首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the number of high-resolution structures of membrane proteins continues to rise, so has the necessity for techniques to link this structural information to protein function. In the case of transporters, function is achieved via coupling of conformational changes to substrate binding and release. Static structural data alone cannot convey information on these protein movements, but it can provide a high-resolution foundation on which to interpret lower resolution data obtained by complementary approaches. Here, we review selected biochemical and spectroscopic methods for assessing transporter conformational change. In addition to more traditional techniques, we present 19F-NMR as an attractive method for characterizing conformational change in transporters of known structure. Using biosynthetic labeling, multiple, non-perturbing fluorine-labeled amino acids can be incorporated throughout a protein to serve as reporters of conformational change. Such flexibility in labeling allows characterization of movement in protein regions that may not be accessible via other methods.  相似文献   

2.
Bell SP  Curran PK  Choi S  Mindell JA 《Biochemistry》2006,45(22):6773-6782
Channels and transporters of the ClC family serve a variety of physiological functions. Understanding of their gating and transport mechanisms remains incomplete, with disagreement over the extent of protein conformational change involved. Using site-directed fluorescence labeling, we probe ClC-ec1, a prokaryotic ClC, for transport-related structural rearrangements. We specifically label cysteines introduced at several positions in the R helix of ClC-ec1 with AlexaFluor 488, an environment-sensitive fluorophore, and demonstrate that the labeled mutants show H+/Cl- transport activity indistinguishable from that of the wild-type protein. At each position that we examined we observe fluorescence changes upon acidification over the same pH range that is known to activate transport. The fluorescence change is also sensitive to Cl- concentration; furthermore, the Cl- and H+ dependencies are coupled as would be expected if the fluorescence change reflected a conformational change required for transport. Together, the results suggest that the changes in fluorescence report protein conformational changes underlying the transport process. Labeled transporters mutated to remove a glutamate critical to proton-coupled chloride transport retain pH-dependent fluorescence changes, suggesting that multiple residues confer pH dependence on the transport mechanism. These results have implications for models of transport and gating in ClC channels and transporters.  相似文献   

3.
Protein chemistry, such as crosslinking and photoaffinity labeling, in combination with modern mass spectrometric techniques, can provide information regarding protein–protein interactions beyond that normally obtained from protein identification and characterization studies. While protein crosslinking can make tertiary and quaternary protein structure information available, photoaffinity labeling can be used to obtain structural data about ligand–protein interaction sites, such as oligonucleotide–protein, drug–protein and protein–protein interaction. In this article, we describe mass spectrometry-based photoaffinity labeling methodologies currently used and discuss their current limitations. We also discuss their potential as a common approach to structural proteomics for providing 3D information regarding the binding region, which ultimately will be used for molecular modeling and structure-based drug design.  相似文献   

4.
Protein chemistry, such as crosslinking and photoaffinity labeling, in combination with modern mass spectrometric techniques, can provide information regarding protein-protein interactions beyond that normally obtained from protein identification and characterization studies. While protein crosslinking can make tertiary and quaternary protein structure information available, photoaffinity labeling can be used to obtain structural data about ligand-protein interaction sites, such as oligonucleotide-protein, drug-protein and protein-protein interaction. In this article, we describe mass spectrometry-based photoaffinity labeling methodologies currently used and discuss their current limitations. We also discuss their potential as a common approach to structural proteomics for providing 3D information regarding the binding region, which ultimately will be used for molecular modeling and structure-based drug design.  相似文献   

5.
Secondary active transporters couple the free energy of the electrochemical potential of one solute to the transmembrane movement of another. As a basic mechanistic explanation for their transport function the model of alternating access was put forward more than 40 years ago, and has been supported by numerous kinetic, biochemical and biophysical studies. According to this model, the transporter exposes its substrate binding site(s) to one side of the membrane or the other during transport catalysis, requiring a substantial conformational change of the carrier protein. In the light of recent structural data for a number of secondary transport proteins, we analyze the model of alternating access in more detail, and correlate it with specific structural and chemical properties of the transporters, such as their assignment to different functional states in the catalytic cycle of the respective transporter, the definition of substrate binding sites, the type of movement of the central part of the carrier harboring the substrate binding site, as well as the impact of symmetry on fold-specific conformational changes. Besides mediating the transmembrane movement of solutes, the mechanism of secondary carriers inherently involves a mechanistic coupling of substrate flux to the electrochemical potential of co-substrate ions or solutes. Mainly because of limitations in resolution of available transporter structures, this important aspect of secondary transport cannot yet be substantiated by structural data to the same extent as the conformational change aspect. We summarize the concepts of coupling in secondary transport and discuss them in the context of the available evidence for ion binding to specific sites and the impact of the ions on the conformational state of the carrier protein, which together lead to mechanistic models for coupling.  相似文献   

6.
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X‐ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well‐suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR‐derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state‐of‐the‐art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.  相似文献   

7.
8.
The recent determination of high-resolution crystal structures of several transporters offers unprecedented insights into the structural mechanisms behind secondary transport. These proteins utilize the facilitated diffusion of the ions down their electrochemical gradients to transport the substrate against its concentration gradient. The structural studies revealed striking similarities in the structural organization of ion and solute binding sites and a well-conserved inverted-repeat topology between proteins from several gene families. In this paper we will overview recent atomistic simulations applied to study the mechanisms of selective binding of ion and substrate in LeuT, Glt, vSGLT and hSERT as well as its consequences for the transporter conformational dynamics. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

9.
Errata     
Abstract

Mass spectrometry (MS)-based proteomics is an unrivaled tool for studying complex biological systems and diseases in the post-genomic era. In recent years, MS has emerged as a powerful structural biological tool to characterize protein conformation and conformational dynamics. The advantages of MS in structural studies are most evident for membrane proteins such as GPCRs (G protein-coupled receptors), where other well-established structural methods such as X-ray crystallography and NMR remain challenging. For proteins with available high-resolution structures, MS-based structural strategies can provide valuable, previously inaccessible information on protein conformational changes and dynamics, protein motion/flexibility, ligand–protein binding, and protein–protein interfaces. In the past several years, we have developed and adapted a number of MS-based structural approaches, such as CDSiL-MS (Conformational changes and Dynamics using Stable-isotope Labeling and MS), CXMS (Crosslinking/MS) and HDXMS (Hydrogen-Deuterium Exchange MS), to study protein structures and conformational dynamics in human β2-adrenegic receptor (β2AR) signaling. In this mini-review, we will highlight several examples demonstrating the power of MS in structural analysis to better elucidate the structural basis of GPCR signaling, particularly through the β-arrestin-mediated GPCR signaling pathway.  相似文献   

10.
ABC transporters are fascinating examples of fine-tuned molecular machines that use the energy from ATP hydrolysis to translocate a multitude of substrates across biological membranes. While structural details have emerged on many members of this large protein superfamily, a number of functional details are still under debate. High resolution structures yield valuable insights into protein function, but it is the combination of structural, functional and dynamic insights that facilitates a complete understanding of the workings of their complex molecular mechanisms. NMR is a technique well-suited to investigate proteins in atomic resolution while taking their dynamic properties into account. It thus nicely complements other structural techniques, such as X-ray crystallography, that have contributed high-resolution data to the architectural understanding of ABC transporters. Here, we describe the heterologous expression of LmrA, an ABC exporter from Lactococcus lactis, in Escherichia coli. This allows for more flexible isotope labeling for nuclear magnetic resonance (NMR) studies and the easy study of LmrA's multidrug resistance phenotype. We use a combination of solid-state magic angle spinning (MAS) on the reconstituted transporter and solution NMR on its isolated nucleotide binding domain to investigate consequences of nucleotide binding to LmrA. We find that nucleotide binding affects the protein globally, but that NMR is also able to pinpoint local dynamic effects to specific residues, such as the Walker A motif's conserved lysine residue.  相似文献   

11.
Capturing conformational changes in proteins or protein-protein complexes is a challenge for both experimentalists and computational biologists. Solution nuclear magnetic resonance (NMR) is unique in that it permits structural studies of proteins under greatly varying conditions, and thus allows us to monitor induced structural changes. Paramagnetic effects are increasingly used to study protein structures as they give ready access to rich structural information of orientation and long-range distance restraints from the NMR signals of backbone amides, and reliable methods have become available to tag proteins with paramagnetic metal ions site-specifically and at multiple sites. In this study, we show how sparse pseudocontact shift (PCS) data can be used to computationally model conformational states in a protein system, by first identifying core structural elements that are not affected by the environmental change, and then computationally completing the remaining structure based on experimental restraints from PCS. The approach is demonstrated on a 27 kDa two-domain NS2B-NS3 protease system of the dengue virus serotype 2, for which distinct closed and open conformational states have been observed in crystal structures. By changing the input PCS data, the observed conformational states in the dengue virus protease are reproduced without modifying the computational procedure. This data driven Rosetta protocol enables identification of conformational states of a protein system, which are otherwise difficult to obtain either experimentally or computationally.  相似文献   

12.
Protein palmitoylation plays an important role in the structure and function of a wide array of proteins. Unlike other lipid modifications, protein palmitoylation is highly dynamic and cycles of palmitoylation and depalmitoylation can regulate protein function and localization. The dynamic nature of palmitoylation is poorly resolved because of limitations in assay methods. Here, we discuss various methods that can be used to measure protein palmitoylation and identify sites of palmitoylation. We describe new methodology based on "fatty acyl exchange labeling" in which palmitate is removed via hydroxylamine-mediated cleavage of the palmitoyl-thioester bond and then exchanged with a sulfhydryl-specific labeling compound. The techniques are highly sensitive and allow for quantitative estimates of palmitoylation. Unlike other techniques used to assay posttranslational modifications, the techniques we have developed can label all sites of modification with a variety of probes, radiolabeled or non-radioactive, and can be used to assay the palmitoylation of proteins from tissue samples.  相似文献   

13.
The bacterial outer-membrane vitamin B12 transporter, BtuB, undergoes a dramatic order-to-disorder transition in its N-terminal energy-coupling motif (Ton box) upon substrate binding. Here, site-directed spin labeling (SDSL) is used to show that a range of solutes prevents this conformational change when ligand is bound to BtuB, resulting in a more ordered Ton box structure. For each solute examined, the data indicate that solutes effectively block this conformational transition through an osmotic mechanism. The molecular weight dependence of this solute effect has been examined for a series of polyethylene glycols, and a sharp molecular weight cutoff is observed. This cutoff indicates that solutes are preferentially excluded from a cavity within the protein as well as the protein surface. Furthermore, the sensitivity of the conformational change to solution osmolality is consistent with a structural model predicted by SDSL. When the Ton box is unfolded by detergents or mutations (rather than by ligand binding), solutes, such as polyethylene glycols and salts, also induce a more structured compacted conformation. These results suggest that conformational changes in this class of outer membrane transporters, which involve modest energy differences and changes in hydration, may be modulated by a range of solutes, including solutes typically used in protein crystallization.  相似文献   

14.
We present structural data on the RI alpha isoform of the cAMP-dependent protein kinase A that reveal, for the first time, a large scale conformational change within the RI alpha homodimer upon catalytic subunit binding. This result infers that the inhibition of catalytic subunit activity is not the result of a simple docking process but rather is a multi-step process involving local conformational changes both in the cAMP-binding domains as well as in the linker region of the regulatory subunit that impact the global structure of the regulatory homodimer. The results were obtained using small-angle neutron scattering with contrast variation and deuterium labeling. From these experiments we derived information on the shapes and dispositions of the catalytic subunits and regulatory homodimer within a holoenzyme reconstituted with a deuterated regulatory subunit. The scattering data also show that, despite extensive sequence homology between the isoforms, the overall structure of the type I alpha holoenzyme is significantly more compact than the type II alpha isoform. We present a model of the type I alpha holoenzyme, built using available high-resolution structures of the component subunits and domains, which best fits the neutron-scattering data. In this model, the type I alpha holoenzyme forms a flattened V shape with the RI alpha dimerization domain at the point of the V and the cAMP-binding domains of the RI alpha subunits with their bound catalytic subunits at the ends.  相似文献   

15.
The study of protein structure and function has evolved to become a leading discipline in the biophysical sciences. Although it is not yet possible to determine 3D protein structures from MS data alone, multiple MS-based techniques can be combined to obtain structural and functional data that are complementary to classical protein structure information obtained from NMR or X-ray crystallography. Monitoring gas-phase interactions of noncovalent complexes yields information on binding constants, complex stability, and the nature of interactions. Ion mobility MS and chemical crosslinking strategies can be applied to probe the architecture of macromolecular assemblies and protein-ligand complexes. MS analysis of hydrogen-deuterium exchange can be used to determine the localization of secondary structure elements, binding sites and conformational dynamics of proteins in solution. This minireview focuses first on new strategies that combine these techniques to gain insights into protein structure and function. Using one such strategy, we then demonstrate how a novel hydrogen-deuterium exchange microfluidics tool can be used online with an ESI mass spectrometer to monitor regional accessibility in a peptide, as exemplified with amyloid-β peptide 1-40.  相似文献   

16.
Residual dipolar couplings (RDCs) have the potential of providing detailed information about the conformational fluctuations of proteins. It is very challenging, however, to extract such information because of the complex relationship between RDCs and protein structures. A promising approach to decode this relationship involves structure-based calculations of the alignment tensors of protein conformations. By implementing this strategy to generate structural restraints in molecular dynamics simulations we show that it is possible to extract effectively the information provided by RDCs about the conformational fluctuations in the native states of proteins. The approach that we present can be used in a wide range of alignment media, including Pf1, charged bicelles and gels. The accuracy of the method is demonstrated by the analysis of the Q factors for RDCs not used as restraints in the calculations, which are significantly lower than those corresponding to existing high-resolution structures and structural ensembles, hence showing that we capture effectively the contributions to RDCs from conformational fluctuations.  相似文献   

17.
Membrane transporters and receptors often rely on conserved hydrogen bonds to assemble transient paths for ion transfer or long-distance conformational couplings. For transporters and receptors that use proton binding and proton transfer for function, inter-helical hydrogen bonds of titratable protein sidechains that could change protonation are of central interest to formulate hypotheses about reaction mechanisms. Knowledge of hydrogen bonds common at sites of potential interest for proton binding could thus inform and guide studies on functional mechanisms of protonation-coupled membrane proteins. Here we apply graph-theory approaches to identify hydrogen-bond motifs of carboxylate and histidine sidechains in a large data set of static membrane protein structures. We find that carboxylate-hydroxyl hydrogen bonds are present in numerous structures of the dataset, and can be part of more extended H-bond clusters that could be relevant to conformational coupling. Carboxylate-carboxyamide and imidazole-imidazole hydrogen bonds are represented in comparably fewer protein structures of the dataset. Atomistic simulations on two membrane transporters in lipid membranes suggest that many of the hydrogen bond motifs present in static protein structures tend to be robust, and can be part of larger hydrogen-bond clusters that recruit additional hydrogen bonds.  相似文献   

18.
BtuB is an outer membrane protein responsible for the uptake of vitamin B12 by Escherichia coli. It belongs to a family of bacterial transport proteins that derive energy for transport by coupling to the trans-periplasmic energy-coupling protein TonB. Using site-directed spin labeling and EPR we investigated the structure and substrate-induced changes in the TonB box, a highly conserved region in all TonB dependent transporters that may couple to TonB. In the absence of substrate, the line widths and collision parameters from EPR are consistent with this domain existing in a structured helical conformation that contacts the barrel of the transporter. Addition of substrate converts this segment into an extended structure that is highly dynamic, disordered and probably extended into the periplasm. This structural change demonstrates that the TonB box cycles between sequestered and accessible states in a substrate-dependent fashion. In a transport defective mutant of BtuB, this conformational cycle is disrupted and the TonB box appears to be extended even in the absence of substrate. These data suggest that the TonB box extends into the periplasm and interacts with TonB only in  相似文献   

19.
Reductive methylation of lysyl side-chain amines has been a successful tool in the advancement of high-resolution structural biology. The utility of this method has continuously gained ground as a protein chemical modification, first as a tool to aid protein crystallization and later as a probe in protein nuclear magnetic resonance (NMR) spectroscopy. As an isotope-labeling strategy for NMR studies, reductive methylation has contributed to the study of protein–protein interactions and global conformational changes. Although more detailed structural studies using this labeling strategy are possible, the hurdle of assigning the NMR peaks to the corresponding reductively methylated amine hinders its use. In this review, we discuss and compare strategies used to assign the NMR peaks of reductively methylated protein amines.  相似文献   

20.
Movement is crucial to the biological function of many proteins, yet crystallographic structures of proteins can give us only a static snapshot. The protein dynamics that are important to biological function often happen on a timescale that is unattainable through detailed simulation methods such as molecular dynamics as they often involve crossing high-energy barriers. To address this coarse-grained motion, several methods have been implemented as web servers in which a set of coordinates is usually linearly interpolated from an initial crystallographic structure to a final crystallographic structure. We present a new morphing method that does not extrapolate linearly and can therefore go around high-energy barriers and which can produce different trajectories between the same two starting points. In this work, we evaluate our method and other established coarse-grained methods according to an objective measure: how close a coarse-grained dynamics method comes to a crystallographically determined intermediate structure when calculating a trajectory between the initial and final crystal protein structure. We test this with a set of five proteins with at least three crystallographically determined on-pathway high-resolution intermediate structures from the Protein Data Bank. For simple hinging motions involving a small conformational change, segmentation of the protein into two rigid sections outperforms other more computationally involved methods. However, large-scale conformational change is best addressed using a nonlinear approach and we suggest that there is merit in further developing such methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号