-13662). We synthesized a novel antifolate containing a glyoxal group designed to react specifically with active-site guanido groups which are able to approach the p-aminobenzoyl carbonyl of methotrexate. The binding of this compound to the enzyme was competitive with dihydrofolate (DHF) in ordinary buffers. In borate buffer at pH 8.0 it inactivated dihydrofolate reductases from both E. coli and L. casei at similar maximum rates, while the chicken liver enzyme was more slowly inactivated. The inactivation was stoichiometric, paralleled the loss of the glyoxal chromophore, and showed saturation kinetics. Inhibitor binding and thus inactivation was enhanced by NADPH, while DHF protected the enzyme. This allowed calculation of the Kd for DHF which was found to be identical with its Km. The stoichiometrically inactivated enzyme displayed the 340-nm chromophore characteristic of 4-aminopteridines bound to dihydrofolate reductase confirming active-site labeling with normal orientation of the ligand. The ligand remained covalently bound to inactivated enzyme upon denaturation at low pH but dissociated at neutral pH. Computer graphic modeling of the crystal structures predicted reaction of Arg-31 but not Arg-52 in L. casei dihydrofolate reductase and of only Arg-52 in the E. coli enzyme. Purification of the CNBr fragments from the inactivated enzymes gave a single labeled peptide for each species. The particular peptide tagged in each case was unaffected by the presence of NADPH and was in excellent agreement with the crystallographic predictions.  相似文献   

18.
Incubation of purified Escherichia coli biodegradative threonine dehydratase with glyoxylate resulted in covalent binding of 1 mol of glyoxylate per mol of protein with concomitant loss of enzyme activity. The glyoxylate-binding site was identified as a heptapeptide representing amino acid residues Ser-33-Asn-Tyr-Phe-Ser-Glu-Arg-39 in the protein primary structure. Addition of glyoxylate to a culture of E. coli cells led to time-dependent enzyme inactivation. Immunoprecipitation with anti-dehydratase antibody of extract from [14C]glyoxylate-treated cells revealed labeled dehydratase polypeptide. These results are interpreted to mean that enzyme inactivation by glyoxylate in E. coli cells is associated with covalent protein modification.  相似文献   

19.
J M Zhou  C Liu  C L Tsou 《Biochemistry》1989,28(3):1070-1076
The kinetics of inhibition of trypsin by its specific inhibitors, pancreatic trypsin inhibitor, ovomucoid trypsin inhibitor, and soybean trypsin inhibitor, has been studied by following the hydrolysis of benzoylarginine ethyl ester in the presence of the inhibitor, and the results have been analyzed with the method described previously [Tian & Tsou (1982) Biochemistry 21, 1028]. The results obtained are consistent with the following: (a) The enzyme binds with the pancreatic inhibitor irreversibly to form an inactive complex. (b) The binding with the ovomucoid inhibitor to form the inactive complex is reversible. (c) An intermediate is formed before the relatively stable inactive complex with the soybean inhibitor, and both steps are reversible. The respective microscopic rate constants are determined by suitable plots of the apparent rate constants under different substrate and inhibitor concentrations. The second-order rate constants for the initial binding step thus obtained are in accord with the apparent inactivation rate constants determined by measuring the activity remaining with a stopped-flow apparatus equipped with a multimixing system after the enzyme-inhibitor mixture has been incubated for different time intervals.  相似文献   

20.
Incubation of lamb liver 6-phosphogluconate dehydrogenase, a dimeric enzyme with periodate-oxidized NADP causes the inactivation of the enzyme due to the covalent binding of 2 mol of inhibitor/mol of dimer. In the presence of substrate, the inactivation is faster and is almost complete after the labelling of only one subunit. These results not only confirm the hypothesis of a 'half-of-the-sites' mechanism of action of the enzyme, but also suggest that the formation of the ternary complex (enzyme-substrate-coenzyme) in one subunit causes a conformational change that makes the other subunit unable to bind the coenzyme (and even the adenylic part of it) and, thus, this subunit becomes inactive. It appears that while one subunit catalyses the oxidation of 6-phosphogluconate the other is inactive in this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号