首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
S. Hasezawa  H. Nozaki 《Protoplasma》1999,209(3-4):98-104
Summary Cortical microtubules (MTs) have been implicated in the morphogenesis of plant cells by regulating the orientation of newly deposited cellulose microfibrils (CMFs). However, the role of MTs in oriented CMF deposition is still unclear. We have investigated the mechanism of CMF deposition with cultured tobacco protoplasts derived from taxol-treated BY-2 cells (taxol protoplasts). The BY-2 protoplasts regenerated patches of β-l,3-glucan (callose) and fibrils of β-l,4-glucan (cellulose). Taxol protoplasts possessed the same ordered MT arrays as material cells and regenerated CMFs with patterns almost coincidental with MTs. Electron microscopy revealed that, on the surface of cultured taxol protoplasts, each CMF bundle appeared to be deposited on each cortical MT. These results suggest that MTs may attach directly to the cellulose-synthesizing complexes, by some form of linkage, and regulate the movement of these complexes in higher-plant cells.  相似文献   

2.
Do microtubules orient plant cell wall microfibrils?   总被引:7,自引:0,他引:7  
Cortical microtubules (MTs) allegedly orient nascent cellulose microfibrils (CMFs) in plant cells. The frequently observed parallelism between them, and the effect of MT-depolymerizing agents, are the bases for this hypothesis. Data have, however, accumulated about cells in which MTs and CMFs are not in parallel alignment. These data will be reviewed. MT orientation cannot be the only factor determining CMF orientation, but MTs could overrule other factors in cells where, for instance, they are more tightly attached to the plasma membrane than in other cells. MT and CMF orientations could, however, both be controlled by a third factor, and CMFs may even impose orientation on MTs.  相似文献   

3.
The deposition of nascent cellulose microfibrils (CMFs) was studied in the walls of cortical cells in explants of Nicotiana tabacum L. flower stalks. In freshly cut explants the CMFs were deposited in two distinct and alternating orientations — all given with respect to the longitudinal axis of the cell —, at 75° and 115°, in a left-handed (S-helix) and right-handed (Z-helix) form, respectively. The CMFs deposited in these orientations did not form uninterrupted layers, but sheets in which both orientations were present. After explantation, the synthesis of CMFs and their deposition in bundles continued. New orientations occurred within 6 h. After 6 h a new sheet was deposited, with orientations of 15° (S-helix) and 165° (Z-helix). The changes could be seen as sudden bends in individual CMFs or in small bundles of CMFs. In the next stage, more CMFs were deposited with these new orientations and the bundles became larger. New orientations arose by a shift towards more longitudinal directions, starting from either the S-helix or the Z-helix form. It was only after an almost longitudinal orientation was reached that the CMFs were deposited in two opposing directions again and a new sheet was formed. Neither colchicine nor cremart influenced the changes in CMF deposition. It is concluded that microtubules do not control CMF deposition in cortical cells of tobacco explants; control of CMF deposition and microtubule orientation occurs by factors related to cell polarity.Abbreviations CMF cellulose microfibril - MT microtubule We thank Professor M.M.A. Sassen and Dr. G.W.M. Barendse (Department of Experimental Botany, University of Nijmegen, Nijmegen, The Netherlands) for helpful discussions and Mrs. A. Kemp for her assistance in the ethylene experiments.  相似文献   

4.
Cortical microtubules (MTs) in protoplasts prepared from tobacco (Nicotiana tabacum L.) BY-2 cells were found to be sensitive to cold. However, as the protoplasts regenerated cell walls they became resistant to cold, indicating that the cell wall stabilizes cortical MTs against the effects of cold. Since poly-l-lysine was found to stabilize MTs in protoplasts, we examined extensin, an important polycationic component of the cell wall, and found it also to be effective in stabilizing the MTs of protoplasts. Both extensin isolated from culture filtrates of tobacco BY-2 cells and extensin isolated in a similar way from cultures of tobacco XD-6S cells rendered the cortical MTs in protoplasts resistant to cold. Extensin at 0.1 mg·ml−1 was as effective as the cell wall in this respect. It is probable that extensin in the cell wall plays an important role in stabilizing cortical MTs in tobacco BY-2 cells.  相似文献   

5.
Abstract: The cytoskeleton, which mainly consists of microtubules (MTs) and actin microfilaments (MFs), plays various significant roles that are indispensable for eukaryotic viability, including determination of cell shape, cell movement, nuclear division, and cytokinesis. In animal cells, MFs appear to be of more importance than MTs, except for spindle formation in nuclear division. In contrast, higher plants have a rigid cell wall around their cells, and have thus evolved elegant systems of MTs to control the direction of cellulose microfibrils (CMFs) deposited in the cell wall, and to divide centrifugally in a physically limited space. Dynamic changes in MTs during cell cycle progression in higher plant cells have been observed over several decades, including cortical MTs (CMTs) during interphase, preprophase bands (PPBs) from late G2 phase to prophase, spindles from prometaphase to anaphase, and phragmoplasts at telophase. The MFs also show some changes not as obvious as MT dynamics. However, questions regarding the process of formation of these arrays, and the precise mechanisms by which they fulfill their roles, remain unsolved. In this article, we present an outline of the changes in the cytoskeleton based on our studies with highly-synchronized tobacco BY-2 cells. Some candidate molecules that could play roles in cytoskeletal dynamics are discussed. We also hope to draw attention to recent attempts at visualization of cytoskeletons with molecular techniques, and to some examples of genetic approaches in this field.  相似文献   

6.
n-Butanol induces depolymerization of microtubules in vivo and in vitro   总被引:3,自引:0,他引:3  
The effects of butanol on microtubules (MTs) were examined by immunofluorescence microscopy. Fragmentation of cortical MTs was induced by n-butanol, but not by s- and t-butanols, in cultured tobacco BY-2 cells. Taxol prevented n-butanol-induced MT fragmentation. Fragmented cortical MTs were still attached to the inner face of the plasma membrane when n-butanol-treated protoplasts were ruptured on the slide glass. Moreover, MTs were depolymerized in the presence of n-butanol in vitro. Therefore, n-butanol is not only an activator of phospholipase D but also an effective MT-depolymerizing agent.  相似文献   

7.
Summary Based on precise information about the orientations of cellulose microfibrils (CMFs) in the secondary cell wall of theEquisetum hyemale root hair, a geometrical model was recently put forward to account for the deposition orientation of CMFs. The model supposes that synthases spin out the CMFs and that geometrical laws dictate their movement. Taking space-limiting conditions into account, CMF orientation is dependent on cell morphology, the amount of other wall molecules adhering to the CMFs, and the number and distribution pattern of synthases. In the present paper this geometrical model for CMF deposition is further applied to nontip-growing angular cells with varying diameters, cells with tapering morphology, various distribution patterns of synthases, various matrix/fibril ratios, and intercalarily elongating cells. The model can accurately predict the actual wall textures in a great variety of cell walls. In the proposed model for CMF orientation, microtubules are not required as cellular guiding structures for the CMFs, not even in elongating walls. They are supposed to be involved in cell elongation, possibly by delivering wall material including CMF synthases.Abbreviation CMF cellulose microfibril  相似文献   

8.
Cell wall removal from plant cells can destabilize the cortical microtubules (MTs) in isolated protoplasts. The degree of destabilization depends on the origin and physiological condition of the cells, enzyme purity and digestion protocol, and the presence, in the digestion medium, of stabilizing factors such as Ca2+ or taxol. Disorientation of MTs in protoplasts and the absence of a "normal' cell wall during early culture periods results in abnormalities in mitotic spindles, phragmoplasts, new cross-walls and chromosome segregation. These abnormalities are greatly reduced in older protoplast cultures, where a substantial cell wall had regenerated. It is suggested that the cell wall may serve to stabilize MTs through transmembrane proteins and may play a role in the spatial organization of MT nucleating sites.  相似文献   

9.
Protoplasts of Marchantia polymorpha L. (liverwort) regenerated new cell walls in initial culture. However, the survival rate of regenerated cells decreased rapidly after this stage. The decrease in survival rate was suppressed by the β-glucosyl Yariv reagent (βglcY), which binds to arabinogalactan proteins (AGPs), only when it was added to culture medium during the period of incipient cell wall regeneration. The addition of βglcY after the period of incipient cell wall regeneration had no effect on the survival rate. These results suggested the involvement of AGPs in the cell wall regeneration process. After cell wall regeneration, the regenerated cells started to divide actively after being transferred to a medium with 1% activated charcoal (AC). Protoplasts that had been cultured with βglcY during the period of incipient cell wall regeneration and then transferred to the AC medium divided vigorously, and the cell division rate was remarkably increased (>80%). However, without transfer to the AC medium, βglcY at concentrations higher than 20 μg ml−1 inhibited cell division. No effect on cell survival nor cell division was observed with the α-galactosyl Yariv reagent. Staining of β-1,3-glucan (callose) with aniline blue (AB) showed that a large amount of β-1,3-glucan was deposited in the regenerated cell walls of the protoplasts cultured without βglcY, while little or no β-1,3-glucan was stained by AB in protoplasts cultured with βglcY. These results suggest that AGPs and β-1,3-glucan play important roles in the survival and subsequent cell division of regenerated cells of M. polymorpha protoplast cultures.  相似文献   

10.
Excised stem sections of deepwater rice (Oryza sativa L.) containing the highest internode were used to study the induction of rapid internodal elongation by gibberellin (GA). It has been shown before that this growth response is based on enhanced cell division in the intercalary meristem and on increased cell elongation. In both GA-treated and control stem sections, the basal 5-mm region of the highest internode grows at the fastest rate. During 24 h of GA treatment, the internodal elongation zone expands from 15 to 35 mm. Gibberellin does not promote elongation of internodes from which the intercalary meristem has been excised. The orientation of cellulose microfibrils (CMFs) is a determining factor in cell growth. Elongation is favored when CMFs are oriented transversely to the direction of growth while elongation is limited when CMFs are oriented in the oblique or longitudinal direction. The orientation of CMFs in parenchymal cells of GA-treated and control internodes is transverse throughout the internode, indicating that CMFs do not restrict elongation of these cells. Changes in CMF orientation were observed in epidermal cells, however. In the basal 5-mm zone of the internode, which includes the intercalary meristem, CMFs of the epidermal cell walls are transversely oriented in both GA-treated and control stem sections. In slowly growing control internodes, CMF orientation changes to the oblique as cells are displaced from this basal 5-mm zone to the region above it. In GA-treated rapidly growing internodes, the reorientation of CMFs from the transverse to the oblique is more gradual and extends over the 35-mm length of the elongation zone. The CMFs of older epidermal cells are obliquely oriented in control and GA-treated internodes. The orientation of the CMFs parallels that of the cortical microtubules. This is consistent with the hypothesis that cortical microtubules determine the direction of CMF deposition. We conclude that GA acts on cells that have transversely oriented CMFs but does not promote growth of cells whose CMFs are already obliquely oriented at the start of GA treatment.  相似文献   

11.
In this paper, a geometrical model is put forward to account for the deposition orientation of plant cell wall microfibrils (CMFs). The model presupposes the insertion in the plasma membrane of CMF initiation complexes, which, once inserted, are moved through the fluid plane of the plasma membrane by the kinetic force of CMF synthesis, leaving CMFs in their wake. Deposition occurs in a limited space and the CMFs are linked to wall matrix molecules. CMF orientation is governed by the laws of geometry and, taking space-limiting conditions into account, therefore depends on (1) cell geometry, (2) the other wall molecules linked to the CMFs, and (3) the number of CMF initiation complexes inserted into the plasma membrane. The model does not exclude the idea that cortical microtubules may determine initial CMF orientation after cell division by determining the cell elongation direction.  相似文献   

12.
Fisher DD  Cyr RJ 《Plant physiology》1993,103(2):543-551
Calcium affects the stability of cortical microtubules (MTs) in lysed protoplasts. This calmodulin (CaM)-mediated interaction may provide a mechanism that serves to integrate cellular behavior with MT function. To test the hypothesis that CaM associates with these MTs, monoclonal antibodies were produced against CaM, and one (designated mAb1D10) was selected for its suitability as an immunocytochemical reagent. It is shown that CaM associates with the cortical MTs of cultured carrot (Daucus carota L.) and tobacco (Nicotiana tabacum L.) cells. Inasmuch as CaM interacts with calcium and affects the behavior of these MTs, we hypothesized that calcium would alter this association. To test this, protoplasts containing taxol-stabilized MTs were lysed in the presence of various concentrations of calcium and examined for the association of CaM with cortical MTs. At 1 [mu]M calcium, many protoplasts did not have CaM in association with the cortical MTs, whereas at 3.6 [mu]M calcium, this association was completely abolished. Control experiments were performed to eliminate alternate explanations including differential antibody binding in the presence of calcium and/or taxol, detergent-induced redistribution of antigen, and epitope masking. The results are discussed in terms of a model in which CaM associates with MTs via two types of interactions, one that occurs in the presence of calcium and another that occurs only in its absence.  相似文献   

13.
Summary Microtubules (MTs) are important for plant cell morphogenesis because they influence the deposition of cell plate and wall components. It has been observed that tobacco protoplasts contain a disordered MT array in the cortex. Following several days in culture, these protoplasts become elongate cells with an orderly cortical MT array. The transformation of the MT array may occur by net depolymerization of the disordered MTs and repolymerization of MTs into an ordered array, or by movement of the array as an integral unit. To experimentally distinguish between these two possibilities, the drug taxol was used to stabilize MTs. Protoplasts derived from suspension cultured tobacco,Nicotiana tabacum, were grown in a medium containing the two plant hormones -naphthaleneacetic acid and benzyladenine, in the presence or absence of 10M taxol. Changes in cell size and shape were quantified using a video image analysis system. Cell elongation had begun within 48h of protoplast conversion, in both treatments, and continued for 7 days. Immunolocalization of tubulin showed that, in the majority of cells, MTs were disorganized immediately following protoplast conversion. After elongation, the MT arrays were observed to have reoriented to an ordered state. Taxol-treated protoplasts were found to elongate faster and to a greater extent than the non-treated controls. Additionally, the cortical array of taxol-treated protoplasts reorganized more quickly. These data indicate that the net depolymerization of disordered cortical MTs is not necessarily required for the differentiation of a protoplast into an elongate cell.Abbreviations APM amiprophosmethyl - BSA bovine serum albumin - DIC differential interference contrast - DTT dithiothreitol - EGTA ethylenegrycol-bis-(-aminoethyl ether)N,N,N,N-tetra-acetic acid - ELISA enzyme-linked immunosorbent assay - FMS Fukuda, Murashige, and Skoog - MS Murashige and Skoog - MT(s) microtubule(s) - PBS phosphate buffered saline - PIPES piperazine-N,N-bis (2-ethanesulfonic acid, 1.5 sodium) - PM plasma membrane - Tris Tris(hydroxymethyl)amino-methane  相似文献   

14.
The mechanism by which cortical microtubules (MTs) control the orientation of cellulose microfibril deposition in elongating plant cells was investigated in cells of the green alga, Closterium sp., preserved by ultrarapid freezing. Cellulose microfibrils deposited during formation of the primary cell wall are oriented circumferentially, parallel to cortical MTs underlying the plasma membrane. Some of the microfibrils curve away from the prevailing circumferential orientation but then return to it. Freeze-fracture electron microscopy shows short rows of particle rosettes on the P-face of the plasma membrane, also oriented perpendicular to the long axis of the cell. Previous studies of algae and higher plants have provided evidence that such rosettes are involved in the deposition of cellulose microfibrils. The position of the rosettes relative to the underlying MTs was visualized by deep etching, which caused much of the plasma membrane to collapse. Membrane supported by the MTs and small areas around the rosettes resisted collapse. The rosettes were found between, or adjacent to, MTs, not directly on top of them. Rows of rosettes were often at a slight angle to the MTs. Some evidence of a periodic structure connecting the MTs to the plasma membrane was apparent in freeze-etch micrographs. We propose that rosettes are not actively or directly guided by MTs, but instead move within membrane channels delimited by cortical MTs attached to the plasma membrane, propelled by forces derived from the polymerization and crystallization of cellulose microfibrils. More widely spaced MTs presumably allow greater lateral freedom of movement of the rosette complexes and result in a more meandering pattern of deposition of the cellulose fibrils in the cell wall.Abbreviations E-face exoplasmic fracture face - MT microtubule - P-face protoplasmic fracture-face  相似文献   

15.
S. Mizuta  T. Tsuji  S. Tsurumi 《Protoplasma》1995,189(1-2):123-131
Summary The effects of 2,6-dichlorobenzonitrile (DCB, an agent which inhibits cellulose synthesis) and cycloheximide (CHI, a known inhibitor of protein synthesis) on the construction and stability of the cortical microtubule (MT) cytoskeleton in two kinds of protoplasts (smaller protoplasts and larger ones) prepared fromBoodlea coacta (Dickie) Murray et De Toni were examined by immunofluorescence microscopy. In smaller protoplasts which develop from released protoplasmic masses in culture media, parental cortical MTs assume a convoluted configuration, but new cortical MTs appear following disassembly of convoluted MTs. New cortical MTs initially have a random arrangement but later, a rough meridional arrangement following development of cell polarity and finally, a high density meridional arrangement. In larger protoplasts which are formed within cell wall cylinders of thalli cut at 500 m length, longitudinally oriented parental cortical MTs are preserved. Each exhibits a curving configuration just after protoplast formation, but a straight configuration after 3 h of culture. In smaller protoplasts, cortical MT orientation changes from random to rough meridional orientation but never to a high density meridional orientation following treatment with 10 M CHI, and MT density decreases after 12 h. However, rough meridional and high density meridional arrangements of MTs ceased to be formed and MT density decreased following treatment with 10 M DCB. In larger protoplasts, high density meridional arrangements of MTs were noted not to be affected by treatment with CHI; instead, they continued to remain oriented meridionally, but the length and density were decreased after treatment with DCB for 3–4 h. After 10 h, the MTs became fragmented and orientation was random. From these findings it is summarized that: (1) There are no putative anchors in the plasma membrane of nascent smaller protoplasts, but the meridional orientation of cortical MTs requires anchors which may be distributed in the plasma membrane following the establishment of cell polarity. (2) Plasma membranes in larger protoplasts contain parental anchors oriented meridionally. Anchors stabilize cortical MTs via their close relation to cell walls (especially to cellulose). Anchors are detached from the plasma membrane when cellulose is not formed. (3) Cellulose regeneration may be indispensable to the formation and stabilization of the MT cytoskeleton inBoodlea.Abbreviations CHI cycloheximide - DCB 2,6-dichlorobenzonitrile - DMSO dimethylsulfoxide - MT microtubule  相似文献   

16.
Summary The cell wall regeneration on protoplasts derived from maize mesophyll cells was compared with wall regeneration on protoplasts derived from suspension cultured cells using light microscopy, transmission electron microscopy, and mass spectrometry. The time course of cell wall regeneration has shown that the mesophyll protoplasts regenerated walls much slower than the protoplasts derived from cultured cells. Moreover, cell wall materials on the mesophyll protoplasts were often unevenly distributed. Electron microscopy has further demonstrated that the mesophyll protoplasts have less organized and compact walls than the protoplasts from cultured cells. Chemical analysis revealed that the mesophyll protoplasts had a lower ratio ofβ-(1–3)-glucan toβ-(1–4)-glucan than protoplasts from cultured cells. The significance of these results for the viability and development of protoplasts in culture is discussed. National Research Council of Canada paper no. 32458.  相似文献   

17.
Burk DH  Ye ZH 《The Plant cell》2002,14(9):2145-2160
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.  相似文献   

18.
The relationship between alpha tubulin detyrosination and microtubule (MT) stability was examined directly in cultured fibroblasts by experimentally converting the predominantly tyrosinated MT array to a detyrosinated (Glu) array and then assaying MT stability. MTs in mouse Swiss 3T3 cells displayed an increase in Glu immunostaining fluorescence approximately 1 h after microinjecting antibodies to the tyrosinating enzyme, tubulin tyrosine ligase. Detyrosination progressed to virtual completion after 12 h and persisted for 30-35 h before tyrosinated subunits within MTs were again detected. The stability of these experimentally detyrosinated MTs was tested by first injecting either biotinylated or Xrhodamine-labeled tubulin and then measuring bulk turnover by hapten-mediated immunocytochemistry or fluorescence recovery after photobleaching, respectively. By both methods, turnover was found to be similarly rapid, possessing a half time of approximately 3 min. As a final test of MT stability, the level of acetylated tubulin staining in antibody-injected cells was compared with that observed in adjacent, uninjected cells and also with the staining observed in cells whose MTs had been stabilized with taxol. Although intense Glu staining was observed in both injected and taxol-treated cells, increased acetylated tubulin staining was observed only in the taxol-stabilized MTs, indicating that the MTs were not stabilized by detyrosination. Together, these results demonstrated clearly that detyrosination does not directly confer stability on MTs. Therefore, the stable MTs observed in these and other cell lines must have arisen by another mechanism, and may have become posttranslationally modified after their stabilization.  相似文献   

19.
Abstract: In juvenile walls of dividing cells of the liverwort Riella helicophylla the nitroso-derivative of photolysed Nifedipine (a calcium antagonist) stimulates the deposition of callose. This enhanced biosynthesis of β-1,3-glucan can only be observed in the cell plate, the juvenile cell walls and the walls of adjacent cells. An immunocytological analysis of this effect revealed that no cortical microtubules occurred at the sites of callose deposition. The cells of the control displayed a normal distribution of cortical microtubules at the plasma membrane as long as no callose was deposited along the corresponding walls. In a second set of experiments, inhibitors of microtubule polymerization and depolymerization (amiprophosmethyl and taxol, respectively) were used. At low concentrations, these substances also caused a significant stimulation of callose deposition in the plane of cell division. Based on these findings, we propose a regulatory model of callose and cellulose biosynthesis that depends on the binding of the cellulose/callose synthase complex to cortical microtubules that may be mediated by unknown binding protein(s).  相似文献   

20.
Dynamic changes of microtubule (MT) configuration have been examined during the cell cycle progression in tobacco BY-2 cells, which have been highly synchronized by aphidicolin treatment. Although it has been shown previously that four cell cycle stages display characteristic features of MTs (Hasezawa et al., 1991), distinct changes of MT configuration were observed at the interfaces of G2/M, M/G1 and G1/S, and the frequency of appearance of such distinct structures were quantitatively examined. Among others, it is the first observation that at M/G1 disintegrating phragmoplasts coexisted with short MTs in the perinuclear envelopes, but the MTs disappeared in the later stage, when cortical MTs were organizing. Thus it is supposed that cortical MTs originate from the transiently observed short MTs in the perinuclear region. This observation offered also an experimental system to analyze the molecular changes of MTs at the three interfaces during cell cycle progression in plant cells, as the mass culture of tobacco BY-2 cells is readily available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号