首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The experimental data on the absorption of a plane polarised light by a solution of cattle rhodopsin at −196‡ C have been theoretically analysed to model the directional absorption properties of rhodopsin and its photoproducts. It is seen that these molecules behave like planar absorbers having a ratio of about 100∶7 between the extinction coefficients along the long axis and perpendicular to it. Using this result and the experimental observations on absorption and dichroism in the retina in situ, a model for the configuration of chromophores in the disc membranes has been derived. In this model the plane of the chromophore is perpendicular to that of the disc and the long axis of the chromophore makes an angle of 6.6‡ with the plane of the disc. The solution of the problem depends on the assumption that the absorption axes are the same for the rhodopsin, prelumirhodopsin and isorhodopsin. Work partially supported by Department of Science and Technology (India)  相似文献   

2.
The experimental data on the absorption of plane polarized light by a solution of cattle rhodopsin at –196 C have been theoretically analysed to model the directional absorption properties of rhodopsin and prelumirhodopsin. It has been found that rhodopsin and prelumirhodopsin are planar absorbers having ratios of about 1007 and 1004, respectively, between the extinction coefficients along the long axis and perpendicular to it. These results support that the chromophore in prelumirhodopsin is more linear than the chromophore in rhodopsin.Work partially supported by Department of Science and Technology (India)Associated with the Biochemistry Cell  相似文献   

3.
Air-water interface films of purified cattle rhodopsin and defined phospholipids are formed by the osmotic lysis of reconstituted membrane vesicles. The interface films thus formed consist of a phospholipid monolayer containing vesicle membrane fragments. Rhodopsin molecules at the interface are restricted within the membrane fragments where they are spectrophotometrically intact and capable of undergoing photoregeneration and chemical regeneration. Multilayers of up to 8 layers can be built from these interface films. The visible absorption band of rhodopsin in these multilayers is linearly dichroic. Quantitative analysis of the linear dichroism reveals that the dipole moment of transition of the retinal chromophore in rhodopsin forms an angle of 15 degrees +/- 4 degrees with the plane of the membrane fragments in the interface film. This orientation of the chromophore relative to the plane of the membrane is essentially the same as that observed in the intact retina. Thus, the orientation of rhodopsin in the interface films is similar to that in the intact disc membranes.  相似文献   

4.
M Eriksson  B Nordén  S Eriksson 《Biochemistry》1988,27(21):8144-8151
DNA-binding geometry and dynamics of a number of anthracyclines, including adriamycin and 4-demethoxydaunorubicin, interacting with DNA have been studied by means of linear dichroism and fluorescence techniques. The anthracycline chromophore is found to be approximately parallel to the plane of the DNA bases and to have a restricted mobility, as would be expected for an intercalative binding mode, but there are variations between different directions in the chromophore as well as between the drugs. From dichroic spectra of adriamycin in an anisotropic host of poly(vinyl alcohol), absorption components corresponding to transitions with mutually orthogonal polarizations have been resolved. These can be exploited to determine the orientations of the two chromophore axes in the DNA complex relative to the DNA helix axis. In a certain binding regime the long axis of the bound anthracycline chromophores (with the exception of 4-demethoxydaunorubicin) is found to be approximately 10 degrees closer to perpendicular to the helix axis than are the DNA bases. This demonstrates that the average base tilt is at least 10 degrees. By contrast, the short axis of the aglycon moiety is found to be tilted some 20-30 degrees from perpendicular. This may be because it is probing a base direction with a more pronounced, static or dynamic, inclination than the average in DNA. The drug orientation and the DNA orientation (reflecting flexibility) are observed to vary differently and nonmonotonically with binding ratio, suggesting specific binding and varying site geometries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Linear dichroism experiments are performed on light-adapted bacteriorhodopsin (BR568) films containing native retinal (A1) and its 3,4-dehydroretinal (A2) analogue to measure the angle between the chromophore transition dipole moment and the membrane normal. QCFF/pi calculations show that the angle between the transition moment and the long axis of the polyene is changed by 3.4 degrees when the C3-C4 bond is unsaturated. The difference vector between the two transition moments points in the same direction as the Schiff base (N----H) bond for the all-trans BR568 chromophore. Because the plane of the chromophore is perpendicular to the membrane plane, a comparison of the transition moment orientations in the A1- and A2-pigments enables us to determine the orientation of the N----H bond with respect to the absolute chromophore (N----C5 vector) orientation. The angles of the transition moments are 70.3 degrees +/- 0.4 degrees and 67.8 degrees +/- 0.4 degrees for the A1- and A2-pigments, respectively. The fact that the change in the transition moment angle (2.5 degrees) is close to the predicted 3.4 degrees supports the idea that the chromophore plane is nearly perpendicular to the membrane plane. The decreased transition moment angle in the A2-analogue requires that the N----H bond and the N----C5 vector point toward the same membrane surface. Available results indicate that the N----C5 vector points toward the exterior in BR568. With this assignment, we conclude that the N----H bond points toward the exterior surface and its most likely counterion Asp-212. This information makes possible the construction of a computer graphics model for the active site in BR568.  相似文献   

6.
7.
Polarized, low-temperature Fourier transform infrared (FTIR) difference spectroscopy has been used to investigate the structure of bacteriorhodopsin (bR) as it undergoes phototransitions from the light-adapted state, bR570, to the K630 and M412 intermediates. The orientations of specific retinal chromophore and protein groups relative to the membrane plane were calculated from the linear dichroism of the infrared bands, which correspond to the vibrational modes of those groups. The linear dichroism of the chromophore C=C and C-C stretching modes indicates that the long axis of the polyene chain is oriented at 20-25 degrees from the membrane plane at 250 K and that it orients more in-plane when the temperature is reduced to 81 K. The polyene plane is found to be approximately perpendicular to the membrane plane from the linear dichroism calculations of the HOOP (hydrogen out-of-plane) wags. The orientation of the transition dipole moments of chromophore vibrations in the K630 and M412 intermediates has been probed, and the dipole moment direction of the C=O bond of an aspartic acid that is protonated in the bR570----M412 transition has been measured.  相似文献   

8.
The three-dimensional crystallization of bacteriorhodopsin was systematically investigated and the needle-shaped crystal form analysed. In these crystals the M-intermediate forms 10 times faster and decays 15 times more slowly than in purple membranes. Polarized absorption spectra of the crystals were measured in the dark and light adapted states. A slight decrease in the angle between the transition moment and the membrane plane was detected during dark adaptation. The crystallization of a mutated bacteriorhodopsin, in which the aspartic acid at residue 96 was replaced by asparagine, provided crystals with a long lived M-intermediate. This allowed polarized absorption measurements of the M-chromophore. The change in the polarization ratio upon formation of the M-intermediate indicates an increase in the angle between the main transition dipole and the membrane plane by 2.2 degrees +/- 0.5, corresponding to a 0.5 A displacement of one end of the chromophore out of the membrane plane of the bacteriorhodopsin molecule.  相似文献   

9.
We observed optical rotation of the plane of polarization of the second harmonic (SH) radiation at 532 nm (in resonance with the retinal absorption) generated in reflection geometry in Langmuir-Blodgett film of bacteriorhodopsin (bR). The analysis of the experimental data showed that this effect arises from the nonvanishing contribution of the antisymmetrical part of the hyperpolarizability tensor. This requires that the dipole moment of the resonant electronic transition, the change of the dipole moment upon electronic excitation, and the long axis of the retinal not be coplanar. Such conditions are satisfied only if the retinal has a nonplanar geometry, a conclusion that could lend support to the heterogeneity model of the origin of the biphasic band shape of the linear CD spectrum of the retinal in bR. On the basis of our theoretical analysis, we were able to estimate the angle between the induced dipole moment and the plan that contains the long axis of the chromophore and the transition dipole moment of the retinal absorption.  相似文献   

10.
Bathoproducts of rhodopsin, isorhodopsin I, and isorhodopsin II.   总被引:2,自引:0,他引:2       下载免费PDF全文
B Mao  T G Ebrey    R Crouch 《Biophysical journal》1980,29(2):247-256
Bathorhodopsins were prepared by partially (10--15%) photoconverting bovine rhodopsin (11-cis chromophore) or isorhodopsin I (9-cis chromophore) at 77 degrees K; care was taken to avoid establishing photostationary states. The absorption spectra calculated for the bathorhodopsins derived from the two parent pigments are identical in their lambda max 'S, bandwidths, and extinction coefficients. This result provides further support for the hypothesis that bathorhodopsin is a common intermediate between an 11-cis pigment (rhodopsin) and a 9-cis one (isorhodopsin I) and thus probably has an all-trans chromophore. This in turn is strong evidence for the cis-trans isomerization model of the primary event in vision. The spectrum of the bathoproduct of isorhodopsin II (9,13-dicis chromophore) is different from the other pigments' bathoproducts.  相似文献   

11.
A spectrally silent transformation in the photolysis of octopus rhodopsin was detected by the time-resolved transient grating method. Our results showed that at least two photointermediates, which share the same chromophore absorption spectrum, exist after the final absorption changes. Previously, mesorhodopsin was thought to decay to the final photoproduct, acid metarhodopsin with a lifetime of 38 micros at 15 degrees C, but the present results show that there is at least one intermediate species (called transient acid metarhodopsin) with a lifetime of 180 micros at 15 degrees C, before forming acid metarhodopsin. This indicates that the parts of the protein distant from the chromophore are still changing even after the changes in microenvironment around the chromophore are over. From the signal intensity detected by the transient grating method, the volume change of the spectrally silent transformation was found to be DeltaV = 13 ml/mol. The activation energy of the spectrally silent transformation is much lower than those of other transformations of octopus rhodopsin. Since stable acid metarhodopsin has not been shown to activate the G protein, this transient acid metarhodopsin may be responsible for G protein activation.  相似文献   

12.
Cattle rhodopsin can be highly oriented by shearing a wet paste of digitonin micelles of this visual pigment between two quartz slides. This orients the rhodopsin micelles so that their chromophores lie mainly parallel to the direction of shear. In such preparations the orientation of rhodopsin and intermediates of its bleaching by light have been measured with plane-polarized light from -195°C to room temperature. The chromophore maintains essentially the same orientation as in rhodopsin in all the intermediates of bleaching: bathorhodopsin (prelumirhodopsin), lumirhodopsin, and metarhodopsins I and II. When, however, the retinaldehyde chromophore is hydrolyzed from opsin in the presence of hydroxylamine, the retinaldehyde oxime that results rotates so as to lie mainly across the direction of shear. That is, the retinal oxime, though free, orients itself upon the oriented matrix of the opsin-digitonin micelles. These experiments show the rhodopsin-digitonin micelle to be markedly asymmetric, with the chromophore lying parallel to its long axis. The asymmetry could originate in the formation of the micelle, in rhodopsin itself, or by its linear polymerization under the conditions of the experiment. If rhodopsin itself is markedly asymmetric, for which there is some evidence, then, since in the rod outer segments its chromophores lie parallel to the disk membranes, the molecules themselves must lie with their long axes parallel to the membranes.  相似文献   

13.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

14.
This article reviews the primary reaction processes in rhodopsin, a photoreceptive pigment for twilight vision. Rhodopsin has an 11-cis retinal as the chromophore, which binds covalently with a lysine residue through a protonated Schiff base linkage. Absorption of a photon by rhodopsin initiates the primary photochemical reaction in the chromophore. Picosecond time-resolved spectroscopy of 11-cis locked rhodopsin analogs revealed that the cis-trans isomerization of the chromophore is the primary reaction in rhodopsin. Then, generation of femtosecond laser pulses in the 1990s made it possible to follow the process of isomerization in real time. Formation of photorhodopsin within 200 fsec was observed by a transient absorption (pump–probe) experiment, which also revealed that the photoisomerization in rhodopsin is a vibrationally coherent process. Femtosecond fluorescence spectroscopy directly captured excited-state dynamics of rhodopsin, so that both coherent reaction process and unreacted excited state were observed. Faster photoreaction of the chromophore in rhodopsin than that in solution implies that the protein environment facilitates the efficient isomerization process. Such contributions of the protein residues have been monitored by infrared spectroscopy of rhodopsin, bathorhodopsin, and isorhodopsin (9-cis rhodopsin) at low temperatures. The crystal structure of bovine rhodopsin recently reported will lead to better understanding of the mechanism in future.  相似文献   

15.
Diffusion-enhanced fluorescence energy transfer was used to study the structure of photoreceptor membranes from bovine retinal rod outer segments. The fluorescent energy donor was Tb3+ chelated to dipicolinate and the acceptor was the 11-cis retinal chromophore of rhodopsin in vesicles made from disc membranes. The rapid-diffusion limit for energy transfer was attained in these experiments because of the long excited state lifetime of the terbium donor (~2 ms). Under these conditions, energy transfer is very sensitive to a, the distance of closest approach between the donor and acceptor (Thomas et al., 1978). Vesicles containing terbium dipicolinate in their inner aqueous space were prepared by sonicating disc membranes in the presence of this chelate and chromatographing this mixture on a gel filtration column. The sidedness of rhodopsin in these vesicles was the same as in native disc membranes. The transfer efficiency from terbium to retinal in this sample was 43%. For an R0 value of 46.7 Å and an average vesicle diameter of 650 Å, this corresponds to an a value of 22 Å from the inner aqueous space of the vesicle. The distance of closest approach from the external aqueous space, determined by adding terbium dipicolinate to a suspension of already formed vesicles, was found to be 28 Å. These values of a show that the retinal chromophore is far from both aqueous surfaces of the disc membrane. Hence, the transverse location of the retinal chromophore is near the center of the hydrophobic core of the disc membrane. These findings suggest that conformational changes induced by photoisomerization are transmitted through a distance of at least 20 Å within rhodopsin to trigger subsequent events in visual excitation.  相似文献   

16.
A quantitative fluorescence polarization theory of molecules bound to two-dimensional plane layers has been developed when the electronic transition moments of absorption and emission are parallel within the fluorescent molecules. The transition moments are assumed to be in preferred orientation with respect to the normal to the plane and to be randomly oriented within the plane (rotational symmetry with the normal as axis of symmetry). Three basic model distributions of transition moments are investigated quantitatively. These model distributions represent a simplification but in most cases may be expected to describe reality with sufficient accuracy. For all distributions, two cases of different mobility of molecules are treated: (a) the lifetime of fluorescence is small compared with the characteristic relaxation time of the distribution, and (b) the lifetime of fluorescence is long, so that a complete reorientation of transition moments during the excited state can take place. From the quantitative calculations four characteristic quantities are derived, which are appropriate for the analysis of experimental data. Experiments are carried out with phosphatidylcholine bilayer membranes which contain three differently substituted amphiphilic flavins. All three flavins yield similar data. Their analyses predict free and fast mobility of the flavin chromophore.  相似文献   

17.
The nature of the primary photochemical events in rhodopsin and isorhodopsin is studied by using low temperature actinometry, low temperature absorption spectroscopy, and intermediate neglect of differential overlap including partial single and double configuration interaction (INDO-PSDCI) molecular orbital theory. The principal goal is a better understanding of how the protein binding site influences the energetic, photochemical, and spectroscopic properties of the bound chromophore. Absolute quantum yields for the isorhodopsin (I) to bathorhodopsin (B) phototransformation are assigned at 77 K by using the rhodopsin (R) to bathorhodopsin phototransformation as an internal standard (phi R----B = 0.67). In contrast to rhodopsin photochemistry, isorhodopsin displays a wavelength dependent quantum yield for photochemical generation of bathorhodopsin at 77 K. Measurements at seven wavelengths yielded values ranging from a low of 0.089 +/- 0.021 at 565 nm to a high of 0.168 +/- 0.012 at 440 nm. An analysis of these data based on a variety of kinetic models suggests that the I----B phototransformation encounters a small activation barrier (approximately 0.2 kcal mol-1) associated with the 9-cis----9-trans excited-state torsional-potential surface. The 9-cis retinal chromophore in solution (EPA, 77 K) has the smallest oscillator strength relative to the other isomers: 1.17 (all-trans), 0.98 (9-cis), 1.04 (11-cis), and 1.06 (13-cis). The effect of conformation is quite different for the opsin-bound chromophores. The oscillator strength of the lambda max absorption band of I is observed to be anomalously large (1.11) relative to the lambda max absorption bands of R (0.98) and B (1.07). The wavelength-dependent photoisomerization quantum yields and the anomalous oscillator strength associated with isorhodopsin provide important information on the nature of the opsin binding site. Various models of the binding site were tested by using INDO-PSDCI molecular orbital theory to predict the oscillator strengths of R, B, and I and to calculate the barriers and energy storage associated with the photochemistry of R and I for each model. Our experimental and theoretical investigation leads to the following conclusions: (a) The counterion (abbreviated as CTN) is not intimately associated with the imine proton in R, B, or I. The counterion lies underneath the plane of the chromophore in R and I, and the primary chromophore-counterion electrostatic interactions involve C15-CTN and C13-CTN. These interactions are responsible for the anomalous oscillator strength of I relative to R and B.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The orientational change of the absorbing dipole of the retinal chromophore in vertebrate rhodopsin (rhodo) upon photo-excitation to bathorhodopsin (batho), lumirhodopsin (lumi) and isorhodopsin (iso), has been studied by polarized absorption and linear dichroism measurements on magnetically oriented frog rod suspensions that were blocked at liquid nitrogen temperature. Both the azimuthal component delta theta and the polar component delta theta of the total angular change were studied in separate experiments. Delta theta was estimated from polarized absorption measurements on rods oriented transversally with respect to the analyzing beam. The data show unequivocally that upon the rhodo leads to batho transition, the dipole shifts out of the membrane plane by only few degrees; delta theta congruent to -3 degree. This azimuthal shift was nearly exactly reversed upon the batho leads to lumi decay. A very small shift (delta theta less than or equal to 1 degree) toward the membrane plane was observed upon a rhodo leads to iso conversion. The polar component delta theta of the angular shift was estimated by studying the photoreversion of linear dichroism induced by photo-excitation with polarized light in rods oriented parallel to the analyzing beam. Upon the rhodo leads to batho transition, ther was a shift delta theta = 11 +/- 3 degrees. The overall angular shift upon this first photo-exciting step, which corresponded to the isomerisation of retinal, was only delta omega = 11 +/- 3 degrees. This is smaller than what may be expected for a cis-trans isomerization of a retinal molecule with one end fixed, and different from what has been previously estimated by another group. These discrepancies are discussed.  相似文献   

19.
We report studies of the interaction of four anthracycline antibiotics, iremycin (IM), daunomycin (DM), aclacinomycin A (AM), and violamycin B1 (VM), with naked DNA, nucleosomal core particles, and 175 base pair (bp) nucleosomes lacking histone H1. In all cases the binding strength increases in the order IM less than DM approximately AM less than VM. The binding substrates increased in affinity for the drugs in the following order: core particles less than 175-bp nucleosomes less than DNA. The apparent DNA length increment per drug bound decreases in the progression IM greater than DM greater than AM greater than VM, the same serial order as is characterized by increasing binding affinity. Dichroism amplitude measurements show that for all drugs the long-wavelength absorbance transition moment is tilted by 26-29 degrees relative to the plane perpendicular to the helix axis; this angle probably corresponds to the long axis tilt of the intercalated chromophore. Finally, it was found that the ability of the drugs to inhibit DNA synthesis by Escherichia coli DNA polymerase I increases in the same order as their binding affinity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号