首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Photoreactive DNA duplexes mimicking substrates of nucleotide excision repair (NER) system were used to analyze the interaction of XPC-HR23B, RPA, and XPA with damaged DNA. Photoreactive groups in one strand of DNA duplex (arylazido-dCMP or 4-thio-dUMP) were combined with anthracenyl-dCMP residue at the opposite strand to analyze contacts of NER factors with damaged and undamaged strands. Crosslinking of XPC-HR23B complex with photoreactive 48-mers results in modification of XPC subunit. XPC-HR23B did not crosslink with DNA duplex bearing bulky residues in both strands while this modification does not prevent interaction of DNA with XPA. The data on crosslinking of XPA and RPA with photoreactive DNA duplexes containing bulky group in one of the strands are in favor of XPA preference to interact with the damaged strand and RPA preference for the undamaged strand. The results support the understanding and set the stage for dynamically oriented experiments of how the pre-incision complex is formed in the early stage of NER.  相似文献   

2.
The interaction of xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA) with damaged DNA in nucleotide excision repair (NER) was studied using model dsDNA and bubble-DNA structure with 5-{3-[6-(carboxyamido-fluoresceinyl)amidocapromoyl]allyl}-dUMP lesions in one strand and containing photoreactive 5-iodo-dUMP residues in defined positions. Interactions of XPA and RPA with damaged and undamaged DNA strands were investigated by DNA–protein photocrosslinking and gel shift analysis. XPA showed two maximums of crosslinking intensities located on the 5′-side from a lesion. RPA mainly localized on undamaged strand of damaged DNA duplex and damaged bubble-DNA structure. These results presented for the first time the direct evidence for the localization of XPA in the 5′-side of the lesion and suggested the key role of XPA orientation in conjunction with RPA binding to undamaged strand for the positioning of the NER preincision complex. The findings supported the mechanism of loading of the heterodimer consisting of excision repair cross-complementing group 1 and xeroderma pigmentosum group F proteins by XPA on the 5′-side from the lesion before damaged strand incision. Importantly, the proper orientation of XPA and RPA in the stage of preincision was achieved in the absence of TFIIH and XPG.  相似文献   

3.
In mammalian cells, nucleotide excision repair (NER) is the major pathway for the removal of bulky DNA adducts. Many of the key NER proteins are members of the XP family (XPA, XPB, etc.), which was named on the basis of its association with the disorder xerodoma pigmentosum. Human replication protein A (RPA), the ubiquitous single-stranded DNA-binding protein, is another of the essential proteins for NER. RPA stimulates the interaction of XPA with damaged DNA by forming an RPA–XPA complex on damaged DNA sites. Binding of RPA to the undamaged DNA strand is most important during NER, because XPA, which directs the excision nucleases XPG and XPF, must bind to the damaged strand. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to assess the binding of the tandem high affinity DNA-binding domains, RPA-AB, and of the isolated domain RPA-A, to normal DNA and damaged DNA containing the cyclobutane pyrimidine dimer (CPD) lesion. Both RPA-A and RPA-AB were found to bind non- specifically to both strands of normal and CPD- containing DNA duplexes. There were no differences observed when binding to normal DNA duplex was examined in the presence of the minimal DNA-binding domain of XPA (XPA-MBD). However, there is a drastic difference for CPD-damaged DNA duplex as both RPA-A and RPA-AB bind specifically to the undamaged strand. The strand-specific binding of RPA and XPA to the damaged duplex DNA shows that RPA and XPA play crucial roles in damage verification and guiding cleavage of damaged DNA during NER.  相似文献   

4.
Strand-specific binding of RPA and XPA to damaged duplex DNA   总被引:7,自引:0,他引:7  
The nucleotide excision repair (NER) pathway is a major pathway used to repair bulky adduct DNA damage. Two proteins, xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA), have been implicated in the role of DNA damage recognition in the NER pathway. The particular manner in which these two damage recognition proteins align themselves with respect to a damaged DNA site was assessed using photoreactive base analogues within specific DNA substrates to allow site-specific cross-linking of the damage recognition proteins. Results of these studies demonstrate that both RPA and XPA are in close proximity to the adduct as measured by cross-linking of each protein directly to the platinum moiety. Additional studies demonstrate that XPA contacts both the damaged and undamaged strands of the duplex DNA. Direct evidence is presented demonstrating preferential binding of RPA to the undamaged strand of a duplex damaged DNA molecule.  相似文献   

5.
Lao Y  Gomes XV  Ren Y  Taylor JS  Wold MS 《Biochemistry》2000,39(5):850-859
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (subunits of 70, 32, and 14 kDa) that is required for cellular DNA metabolism. RPA has been reported to interact specifically with damaged double-stranded DNA and to participate in multiple steps of nucleotide excision repair (NER) including the damage recognition step. We have examined the mechanism of RPA binding to both single-stranded and double-stranded DNA (ssDNA and dsDNA, respectively) containing damage. We show that the affinity of RPA for damaged dsDNA correlated with disruption of the double helix by the damaged bases and required RPAs ssDNA-binding activity. We conclude that RPA is recognizing single-stranded character caused by the damaged nucleotides. We also show that RPA binds specifically to damaged ssDNA. The specificity of binding varies with the type of damage with RPA having up to a 60-fold preference for a pyrimidine(6-4)pyrimidone photoproduct. We show that this specific binding was absolutely dependent on the zinc-finger domain in the C-terminus of the 70-kDa subunit. The affinity of RPA for damaged ssDNA was 5 orders of magnitude higher than that of the damage recognition protein XPA (xeroderma pigmentosum group A protein). These findings suggest that RPA probably binds to both damaged and undamaged strands in the NER excision complex. RPA binding may be important for efficient excision of damaged DNA in NER.  相似文献   

6.
Interaction of nucleotide excision repair factors--replication protein A (RPA) and Xeroderma pigmentosum complementing group A protein (XPA)--with DNA structures containing nucleotides with bulky photoreactive groups imitating damaged nucleotides was investigated. Efficiency of photoaffinity modification of two proteins by photoreactive DNAs varied depending on DNA structure and type of photoreactive group. The secondary structure of DNA and, first of all, the presence of extended single-stranded parts plays a key role in recognition by RPA. However, it was shown that RPA efficiently interacts with DNA duplex containing a bulky substituent at the 5 -end of a nick. XPA was shown to prefer the nicked DNA; however, this protein was cross-linked with approximately equal efficiency by single-stranded and double-stranded DNA containing a bulky substituent inside the strand. XPA seems to be sensitive not only to the structure of DNA double helix, but also to a bulky group incorporated into DNA. The mechanism of damage recognition in the process of nucleotide excision repair is discussed.  相似文献   

7.
The interaction of nucleotide excision repair (NER) proteins (XPC-HR23b, RPA, and XPA) with 48-mer DNA duplexes containing the bulky lesion-mimicking fluorescein-substituted derivative of dUMP (5-{3-[6-(carboxyamidofluo-resceinyl)amidocapromoyl]allyl}-2′-deoxyuridine-5′-monophosphate) in a cluster with a lesion of another type (apurinic/apyrimidinic (AP) site) has been studied. It is shown that XPC-HR23b is modified to a greater extent by the DNA duplex containing an AP site opposite nucleotide adjacent to the fluorescein residue than by DNA containing an AP site shifted to the 3′-or 5′-end of the DNA strand. The efficiency of XPA modification by DNA duplexes containing both AP site and fluorescein residue is higher than that by DNA lacking the bulky lesion; the modification pattern in this case depends on the AP site position. In accordance with its major function, RPA interacts more efficiently with single-stranded DNA than with DNA duplexes, including those bearing bulky lesions. The observed interaction between the proteins involved in nucleotide excision repair and DNA structures containing a bulky lesion processed by NER and the AP site repaired via base excision repair may be significant for both these repair pathways in cells and requires the specific sequence of repair of clustered DNA lesions.  相似文献   

8.
We have undertaken the systematic isolation and characterization of mammalian proteins which display an affinity for cisplatin-damaged DNA. Fractionation of human cell extracts has led to the identification of two classes of proteins. The first includes proteins that bind duplex DNA in the absence of cisplatin damage and retain their affinity for DNA in the presence of cisplatin-DNA adducts. The DNA-dependent protein kinase (DNA-PK) falls into this class. The inhibition of DNA-PK phosphorylation activity by cisplatin-damaged DNA has led to the hypothesis that cisplatin sensitization of mammalian cells to ionizing radiation may be mediated by DNA-PK. The second class of proteins identified are those which display a high relative affinity for cisplatin-damaged DNA and a low affinity for undamaged duplex DNA. Proteins that fall into this class include high mobility group 1 protein (HMG-1), replication protein A (RPA) and xeroderma pigmentosum group A protein (XPA). Each protein has been isolated and purified in the lab. The interaction of each protein with cisplatin-damaged DNA has been assessed in electrophoretic mobility shift assays. A series of DNA binding experiments suggests that RPA binds duplex DNA via denaturation and subsequent preferential binding to the undamaged DNA strand of the partial duplex. DNA substrates prepared with photo-reactive base analogs on either the damaged or undamaged DNA strand have also been employed to investigate the mechanism and specific protein-DNA interactions that occur as each protein binds to cisplatin-damaged DNA. Results suggest both damage and strand specificity for RPA and XPA binding cisplatin-damaged DNA.  相似文献   

9.
DNA damage recognition during nucleotide excision repair in mammalian cells   总被引:13,自引:0,他引:13  
Wood RD 《Biochimie》1999,81(1-2):39-44
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.  相似文献   

10.
Patrick SM  Oakley GG  Dixon K  Turchi JJ 《Biochemistry》2005,44(23):8438-8448
Replication protein A (RPA) is a heterotrimeric protein consisting of 70-, 34-, and 14- kDa subunits that is required for many DNA metabolic processes including DNA replication and DNA repair. Using a purified hyperphosphorylated form of RPA protein prepared in vitro, we have addressed the effects of hyperphosphorylation on steady-state and pre-steady-state DNA binding activity, the ability to support DNA repair and replication reactions, and the effect on the interaction with partner proteins. Equilibrium DNA binding activity measured by fluorescence polarization reveals no difference in ssDNA binding to pyrimidine-rich DNA sequences. However, RPA hyperphosphorylation results in a decreased affinity for purine-rich ssDNA and duplex DNA substrates. Pre-steady-state kinetic analysis is consistent with the equilibrium DNA binding and demonstrates a contribution from both the k(on) and k(off) to achieve these differences. The hyperphosphorylated form of RPA retains damage-specific DNA binding, and, importantly, the affinity of hyperphosphorylated RPA for damaged duplex DNA is 3-fold greater than the affinity of unmodified RPA for undamaged duplex DNA. The ability of hyperphosphorylated RPA to support DNA repair showed minor differences in the ability to support nucleotide excision repair (NER). Interestingly, under reaction conditions in which RPA is maintained in a hyperphosphorylated form, we also observed inhibition of in vitro DNA replication. Analyses of protein-protein interactions bear out the effects of hyperphosphorylated RPA on DNA metabolic pathways. Specifically, phosphorylation of RPA disrupts the interaction with DNA polymerase alpha but has no significant effect on the interaction with XPA. These results demonstrate that the effects of DNA damage induced hyperphosphorylation of RPA on DNA replication and DNA repair are mediated through alterations in DNA binding activity and protein-protein interactions.  相似文献   

11.
Replication protein A (RPA) participates in many cellular functions including DNA replication and nucleotide excision repair. A direct interaction between RPA and the xeroderma pigmentosum group A protein (XPA) facilitates the assembly of a preincision complex during the processing of DNA damage by the nucleotide excision repair pathway. We demonstrate here the formation of a ternary RPA, XPA, and duplex cisplatin-damaged DNA complex as is evident by electrophoretic supershift analysis. The RPA-XPA complex displays modest specificity for damaged versus undamaged duplex DNA, and the RPA-XPA complex displays a greater affinity for binding duplex cisplatin-damaged DNA when compared with the RPA or XPA proteins alone, consistent with previous results. Using DNA denaturation assays, we demonstrate that the role of XPA is in the stabilization of the duplex DNA structure via inhibition of the strand separation activity of RPA. Rapid kinetic analysis indicates that the bimolecular k(on) of the RPA-XPA complex is 2.5-fold faster than RPA alone for binding a duplex cisplatin-damaged DNA. The dissociation rate, k(off), of the RPA-XPA complex is slower than that of the RPA protein alone, suggesting that the XPA protein stabilizes the initial binding of RPA to duplex DNA as well as maintaining the integrity of the duplex DNA. Interestingly, XPA has no effect on the k(on) of RPA for a single-stranded 40-mer DNA.  相似文献   

12.
Replication protein A (RPA) is a heterotrimeric protein required for many DNA metabolic functions, including replication, recombination, and nucleotide excision repair (NER). We report the pre-steady-state kinetic analysis of RPA-binding DNA substrates using a stopped-flow assay to elucidate the kinetics of DNA damage recognition. The bimolecular association rate, k(on), for RPA binding to duplex DNA substrates is greatest for a 1,3d(GXG), intermediate for a 1,2d(GpG) cisplatin-DNA adduct, and least for an undamaged duplex DNA substrate. RPA displays a decreased k(on) and an increased k(off) for a single-stranded DNA substrate containing a single 1,2d(GpG) cisplatin-DNA adduct compared with an undamaged DNA substrate. The k(on) for RPA-binding single-stranded polypyrimidine sequences appears to be diffusion-limited. There is minimal difference in k(on) for varying length DNA substrates; therefore, the difference in equilibrium binding affinity is mainly attributed to the k(off). The k(on) for a purine-rich 30-base DNA is reduced by a factor of 10 compared with a pyrimidine-rich DNA of identical length. These results provide insight into the mechanism of RPA-DNA binding and are consistent with RPA recognition of DNA-damage playing a critical role in NER.  相似文献   

13.
Photoactivated DNA analogs of nucleotide excision repair (NER) substrates have been created that are 48-mer duplexes containing in internal positions pyrimidine nucleotides with bulky substituents imitating lesions. Fluorochloroazidopyridyl, anthracenyl, and pyrenyl groups introduced using spacer fragments at 4N and 5C positions of dCMP and dUMP were used as model damages. The gel retardation and photo-induced affinity modification techniques were used to study the interaction of modified DNA duplexes with proteins in HeLa cell extracts containing the main components of NER protein complexes. It is shown that the extract proteins selectively bind and form covalent adducts with the model DNA. The efficiency and selectivity of protein modification depend on the structure of used DNA duplex. Apparent molecular masses of extract proteins, undergoing modification, were estimated. Mutual influence of simultaneous presence of extract proteins and recombinant NER protein factors XPC-HR23B, XPA, and RPA on interaction with the model DNA was analyzed. The extract proteins and RPA competed for interaction with photoactive DNA, mutually decreasing the yield of modification products. In this case the presence of extract proteins at particular concentrations tripled the increase in yield of covalent adducts formed by XPC. It is supposed that the XPC subunit interaction with DNA is stimulated by endogenous HR23B present in the extract. Most likely, the mutual effect of XPA and extract proteins stimulating formation of covalent adducts with model DNA is due to the interaction of XPA with endogenous RPA of the extract. A technique based on the use of specific antibodies revealed that RPA present in the extract is a modification target for photoactive DNA imitating NER substrates.  相似文献   

14.
The interaction of nucleotide excision repair factors--xeroderma pigmentosum complementation group C protein in complex with human homolog of yeast Rad23 protein (XPC-HR23B), replication protein A (RPA), and xeroderma pigmentosum complementation group A protein (XPA)--with 48-mer DNA duplexes imitating damaged DNA structures was investigated. All studied proteins demonstrated low specificity in binding to damaged DNA compared with undamaged DNA duplexes. RPA stimulates formation of XPC-HR23B complex with DNA, and when XPA and XPC-HR23B are simultaneously present in the reaction mixture a synergistic effect in binding of these proteins to DNA is observed. RPA crosslinks to DNA bearing photoreactive 5I-dUMP residue on one strand and fluorescein-substituted dUMP analog as a lesion in the opposite strand of DNA duplex and also stimulates cross-linking with XPC-HR23B. Therefore, RPA might be one of the main regulation factors at various stages of nucleotide excision repair. The data are in agreement with the cooperative binding model of nucleotide excision repair factors participating in pre-incision complex formation with DNA duplexes bearing damages.  相似文献   

15.
DNA-damage recognition in the nucleotide excision repair (NER) cascade is a complex process, operating on a wide variety of damages. UvrB is the central component in prokaryotic NER, directly involved in DNA-damage recognition and guiding the DNA through repair synthesis. We report the first structure of a UvrB-double-stranded DNA complex, providing insights into the mechanism by which UvrB binds DNA, leading to formation of the preincision complex. One DNA strand, containing a 3' overhang, threads behind a beta-hairpin motif of UvrB, indicating that this motif inserts between the strands of the double helix, thereby locking down either the damaged or undamaged strand. The nucleotide directly behind the beta-hairpin is flipped out and inserted into a small, highly conserved pocket in UvrB.  相似文献   

16.
Patrick SM  Tillison K  Horn JM 《Biochemistry》2008,47(38):10188-10196
Replication protein A (RPA) is a heterotrimeric protein that is required for DNA replication and most DNA repair pathways. RPA has previously been shown to play a role in recognizing and binding damaged DNA during nucleotide excision repair (NER). RPA has also been suggested to play a role in psoralen DNA interstrand cross-link (ICL) repair, but a clear biochemical activity has yet to be identified in the ICL DNA repair pathways. Using HeLa cell extracts and DNA affinity chromatography, we demonstrate that RPA is preferentially retained on a cisplatin interstrand cross-link (ICL) DNA column compared with undamaged DNA. The retention of RPA on cisplatin intrastrand and ICL containing DNA affinity columns is comparable. In vitro electrophoretic mobility shift assays (EMSAs) using synthetic DNA substrates and purified RPA demonstrate higher affinity for cisplatin ICL DNA binding compared with undamaged DNA. The enhanced binding of RPA to the cisplatin ICL is dependent on the DNA length. As the DNA flanking the cisplatin ICL is increased from 7 to 21 bases, preferential RPA binding is observed. Fluorescence anisotropy reveals greater than 200-fold higher affinity to a cisplatin ICL containing 42-mer DNA compared with an undamaged DNA and a 3-4-fold higher affinity when compared with a cisplatin intrastrand damaged DNA. As the DNA length and stringency of the binding reaction increase, greater preferential binding of RPA to cisplatin ICL DNA is observed. These data are consistent with a role for RPA in the initial recognition and initiation of cisplatin ICL DNA repair.  相似文献   

17.
Mustra DJ  Warren AJ  Hamilton JW 《Biochemistry》2001,40(24):7158-7164
Nucleotide excision repair (NER) is an important cellular mechanism that removes radiation-induced and chemically induced damage from DNA. The XPA protein is involved in the damage recognition step of NER and appears to function by binding damaged DNA and recruiting other proteins to the site. It may also play a role in subsequent steps of NER through interaction with other repair proteins. Interstrand cross-links are of particular interest, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery. Using 14 and 25 bp duplex oligonucleotides containing a defined, well-characterized single mitomycin C (MMC)-DNA interstrand cross-link, we have shown through gel shift analysis that both XPA and a minimal DNA binding domain of XPA (XPA-MF122) preferentially bind to MMC-cross-linked DNA with a greater specificity and a higher affinity (>2-fold) than to the same undamaged DNA sequence. This preferential binding to MMC-cross-linked DNA occurs in the absence of other proteins from the NER complex. Differences in binding affinity and specificity were observed among the different protein-DNA combinations that were both protein and DNA specific. Defining XPA-MMC-DNA interactions may aid in elucidating the mechanism by which DNA cross-links and other forms of DNA damage are recognized and repaired by the NER machinery in eukaryotic cells.  相似文献   

18.
Model DNA molecules that contain bulky lesions in both strands have been created, and their properties as substrates of the nucleotide excision repair (NER) system have been analyzed. The modified nucleoside, 5-[3-(4-azido-2,3,5,6-tetrafluorobenzamido)-1-propoxypropyl]-2′-deoxycytidine (dCFAB), or the nonnucleoside fragment, N-[6-(9-anthracenylcarbamoyl)hexanoyl]-3-amino-1,2-propanediol (nAnt), have been inserted as damage in certain positions of the first DNA strand (“0”). The position of N-[6-5(6)- fluoresceinylcarbamoyl]hexanoyl]-3-amino-1,2-propanediol (nFlu) has been varied within the second DNA strand. This residue has been located opposite the removable damaging fragment of the first strand at positions–20,–10,–4, 0, +3, and +8 relative to the first lesion). It has been demonstrated that the presence of nFlu at the–4, 0, or +3 position of the second strand significantly reduces the thermostability of DNA duplexes, especially in the case of nAnt-DNA and completely excludes the possibility of NER-catalyzed excision from dCFAB- and nAnt-containing 137-meric DNA with the second lesion at these positions. The introduction of nFlu at positions–20,–10, or +8 differently affects the excision efficiency of dCFAB- and nAntcontaining fragments from the first strand. The excision efficiency of dCFAB-containing fragments from extended double-damaged DNA is as high as from DNA that contains a single dCFAB damage, while the excision of nAnt-containing fragments occurs with 80–90% lower efficiency from double-damaged DNA occurs from DNA that contains the single nAnt insert. The nFlu insert differently affects the interaction of the sensory XPC-HR23B dimer with dCFAB- and nAnt-containing DNAs, although in all cases, this interaction occurs with increased efficiency compared to that with single-damaged DNAs. No direct correlation between the thermostability of the DNA duplex and XPC-DNA affinity on the one hand, and the excision efficiency of lesions on the other hand has been shown. The absence of the correlation may be caused by both functional features of variable multiprotein complexes involved in the recognition and verification of damage during NER and the sensitivity of the complexes to the structure of the damage and damage-surrounding DNA. The results are important for understanding the NER mechanism of elimination of bulky damage located in both DNA strands.  相似文献   

19.
The Xeroderma Pigmentosum A (XPA) protein is involved in the DNA damage recognition and repair complex formation steps of nucleotide excision repair (NER), and has been shown to preferentially bind to various forms of DNA damage including bulky lesions. DNA interstrand crosslinks are of particular interest as a form of DNA damage, since these lesions involve both strands of duplex DNA and present special challenges to the repair machinery, and mitomycin C (MMC) is one of several useful cancer chemotherapy drugs that induce these lesions. Purified XPA and the minimal DNA-binding domain of XPA are both fully capable of preferentially binding to MMC-DNA interstrand crosslinks in the absence of other proteins from the NER complex. Circular dichroism (CD) and gel shift assays were used to investigate XPA-DNA binding and to assess changes in secondary structure induced as a consequence of the interaction of XPA with model MMC-crosslinked and unmodified DNAs. These studies revealed that while XPA demonstrates only a modest increase in affinity for adducted DNA, it adopts a different conformation when bound to MMC-damaged DNA than when bound to undamaged DNA. This change in conformation may be more important in recruiting other proteins into a competent NER complex at damaged sites than preferential binding per se. Arsenic had little effect on XPA binding even at toxic concentrations, whereas cadmium reduced XPA binding to DNA to 10-15% that of Zn-XPA, and zinc addition could only partially restore activity. In addition, there was little or no change in conformation when Cd-XPA bound MMC-crosslinked DNA even though it demonstrated preferential binding, which may contribute to the mechanism by which cadmium can act as a co-mutagen and co-carcinogen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号