首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Differential scanning calorimetry (DSC) can detect stepwise melting of plasmid DNA along the molecular chain with high resolution. This method was applied to study interaction of some antitumor antibiotics with the plasmid pJL3-TB5 DNA (5277 base-pairs in length). Analysis of DSC curves of the plasmid DNA in the presence of, for example, adriamycin, an antitumor antibiotics of anthracycline group, together with theoretical analysis of the DNA melting curves obtained by calculation from the entire base sequence, led to the conclusion that adriamycin bound preferentially to the four particular regions with high G + C content. The DSC method would thus be useful for the study of properties of drugs which bind to DNA.  相似文献   

2.
Differential scanning calorimetry (DSC) was carried out to analyze the transition of helix to coil state of DNA, using ColE1 DNA molecules digested with EcoRI. The DSC curves showed multimodal transition, consisting of nine to 11 peaks over a temperature range, depending on the ionic strength of the DNA solution. These DSC curves were essentially in good agreement with the optical melting curves of ColE1 DNA. The theoretical melting profiles of ColE1 DNA were predicted from calculations based on the helix-coil transition theory and the nucleotide sequence of the DNA. These profiles resembled the DSC curves and made it possible to assign the peaks seen in the DSC curves to the helix-coil transition of particular regions of the nucleotide sequence of ColE1. The helix-coil transition of each of the small genes gave rise to a single peak in the DSC curve, while the helix-coil transition of large genes contributed to two or more peaks in the DSC curve. This multimodal transition within a single coding region might correspond to the melting of individual segments encoding the different domains of the proteins. The helix-coil transition at the specific sites including ori, the origin of replication of ColE1, was also found to occur in a particular temperature range. DSC, a simple method, is thus useful for analyzing the multimodal helix-coil transition of DNA, and for providing information on the genetic organization of DNA.  相似文献   

3.
A method is reported for calculating the melting curve of a DNA molecule of random base sequence, including in the formalism the dependence of the free energy of base pair formation on the size of a denatured section. Some explicit results are shown for a “typical” base sequence, in particular the probability of helix formation at individual base pairs in several different regions of the molecule and the amount of melting from the end of the chain. Particular attention is drawn to the variation of local melting behavior from one region of the molecule to another. It is found that sections rich in AT melt at relatively low temperatures with a fairly broad transition curve, whereas regions rich in GC pairs melt at higher temperatures (as expected) with a very abrupt, local transition curve. To account qualitatively for the results one may divide melting into two kinds of processes: (a) the nucleation and growth of denatured regions, and (b) the merging together of two denatured sections at the expense of the intervening helix. The first of these processes dominates in the first stages of melting, and leads to rather broad local melting curves, whereas the second process predominates in the later stages, and occurs, in a particular part of the molecule, over a very narrow temperature range. It is estimated that the average length of a helix plus adjacent coil section at the midpoint of the transition is approximately 600 base pairs. Since transition curves which measure the local melting behavior reflect local compositions fluctuations, these curves contain information about the broad outlines of base sequence in the molecule. Some suggestions are made concerning experiments by which this potential information source could be exploited. In particular, it is pointed out that one might hope to map AT or GC rich regions at particular genetic loci in a biologically active DNA molecule. Values of the relevant parameters found earlier for the transition of homopolymers produce melting curves for a DNA of random base sequence which are in good agreement with the experimental transition curve for T2 phage DNA. Hence the present theoretical picture of the melting of polynucleotides is at least internally self-consistent.  相似文献   

4.
An explicit analytical theory of DNA melting is constructed. It accounts for the loop entropy and the elasticity of DNA strands. Explicit analytical formulas are presented for the melting curves of natural DNA and periodic polymers. The nature of the DNA helix–coil transition is investigated, and it is found to crucially depend on the nucleotide sequence.  相似文献   

5.
The differential scanning calorimetry (DSC) of plasmid ColE1 DNA was carried out. The DSC curve under the solvent condition of 1.0 X SSC buffer gave eleven clear peaks over the temperature range of 83 to 98 degrees C. The DSC curves obtained here were essentially in good agreement with the optical melting curves of ColE1 DNA reported previously. The theoretical melting profiles of ColE1 DNA calculated from its entire nucleotide sequence showed a good agreement with the DSC curves. The theoretical analysis made by constructing the thermal stability map showed that there was the positional correlation between the boundaries of the cooperatively melting regions and the ends of the protein coding regions of genes of ColE1. It was shown that the helix-coil transition of many of the small genes had a single cooperatively melting region. However, the large genes such as cea and mob3 had two or more cooperatively melting regions. It was suggested that this is closely related to the domain structures of the proteins encoded by such genes.  相似文献   

6.
Helix-coil dynamics of a Z-helix hairpin   总被引:1,自引:0,他引:1  
The helix–coil transition of a Z-helix hairpin formed from d(C-G)5T4(C-G)5 has been characterized by equilibrium melting and temperature jump experiments in 5M NaClO4 and 10 mM Na2HPO4, pH 7.0. The melting curve can be represented by a simple all-or-none transition with a midpoint at 81.6 ± 0.4°C and an enthalpy change of 287 ± 15 kJ/mole. The temperature jump relaxation can be described by single exponentials at a reasonable accuracy. Amplitudes measured as a function of temperature provide equilibrium parameters consistent with those derived from equilibrium melting curves. The rate constants of Z-helix formation are found in the range from 1800 s?1 at 70°C to 800 s?1 at 90°C and are associated with an activation enthalpy of ?(50 ± 10) kJ/mole, whereas the rate constants of helix dissociation are found in the range from 200 s?1 at 70°C to 4500 s?1 at 90°C with an activation enthalpy +235 kJ/mole. These parameters are consistent with a requirement of 3–4 base pairs for helix nucleation. Apparently nucleation occurs in the Z-helix conformation, because a separate slow step corresponding to a B to Z transition has not been observed. In summary, the dynamics of the Z-helix–coil transition is very similar to that of previously investigated right-handed double helices.  相似文献   

7.
We consider the problem of making allowance for superhelicity in the statistical-mechanical calculations of fluctuational violations of the DNA double helix. A simple model is discussed, making it possible in the calculations to use an approach based on the theory of helix–coil transition in DNA. The proposed algorithms allow calculating the effect of superhelicity on the base-pair fluctuational opening for any given sequence of nucleotides. An algorithm is also proposed allowing for the hairpin and cruciform structures in the palindromic regions of a sequence, as well as the open and helical states. The theory is used to calculate the melting curve for superhelical DNA at temperatures well below the melting point of the linear or nicked forms. The maps of opening probability are calculated for SV40 and ?X174 DNA using their recently published complete nucleotide sequences. The data explain well the experimental results of probing the secondary structure of these DNA by single strand-specific endonucleases.  相似文献   

8.
The DNA helix–coil transition has been studied in the presence of high concentrations of manganese ions (about 10?3M), which corresponds to the conditions close to equal stability of the A+T and G+C pairs, at the ionic strengths of 10?1, 10?2, and 1.6 × 10?3M Na+. With the Mn2+ ion effect, the transition range is significantly reduced to not more than 0.2°C at 1.2 × 10?3M Mn2+ and 1.6 × 10?3M Na+. The melting curves display a sharp kink at the end of the helix–coil transition, which is interpreted as an indication of the second-order phase transition. It is shown that the melting curves obtained can be approximated by a simple analytical expression 1 – θ = exp[–a(tc - t)], where θ is the DNA helix fraction, tc is the phase transition temperature, and a is an empirical parameter characterizing the breadth of the melting range and responsible for the magnitude of a jump of the helicity derivative with respect to the temperature at the phase transition point.  相似文献   

9.
An algorithm for the calculation of ligand-induced helix–coil transitions of macromolecules of any specific sequence was derived. The probabilities of each residue to be in helix and ligand-free, helix and ligand-bound, coil and ligand-free, and coil and ligand-bound states can be calculated by extending the recursion relation formula proposed by D. Poland [(1974) Biopolymers 13 , 1859–1871]. Calculations using hypothetical DNAs having block heterogeneities for melting reactions showed that cooperative binding specific to single strands weakens the effect of the heterogeneity. Fine structures in the melting profiles or cooperatively melting regions, which have so far been found in thermal melting experiments, were predicted to exist in ligand-induced melting reactions for natural DNA fragments.  相似文献   

10.
The effect of intercalating drugs (the anthracycline group of antibiotics, ethidium bromide, actinomycin D) on stepwise melting of DNA was studied by differential scanning calorimetry (DSC). The DSC DNA melting profile of plasmid pJL3-TB5 DNA (5277 base-pairs in length) consists of seven peaks, and all the intercalators caused shifting of these peaks, particularly those formed at the high temperature ranges, to the higher temperature ranges in a characteristic manner depending upon the binding strength of the drug. The analysis of the anthracycline group of antibiotics, such as aclacinomycin A, daunomycin, adriamycin and pyrarubicin, indicates that the difference in binding is due to the sugar moiety at position O-7 of the chromophore in these antibiotics. Analysis on the basis of the helix-coil transition theory suggests that the anthracycline group of antibiotics interact preferentially with the 5'-CG-3' sequences. The effect of various DNA-binding drugs other than intercalators on stepwise melting of DNA was then studied by DSC. The representative drugs examined were distamycin A, peplomycin, cis-dichlorodiamine-platinum(II) (cis-DDP or cis-Platin) and mitomycin C, which differ in their mode of interaction with DNA; namely, minor groove binding, strand cleavage and intrastrand or interstrand cross-linking. Distamycin A caused shifting of the DSC peaks at the low temperature ranges to a higher temperature range, whereas peplomycin and cis-DDP caused shifting of all the DSC peaks to form a broad peak at a lower temperature range, suggesting that the DSC DNA melting profiles are affected in a characteristic manner depending upon the interaction mode of the drug.  相似文献   

11.
Water-soluble, random copolymers containing L -glutamine and either N5-(3-hydroxypropyl)-L -glutamine or N5-(4-hydroxybutyl)-L -glutamine were synthesized, fractionated, and characterized. The thermally induced helix–coil transitions of these copolymers were studied in water. A short-range interaction theory was used to deduce the Zimm-Bragg parameters σ and s for the helix–coil transition in poly(L -glutamine) in water from an analysis of the melting curves of the copolymers in the manner described in earlier papers. The computed values of s indicate that L -glutamine is helix-indifferent at low temperature and a helix-destabilizing residue at high temperature in water. At all temperatures in the range of 0–70°C, the glutamine residue promotes helix–coil boundaries since the computed value of σ is large.  相似文献   

12.
The Poland–Fixman–Freire formalism was adapted for modeling of calorimetric DNA melting profiles, and applied to plasmid pBR 322 and long random sequences. We studied the influence of the difference (HGC?HAT) between the helix‐coil transition enthalpies of AT and GC base pairs on the calorimetric melting profile and on normalized calorimetric melting profile. A strong alteration of DNA calorimetrical profile with HGC?HAT was demonstrated. In contrast, there is a relatively slight change in the normalized profiles and in corresponding ordinary (optical) normalized differential melting curves (DMCs). For fixed HGC?HAT, the average relative deviation (S) between DMC and normalized calorimetric profile, and the difference between their melting temperatures (Tcal?Tm) are weakly dependent on peculiarities of the multipeak fine structure of DMCs. At the same time, both the deviation S and difference (Tcal?Tm) enlarge with the temperature melting range of the helix‐coil transition. It is shown that the local deviation between DMC and normalized calorimetric profile increases in regions of narrow peaks distant from the melting temperature.  相似文献   

13.
14.
S Takashima 《Biopolymers》1966,4(6):663-676
The thermal helix–coil transition of DNA was studied by means of dielectric constant measurements. The dielectric dispersion of native helical DNA is characterized by a large dielectric increment and a large relaxation time, whereas that of denatured coil DNA is characterized by a small dielectric increment and a small relaxation time. The dielectric dispersion of partially denatured DNA is of particular interest. At the intermediate stage of the helix–coil transition, dispersion curves which are different from either that of helix DNA or that of coil DNA appear. This is particularly pronounced for large DNA. This indicates the presence of an intermediate form of DNA. Flow birefringence measurements were carried out simultaneously. The negative birefringence of helical DNA diminishes as the helix–coil transition proceeds. However, the extinction angle remains constant, as long as it can be measured. These results indicate the absence of intermediate forms during the helix–coil transition. The discrepancy between dielectric and birefringence measurements can be resolved by assuming that the intermediate forms are not birefringent. The size distribution of native DNA and of the indicated intermediate form of DNA was studied. It is found that a logarithmic normal distribution function explains the distribution of size of DNA reasonably well.  相似文献   

15.
The DNA helix-coil transition in the presence of ligands interacting selectively with a certain type or types of base pairs has been considered. A calculation method for estimation the influence of lignads on the melting process for which the knowledge of DNA primary structure is not required was proposed. It has been shown that the reverse temperature shift caused by ligands bound to a given type of base pairs at given kind of regions (helix or coli) is in direct proportion to the fist derivative with respect to the degree of helicity from ratio beta ji/n, where beta ji--number of nitrogen bases of i-type at the regions of j-kind; N--total number of DNA base pairs. It was assumed earlier that this shift was in direct proportion to beta ji/Nj, where Nj--number of base pairs in DNA regions of j-kind. The specificity of lignads interaction with given kinds of bases alters the manner of the melting process of the heteropolynucleotide in comparison with homopolynucleotide only in the case when the DNA primary structure has a strong influence on the position of helix and coli regions along the DNA chain. Only when this conditions is fulfilled the inversion of thermostability of AT- and GC-pairs may affect the shape of the melting curve.  相似文献   

16.
We attempt to extend the modified self-consistent phonon theory to describe thermal fluctuational base-pair opening of repeat sequence DNA polymers in the helix–coil transition region as well as in the premelting region. A microscopic base-pair open state is introduced and the effect of this open state is taken into account self-consistently in a mean field system that models the DNA polymer. Our analysis indicates the structure of this open state changes with temperature in such a manner that on average a base pair opens and unstacks with its neighbors more completely as temperature increases. We apply this theory to a homopolymer—poly(dG) · poly(dC) to evaluate the base-pair opening probability in a temperature range from 273 to 366.5 K. At 366.5 K the system undergoes cooperative melting. Our calculated base-pair opening probabilities are in general agreement with several experimental estimates at room temperature. The calculated probabilities show typical melting curve behavior at temperatures close to the observed melting temperature. The cooperative modified self-consistent phonon approximation approach becomes a viable microscopic theory of melting. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
James D. McGhee 《Biopolymers》1976,15(7):1345-1375
Theoretical calculations are conducted on the helix–coil transition of DNA, in the presence of large, cooperatively binding ligands modeled after the DNA-binding proteins of current biological interest. The ligands are allowed to bind both to helx and to coil, to cover up any number of bases or base pairs in the complex, and to interact cooperatively with their nearest neighbors. The DNA is treated in the infinite homogeneous Ising model approximation, and all calculations are done by Lifson's method of sequence-generating functions. DNA melting curves are calculated by computer in order to expolore the effects on the transition of ligand size, binding constant, free activity, and ligand–ligand cooperativity. The calculations indicate that (1) at the same intrinsic free energy change per base pair of the complexes, small ligands, for purely entropic reasons, are more effective than are large ligands in shifting the DNA melting temperature; (2) the response of the DNA melting temperature to increased ligand binding constant K and/or free ligand activity L is adequately represented at high values of KL (but not at low KL) by a simple independent site model; (3) if curves are calculated with the total amount of added ligand remaining constant and the free ligand activity allowed to vary throughout the transition, biphasic melting curves can be obtained in the complete absence of ligand–ligand cooperativity. In an Appendix, the denaturation of poly[d(A-T)] in the presence of the drug, netropsin, is used to verify some features of the theory and to illustrate how the theory can be used to obtain numerical estimates of the ligand binding parameters from the experimental melting curves.  相似文献   

18.
M Fixman 《Biopolymers》1975,14(2):277-297
The broadening of a helix–coil transition due to base pair heterogeneity is calculated on the basis of a cumulant perturbation expansion in the quasi-grand ensemble. In this ensemble the fictitious, homogeneous chain, to which the perturbation is referred, automatically decreases its correlation length as the heterogeneity increases. This “renormalization” seems to stabilize the perturbation expansion, in view of the good agreement between the present results and the exact theory of a heterogeneous polypeptide helix–coil transition. For the DNA model in which ring entropy is included, the transitions is found to be extremely narrow for an infinite random chain with conventional parameters. A tentative reconciliation of this result with contradictory calculations of some other workers is offered on the basis of end effects, coarse graining, or approximation to the ring entropy. An application of the new method to DNA with a non-random base pair distribution requires evaluation of the correlation function between molecular states (helix or coil), at different sites of the reference chain. The evaluation is reduced to quadrature, but numerical calculations have been made only for the random chain.  相似文献   

19.
M J Grourke  J H Gibbs 《Biopolymers》1971,10(5):795-808
The helix–coil transitions of aqueous solutions of poly-α-L -lysine (PLL), poly-α-L -ornithine (PLO), and poly(α,γ-L -diaminobutyric acid) (PLDBA) have been investigated as functions of pH at 25°C and of temperature at pH 11.75, where these polymers are uncharged; in the cases of the latter two polyamino acids, the transitions have also been studied as functions of apparent pH in methanol-water solution (50/50 by volume). The helix stability of the polypeptides is shown to be a direct function of the number of methylene groups on the side chain. From an analysis of potentiometric titration data, we find that the difference between the helix stability of PLL and that of PLO is due to a difference of about 1 e.u. in the ΔS° of the transition. Combining the “melting curves” obtained from optical rotatory dispersion studies with the potentiometric titration data permits evaluation of the initiation parameter Z (or 1/σ½) of the statistical mechanical theories for these transitions. The value obtained for Z in the case of uncharged aqueous PLO is ca. 35.  相似文献   

20.
H Sugiyama  H Noda 《Biopolymers》1970,9(4):459-469
The potentiometric titration of random copolymers of L -lysine and L -alanine containing 0–35% alanine was carried out. The standard free-energy change for the transition of coil to helix was calculated from the titration curve, and was treated by taking account of first-neighbor interactions. For uncharged lysine ΔG° = ?140 cal/mole, and for alanine ΔG° = ?50 cal/mole in 0.06M NaBr at 25°C, indicating that the alanine helix is thermodynamically less stable than the lysine helix. The randomness in co-polymerization was confirmed by trypsin treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号