首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Arabidopsis RPM1 gene confers resistance against Pseudomonas syringae expressing either the AvrRpm1 or the AvrB type III effector protein. We present an exhaustive genetic screen for mutants that no longer recognize avrRpm1. Using an inducible avrRpm1 expression system, we identified 110 independent mutations. These mutations represent six complementation groups. None discriminates between avrRpm1 and avrB recognition. We identified 95 rpm1 alleles and present a detailed structure--function analysis of the RPM1 protein. Several rpm1 mutants retain partial function, and we deduce that their residual activity is dependent on the level of avrRpm1 signal. In these mutants, the hypersensitive response remains activated if the signal goes above a certain threshold. Missense mutations in rpm1 are highly enriched in the nucleotide binding domain, suggesting that this region plays a key role either in the hypersensitive response associated with RPM1 activation or in RPM1 stability. Cluster analysis of rpm1 alleles defines functionally important residues that are highly conserved between nucleotide binding site leucine-rich repeat R proteins and those that are unique to RPM1. Regions of RPM1 to which no loss-of-function alleles map may represent domains in which variation is tolerated and may contribute to the evolution of new R gene specificities.  相似文献   

2.
We cloned and sequenced cDNAs encoded by a novel plant defense gene, ELI3, from parsley and Arabidopsis thaliana. The predicted product shares no homology to known sequences. ELI3 mRNA accumulates in A. thaliana leaves in response to challenge with phytopathogenic Pseudomonas syringae strains. The timing and magnitude of this response are dictated by the genetics of the plant-pathogen interaction being analyzed. During incompatible interactions, where resistance in the plant genotype Col-0 is dictated by the dominant RPM1 locus, ELI3 mRNA accumulates to high levels 5-10 h post-inoculation. This kinetic behavior is also generated by the presence of a cloned bacterial avirulence gene, in otherwise virulent bacteria, which triggers resistance mediated via RPM1 action. The phenotypic outcome is a hypersensitive resistance reaction visible 8-15 h post-infiltration. Thus, the induction kinetics of ELI3 mRNA accumulation are consistent with a functional role for the ELI3 gene product in establishing the resistant phenotype. In contrast, during compatible interactions with the susceptible plant genotype Nd-0, which is homozygous recessive at the rpm1 locus, ELI3 mRNA accumulates significantly only after 15 h. We show genetically that ELI3 activation is strictly dependent on the presence of dominant alleles at RPM1 using an assay generalizable to any pathogen induced plant defense phenomena.  相似文献   

3.
ABSTRACT: BACKGROUND: Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) virus of the Reoviridae family, which encodes its genes in ten linear dsRNA segments. BTV mRNAs are synthesised by the viral RNA-dependent RNA polymerase (RdRp) as exact plus sense copies of the genome segments. Infection of mammalian cells with BTV rapidly replaces cellular protein synthesis with viral protein synthesis, but the regulation of viral gene expression in the Orbivirus genus has not been investigated. RESULTS: Using an mRNA reporter system based on genome segment 10 of BTV fused with GFP we identify the protein characteristic of this genus, non-structural protein 1 (NS1) as sufficient to upregulate translation. The wider applicability of this phenomenon among the viral genes is demonstrated using the untranslated regions (UTRs) of BTV genome segments flanking the quantifiable Renilla luciferase ORF in chimeric mRNAs. The UTRs of viral mRNAs are shown to be determinants of the amount of protein synthesised, with the pre-expression of NS1 increasing the quantity in each case. The increased expression induced by pre-expression of NS1 is confirmed in virus infected cells by generating a replicating virus which expresses the reporter fused with genome segment 10, using reverse genetics. Moreover, NS1-mediated upregulation of expression is restricted to mRNAs which lack the cellular 3[PRIME] poly(A) sequence identifying the 3[PRIME] end as a necessary determinant in specifically increasing the translation of viral mRNA in the presence of cellular mRNA. CONCLUSIONS: NS1 is identified as a positive regulator of viral protein synthesis. We propose a model of translational regulation where NS1 upregulates the synthesis of viral proteins, including itself, and creates a positive feedback loop of NS1 expression, which rapidly increases the expression of all the viral proteins. The efficient translation of viral reporter mRNAs among cellular mRNAs can account for the observed replacement of cellular protein synthesis with viral protein synthesis during infection.  相似文献   

4.
5.
Chitin, a fungal microbial-associated molecular pattern, triggers various defence responses in several plant systems. Although it induces stomatal closure, the molecular mechanisms of its interactions with guard cell signalling pathways are unclear. Based on screening of public microarray data obtained from the ATH1 Affymetrix and Arabidopsis eFP browser, we isolated a cDNA encoding a Ras-related nuclear protein 1 AtRAN1. AtRAN1 expression was enriched in guard cells in a manner consistent with involvement in the control of the stomatal movement. AtRAN1 mutation impaired chitin-induced stomatal closure and accumulation of reactive oxygen species and nitric oxide in guard cells. In addition, Atran1 mutant plants exhibited compromised chitin-enhanced plant resistance to both bacterial and fungal pathogens due to changes in defence-related genes. Furthermore, Atran1 mutant plants were hypersensitive to drought stress compared to Col-0 plants, and had lower levels of stress-responsive genes. These data demonstrate a previously uncharacterized signalling role for AtRAN1, mediating chitin-induced signalling.  相似文献   

6.
7.
Mackey D  Holt BF  Wiig A  Dangl JL 《Cell》2002,108(6):743-754
In Arabidopsis, RPM1 confers resistance against Pseudomonas syringae expressing either of two sequence unrelated type III effectors, AvrRpm1 or AvrB. An RPM1-interacting protein (RIN4) coimmunoprecipitates from plant cell extracts with AvrB, AvrRpm1, or RPM1. Reduction of RIN4 protein levels inhibits both the hypersensitive response and the restriction of pathogen growth controlled by RPM1. RIN4 reduction causes diminution of RPM1. RIN4 reduction results in heightened resistance to virulent Peronospora parasitica and P. syringae, and ectopic defense gene expression. Thus, RIN4 positively regulates RPM1-mediated resistance yet is, formally, a negative regulator of basal defense responses. AvrRpm1 and AvrB induce RIN4 phosphorylation. This may enhance RIN4 activity as a negative regulator of plant defense, facilitating pathogen growth. RPM1 may "guard" against pathogens that use AvrRpm1 and AvrB to manipulate RIN4 activity.  相似文献   

8.
Many plant pathogens cause disease symptoms that manifest over days as regions of localized cell death. Localized cell death (the hypersensitive response; HR) also occurs in disease-resistant plants, but this response appears within hours of attempted infection and may restrict further pathogen growth. We identified a MAP kinase kinase kinase gene (MAPKKKalpha) that is required for the HR and resistance against Pseudomonas syringae. Significantly, we found that MAPKKKalpha also regulates cell death in susceptible leaves undergoing P. syringae infection. Overexpression of MAPKKKalpha in leaves activated MAPKs and caused pathogen-independent cell death. By overexpressing MAPKKKalpha in leaves and suppressing expression of various MAPKK and MAPK genes by virus-induced gene silencing, we identified two distinct MAPK cascades that act downstream of MAPKKKalpha. These results demonstrate that signal transduction pathways associated with both plant immunity and disease susceptibility share a common molecular switch.  相似文献   

9.
The Arabidopsis protein RPM1 activates disease resistance in response to Pseudomonas syringae proteins targeted to the inside of the host cell via the bacterial type III delivery system. We demonstrate that specific mutations in the ATP-binding domain of a single Arabidopsis cytosolic HSP90 isoform compromise RPM1 function. These mutations do not affect the function of related disease resistance proteins. RPM1 associates with HSP90 in plant cells. The Arabidopsis proteins RAR1 and SGT1 are required for the action of many R proteins, and display some structural similarity to HSP90 co-chaperones. Each associates with HSP90 in plant cells. Our data suggest that (i) RPM1 is an HSP90 client protein; and (ii) RAR1 and SGT1 may function independently as HSP90 cofactors. Dynamic interactions among these proteins can regulate RPM1 stability and function, perhaps similarly to the formation and regulation of animal steroid receptor complexes.  相似文献   

10.
<正>Dear Editor,With the inevitable trend of global warming, it is urgent to understand how plants sense and respond to temperature increases for designing new crop varieties that can tolerate high ambient temperature. In Arabidopsis thaliana, high ambient temperature promotes hypocotyl elongation in seedlings and stimulates petiole elongation and hyponasty in rosette leaves. These changes in architecture are collectively  相似文献   

11.
12.
The RPW8 locus from Arabidopsis thaliana Ms-0 includes two functional paralogous genes ( RPW8.1 and RPW8.2 ) and confers broad-spectrum resistance via the salicylic acid-dependent signaling pathway to the biotrophic fungal pathogens Golovinomyces spp. that cause powdery mildew diseases on multiple plant species. To identify proteins involved in regulation of the RPW8 protein function, a yeast two-hybrid screen was performed using RPW8.2 as bait. The 14-3-3 isoform lambda (designated GF14λ) was identified as a potential RPW8.2 interactor. The RPW8.2–GF14λ interaction was specific and engaged the C-terminal domain of RPW8.2, which was confirmed by pulldown assays. The physiological impact of the interaction was revealed by knocking down GF14λ by T-DNA insertion, which compromised basal and RPW8-mediated resistance to powdery mildew. In addition, over-expression of GF14λ resulted in hypersensitive response-like cell death and enhanced resistance to powdery mildew via the salicylic acid-dependent signaling pathway. The results from this study suggest that GF14λ may positively regulate the RPW8.2 resistance function and play a role in enhancing basal resistance in Arabidopsis.  相似文献   

13.
BACKGROUND: ABL tyrosine kinases control actin remodeling in development and in response to environmental stimuli. These changes affect cell adhesion, cell migration, and cell-cell contact. Little is known, however, about upstream mechanisms regulating ABL protein activation. RESULTS: We report that the RAS effector RIN1 is an activator of ABL tyrosine kinases. RIN1 expression in fibroblasts promotes the formation of membrane spikes; similar effects have been reported for ABL overexpression. RIN1 binds to the ABL SH3 and SH2 domains, and these interactions stimulate ABL2 catalytic activity. This leads to increased phosphorylation of CRK and CRKL, inhibiting these cytoskeletal regulators by promoting intramolecular over intermolecular associations. Activated RAS participates in a stable RAS-RIN1-ABL2 complex and stimulates the tyrosine kinase-activation function of RIN1. Deletion of the RAS binding domain (RBD) strongly stimulated the ABL2 activation function of RIN1, suggesting that RAS activation results from the relief of RIN1 autoinhibition. The ABL binding domain of RIN1 (RIN1-ABD) increased the activity of ABL2 immune complexes and purified RIN1-ABD-stimulated ABL2 kinase activity toward CRK. Mammary epithelial cells (MECs) from Rin1-/- mice showed accelerated cell adhesion and increased motility in comparison to wild-type cells. Knockdown of RIN1 in epithelial-cell lines blocked the induction of CRKL phosphorylation, confirming that RIN1 normally functions as an inhibitor of cell motility. CONCLUSIONS: RIN1 is a directly binding ABL tyrosine kinase activator in cells as well as in a defined-component assay. In response to environmental changes, this novel signal pathway mediates actin remodeling associated with adhesion and migration of epithelial cells.  相似文献   

14.
Plants activate systemic acquired resistance (SAR), a form of long-lasting induced defense, to confer protection against a broad spectrum of pathogens. SAR induction is associated with the salicylic acid (SA)-mediated defense signaling networks. For detailed understandings of the SA-mediated signaling of SAR induction, we screened chemical inhibitors that block SA-mediated signaling from a 9600-compound chemical library. As a result, we identified one candidate chemical, 4-phenyl-2-{[3-(tri-fluoromethyl)anilino]methylidene}cyclohexane-1,3-dione (PAMD), that suppresses the expression of pathogenesis-related (PR) gene. PAMD also down-regulates SA-induced gene expression and enhances susceptibility to pathogen.  相似文献   

15.

Background

Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors.

Methodology/Principal Findings

We identified collagen triple helix repeat containing-1 (Cthrc1) as a downstream target of bone morphogenetic protein-2 (BMP2) in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice). Microcomputed tomography (micro-CT) and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU) assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss.

Conclusions/Significance

Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the treatment of osteoporosis.  相似文献   

16.
Malignant tumor cells frequently achieve resistance to anoikis, a form of apoptosis induced by detachment from the basement membrane, which results in the anchorage-independent growth of these cells. Although the involvement of Src family kinases (SFKs) in this alteration has been reported, little is known about the signaling pathways involved in the regulation of anoikis under the control of SFKs. In this study, we identified a membrane protein, CUB-domain-containing protein 1 (CDCP1), as an SFK-binding phosphoprotein associated with the anchorage independence of human lung adenocarcinoma. Using RNA interference suppression and overexpression of CDCP1 mutants in lung cancer cells, we found that tyrosine-phosphorylated CDCP1 is required to overcome anoikis in lung cancer cells. An apoptosis-related molecule, protein kinase Cdelta, was found to be phosphorylated by the CDCP1-SFK complex and was essential for anoikis resistance downstream of CDCP1. Loss of CDCP1 also inhibited the metastatic potential of the A549 cells in vivo. Our findings indicate that CDCP1 is a novel target for treating cancer-specific disorders, such as metastasis, by regulating anoikis in lung adenocarcinoma.  相似文献   

17.
18.
19.
Early events occurring during the hypersensitive resistance response (HR) were examined using the avrRpm1/RPM1 gene-for-gene interaction in Arabidopsis challenged by Pseudomonas syringae pv. tomato. Increases in cytosolic Ca2+ were measured in whole leaves using aequorin-mediated bioluminescence. During the HR a sustained increase in Ca2+ was observed which was dependent on the presence of both a functional RPM1 gene product and delivery of the cognate avirulence gene product AvrRpm1. The sequence-unrelated avirulence gene avrB, which also interacts with RPM1, generated a significantly later but similarly prolonged increase in cytosolic Ca2+. Accumulation of H2O2 at reaction sites, as revealed by electron microscopy, occurred within the same time frame as the changes in cytosolic Ca2+. The NADPH oxidase inhibitor diphenylene iodonium chloride did not affect the calcium signature, but did block H2O2 accumulation and the HR. By contrast, the calcium-channel blocker LaCl3 suppressed the increase in cytosolic Ca2+ as well as H2O2 accumulation and the HR, placing calcium elevation upstream of the oxidative burst.  相似文献   

20.
AMPK acts as a cellular fuel gauge and responds to decreased cellular energy status by inhibiting ATP-consuming pathways and increasing ATP-synthesis. The aim of this study was to examine the role of AMPK in modulating poly(ADP-ribose) polymerase (PARP), a nuclear enzyme involved in maintaining chromatin structure and DNA repair. HT-29 cells infected with constitutively active AMPK demonstrated increased PARP automodification and an increase in bioNAD incorporation. AMPK and PARP co-immunoprecipitated under basal conditions and in response to H(2)O(2), suggesting a physical interaction under both resting and stress-induced conditions. Incubation of PARP with purified AMPK resulted in the phosphorylation of PARP; and the inclusion of AMP as an AMPK activator potentiated PARP phosphorylation. Using immobilized PARP, the incorporation of bioNAD by PARP was dramatically increased following the addition of AMPK. These data suggest a novel role for AMPK in regulating PARP activity through a direct interaction involving phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号