首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Summary The cytoplasm of eukaryotic cells is a complex milieu and unraveling how its unique cytoarchitecture is achieved and maintained is a central theme in modern cell biology. The actin cytoskeleton is essential for the maintenance of cell shape and locomotion, and also provides tracks for active intracellular transport. Myosins, the actin-dependent motor proteins form a superfamily of at least 15 structural classes and have been identified in a wide variety of organisms, making the presence of actin and myosins a hallmark feature of eukaryotes. Direct connections of myosins to a variety of cellular tasks are now emerging, such as in cytokinesis, phagocytosis, endocytosis, polarized secretion and exocytosis, axonal transport. Recent studies reveal that myosins also play an essential role in many aspects of signal transduction and neurosensation.  相似文献   

2.
Abscisic acid (ABA) regulates key processes relevant to seed germination, plant development, and biotic and abiotic stress responses. Abiotic stress conditions such as drought induce ABA biosynthesis initiating the signalling pathways that lead to a number of molecular and cellular responses, among which the best known are the expression of stress-related genes and stomatal closure. Stomatal closure also serves as a mechanism for pathogen defence, thereby acting as a platform for crosstalk between biotic and abiotic stress responses involving ABA action. Significant advances in our understanding of ABA signal transduction have been made with combination of approaches including genetics, biochemistry, electrophysiology and chemical genetics. Molecular components associated with the ABA signalling have been identified, and their relationship in the complex network of interactions is being dissected. We focused on the recent progress in ABA signal transduction, especially those studies related to identification of ABA receptors and downstream components that lead ABA signal to cellular response. In particular, we will describe a pathway model that starts with ABA binding to the PYR/PYL/RCAR family of receptors, followed by inactivation of 2C-type protein phosphatases and activation of SnRK2-type kinases, and eventually lead to activation of ion channels in guard cells and stomatal closure.  相似文献   

3.
Despite its small size, profilin is an amazingly diverse and sophisticated protein whose precise role in cells continues to elude the understanding of researchers 15 years after its discovery. Its ubiquity, abundance and necessity for life in more evolved organisms certainly speaks for its exterme importance in cell function. So far, three ligands for profilin have been well-characterized in vitro: actin monomers, membrane polyphosphoinositides and poly-L-proline. In the years following its discovery, profilin's role in vivo progressed from that of a simple actin-binding protein which inhibits actin polymerization, to one which, as an important regulator of the cytoskeleton, can even promote actin polymerization under the appropriate circumstances. In addition, interactions with components of the phosphatidylinositol cycle and the RAS pathway in yeast implicate profilin as an important link through which the actin cytoskeleton is able to communicate with major signaling pathways.  相似文献   

4.
Cytoskeletal proteins provide the structural foundation that allows cells to exist in a highly organized manner. Recent evidence suggests that certain cytoskeletal proteins not only maintain structural integrity, but might also be associated with signal transduction and suppression of tumorigenesis. Since the time of the discovery of tensin, a fair amount of data has been gathered which supports the notion that tensin is one such protein possessing these characteristics. In this review, we discuss recent studies that: (1) elucidate a role for tensin in maintenance of cellular structure and signal transduction; (2) implicate tensin as the anchor for actin filaments at the focal adhesion; (3) describe the phosphorylation of tensin; (4) describe potential targets for its Src homology region 2 domain; (5) describe the association between tensin and the nuclear protein p130; and (6) demonstrate that increased tensin expression in a cell line appears to reduce its transformation potential.  相似文献   

5.
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.  相似文献   

6.
We have addressed the functional and structural roles of three domains of the chloroplast Rieske iron-sulfur protein; that is, the flexible hinge that connects the transmembrane helix to the soluble cluster-bearing domain, the N-terminal stromal protruding domain, and the transmembrane helix. To this aim mutants were generated in the green alga Chlamydomonas reinhardtii. Their capacities to assemble the cytochrome b6f complex, perform plastoquinol oxidation, and signal redox-induced activation of the light-harvesting complex II kinase during state transition were tested in vivo. Deletion of one residue and extensions of up to five residues in the flexible hinge had no significant effect on complex accumulation or electron transfer efficiency. Deletion of three residues (Delta3G) dramatically decreased reaction rates by a factor of approximately 10. These data indicate that the chloroplast iron-sulfur protein-linking domain is much more flexible than that of its counterpart in mitochondria. Despite greatly slowed catalysis in the Delta3G mutant, there was no apparent delay in light-harvesting complex II kinase activation or state transitions. This indicates that conformational changes occurring in the Rieske protein did not represent a limiting step for kinase activation within the time scale tested. No phenotype could be associated with mutations in the N-terminal stromal-exposed domain. In contrast, the N17V mutation in the Rieske protein transmembrane helix resulted in a large decrease in the cytochrome f synthesis rate. This reveals that the Rieske protein transmembrane helix plays an active role in assembly-mediated control of cytochrome f synthesis. We propose a structural model to interpret this phenomenon based on the C. reinhardtii cytochrome b6f structure.  相似文献   

7.

Background   

Whole genome duplication (WGD) is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD) occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed.  相似文献   

8.
Unconventional myosins: anchors in the membrane traffic relay   总被引:4,自引:0,他引:4  
The family of unconventional myosins is ever growing and the functions attributed to them seem to expand in parallel. These actin-based motor proteins have been implicated in processes as seemingly diverse as endocytosis and exocytosis, the transport of organelles, in spermatogenesis and in neurosensory functions such as hearing and sight. A common myosin function may underlie them all — the regulation of intracellular membrane traffic.  相似文献   

9.
10.
11.
12.
Induction of long-term synaptic potentiation (LTP) in excitatory neurons triggers a transient enlargement of dendritic spines followed by decay to sustained size expansion, a process termed structural LTP which contributes to the cellular basis of learning and memory. The activity-induced structural changes in dendritic spines involve spatiotemporal coordination of actin cytoskeleton reorganization, membrane trafficking and membrane remodeling. In this review, we discuss recent progresses in understanding the complex mechanisms underlying structural LTP, with an emphasis on the interplay between the spine plasma membrane and the actin cytoskeleton. We also highlight open questions and challenges to further understand this interesting cell neurobiological phenomenon.  相似文献   

13.
The B cell antigen receptor (BCR) is the sensor on the B cell surface that surveys foreign molecules (antigen) in our bodies and activates B cells to generate antibody responses upon encountering cognate antigen. The binding of antigen to the BCR induces signaling cascades in the cytoplasm, which provides the first signal for B cell activation. Subsequently, BCRs internalize and target bound antigen to endosomes, where antigen is processed into T cell recognizable forms. T helper cells generate the second activation signal upon binding to antigen presented by B cells. The optimal activation of B cells requires both signals, thereby depending on the coordination of BCR signaling and antigen transport functions. Antigen binding to the BCR also induces rapid remodeling of the cortical actin network of B cells. While being initiated and controlled by BCR signaling, recent studies reveal that this actin remodeling is critical for both the signaling and antigen processing functions of the BCR, indicating a role for actin in coordinating these two pathways. Here we will review previous and recent studies on actin reorganization during BCR activation and BCR- mediated antigen processing, and discuss how actin remodeling translates BCR signaling into rapid antigen uptake and processing while providing positive and negative feedback to BCR signaling.  相似文献   

14.
Osmotic stress-induced remodeling of the cortical cytoskeleton   总被引:7,自引:0,他引:7  
Osmoticstress is known to affect the cytoskeleton; however, this adaptiveresponse has remained poorly characterized, and the underlyingsignaling pathways are unexplored. Here we show that hypertonicityinduces submembranous de novo F-actin assembly concomitant with theperipheral translocation and colocalization of cortactin and theactin-related protein 2/3 (Arp2/3) complex, which are key components ofthe actin nucleation machinery. Additionally, hyperosmolarity promotesthe association of cortactin with Arp2/3 as revealed bycoimmunoprecipitation. Using various truncation orphosphorylation-incompetent mutants, we show that cortactin translocation requires the Arp2/3- or the F-actin binding domain, butthe process is independent of the shrinkage-induced tyrosine phosphorylation of cortactin. Looking for an alternative signaling mechanism, we found that hypertonicity stimulates Rac and Cdc42. Thisappears to be a key event in the osmotically triggered cytoskeletal reorganization, because 1) constitutively active smallGTPases translocate cortactin, 2) Rac and cortactincolocalize at the periphery of hypertonically challenged cells, and3) dominant-negative Rac and Cdc42 inhibit thehypertonicity-provoked cortactin and Arp3 translocation. The Rhofamily-dependent cytoskeleton remodeling may be an importantosmoprotective response that reinforces the cell cortex.

  相似文献   

15.
Kay Hofmann 《EMBO reports》2008,9(12):1196-1202
The ubiquitin‐like protein Urm1 can be covalently conjugated to other proteins, such as the yeast thioredoxin peroxidase protein Ahp1p, through a mechanism involving the ubiquitin E1‐like enzyme Uba4. Recent findings have revealed a second function of Urm1 as a sulphur carrier in the thiolation of eukaryotic cytoplasmic transfer RNAs (tRNAs). Interestingly, this new role of Urm1 is similar to the sulphur‐carrier activity of its prokaryotic counterparts, strengthening the hypothesis that Urm1 is a molecular fossil of the ubiquitin‐like protein family. Here, we discuss the function of Urm1 in light of its dual role in protein and RNA modification.  相似文献   

16.
Muscarinic acetylcholine receptors mediate transmission of an extracellular signal represented by released acetylcholine to neuronal or effector cells. There are five subtypes of closely homologous muscarinic receptors which are coupled by means of heterotrimeric G-proteins to a variety of signaling pathways resulting in a multitude of target cell effects. Endogenous agonist acetylcholine does not discriminate among individual subtypes and due to the close homology of the orthosteric binding site the same holds true for most of exogenous agonists. In addition to the classical binding site muscarinic receptors have one or more allosteric binding sites at extracellular domains. Binding of allosteric modulators induces conformational changes in the receptor that result in subtype-specific changes in orthosteric binding site affinity for both muscarinic agonists and antagonists. This overview summarizes our recent experimental effort in investigating certain aspects of M2 muscarinic receptor functioning concerning i) the molecular determinants that contribute to the binding of allosteric modulators, ii) G-protein coupling specificity and subsequent cellular responses and iii) possible functional assays that exploit the unique properties of allosteric modulators for characterization of muscarinic receptor subtypes in intact tissue. A detailed knowledge of allosteric properties of muscarinic receptors is required to permit drug design that will modulate signal transmission strength of specific muscarinic receptor subtypes. Furthermore, allosteric modulation of signal transmission strength is determined by cooperativity rather than concentration of allosteric modulator and thus reduces the danger of overdose.  相似文献   

17.
Microtubules and signal transduction   总被引:21,自引:0,他引:21  
Although molecular components of signal transduction pathways are rapidly being identified, how elements of these pathways are positioned spatially and how signals traverse the intracellular environment from the cell surface to the nucleus or to other cytoplasmic targets are not well understood. The discovery of signaling molecules that interact with microtubules (MTs), as well as the multiple effects on signaling pathways of drugs that destabilize or hyperstabilize MTs, indicate that MTs are likely to be critical to the spatial organization of signal transduction. MTs themselves are also affected by signaling pathways and this may contribute to the transmission of signals to downstream targets.  相似文献   

18.
Large-scale gene expression analysis has been applied recently to uncover groups of genes that are co-regulated in particular processes. Here we undertake such an analysis on CAP, a protein that participates in the regulation of the actin cytoskeleton and in cAMP signaling in Dictyostelium. microarray analysis revealed that loss of CAP altered the expression of many cytoskeletal components. One of these, the Rho GDP-dissociation inhibitor RhoGDI1, was analyzed further. RhoGDI1 null cells expressed lower amounts of CAP, which failed to accumulate predominantly at the cell cortex. To further position CAP in the corresponding signal transduction pathways we studied CAP localization and cellular functioning in mutants that have defects in several signaling components. CAP showed correct localization and dynamics in all analyzed strains except in mutants with deficient cAMP dependent protein kinase A activity, where CAP preferentially accumulated in crown shaped structures. Ectopic expression of CAP improved the efficiency of phagocytosis in Gβ-deficient cells and restored the pinocytosis, morphology and actin distribution defects in a PI3 kinase double mutant (pi3k1/2 null). Our results show that CAP acts at multiple crossroads and links signaling pathways to the actin cytoskeleton either by physical interaction with cytoskeletal components or through regulation of their gene expression.  相似文献   

19.
Enteropathogenic Escherichia coli (EPEC) subverts host signalling pathways and the cytoskeleton during infection, resulting in disease characterized by diarrhoea. Recent studies have revolutionized our understanding of the infection process by showing that this bacterium inserts its own receptor into the plasma membrane overlying the host actin cytoskeleton. The reorganized actin forms a pedestal-like structure with the bacterium at the tip. This review discusses the mechanism of infection and pedestal formation and how this system might be a powerful tool for studying actin dynamics at the plasma membrane.  相似文献   

20.
Recent insights into virus-host interaction have been compiled in this review, focusing on the genetic basis and the modern conception of the molecular mechanisms of pathogen (mostly viral) recognition by plants. The significance of plant signal transduction systems and their key factors are discussed. The possible role of different elicitors in signal transduction processes has been considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号