首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Eikelboom 《Life sciences》1987,40(11):1027-1032
The temperature effects of naloxone and naltrexone (1-30 mg/kg) were examined in well habituated male rats. These drugs had a similar time course and potency, producing a dose-dependent hypothermia followed several hours later by a hyperthermia. A subsequent study found that not only did 30 mg/kg of naloxone or naltrexone produce an equivalent hypothermia but this hypothermia was just as pronounced during the dark as in the light part of the cycle.  相似文献   

2.
J M van Ree  O Gaffori  I Kiraly 《Life sciences》1984,34(14):1317-1324
Low doses (10 ng) of the dopamine agonist apomorphine induced hypolocomotion when injected into the nucleus accumbens of rats. This behavioral response was antagonized by local treatment with either the opioid peptide gamma-endorphin (gamma E) or the non-opioid peptide N alpha-acetyl-gamma-endorphin (Ac gamma E) in a dose of 100 pg. High doses of apomorphine (10 micrograms) r amphetamine (2 micrograms) injected into the nucleus accumbens resulted in hyperlocomotion. This response was blocked by pretreatment with gamma E but not with Ac gamma E. This effect of gamma E could be prevented by local treatment with naloxone. Neither peptides interfered with the apomorphine-induced stereotyped sniffing when the substances were injected into the nucleus caudatus. It is concluded that gamma E and Ac gamma E differentially interact with distinct dopaminergic systems in the nucleus accumbens of the rat brain via an opioid and a non-opioid mechanism, suggesting that the peptide fragments originating from pro-opiomelanocortin may be specifically implicated in the control of dopaminergic activity in this brain area.  相似文献   

3.
The numerous studies of opioids as discriminative stimuli, beginning in 1971, have shown specificity, similarity of several opioids, differences in potency (fentanyl greater than heroin greater methadone greater than morphine), and antagonism by naloxone and naltrexone. The discriminative opioid stimulus is differentiated from those of other classes of drugs, such as sedatives and anxiolytics. Greater potency of the opioid stimulus has been found in rats after subcutaneous (s.c.) than intraperitoneal administration. The discriminative opioid stimulus and its antagonism by naloxone or naltrexone have been demonstrated in rats, squirrel monkeys, gerbils, and pigeons. A few studies have quantified the competitive agonist-antagonist interaction at the receptor by calculating the pA2, which reflects the dose of the antagonist that requires doubling the agonist dose to obtain the original agonist response. The pA2 for naloxone is the same in groups of rats trained to discriminate different doses of morphine (1, 2, or 4 mg/kg s.c.) from saline. Higher pA2 values in tests after fentanyl and methadone than after heroin and morphine in rats trained to discriminate fentanyl (0.04 mg/kg s.c.) from saline reflect greater susceptibility of the synthetic than the natural exogenous opioids to antagonism by naloxone. Different pA2 values are usually interpreted as indicating differences among populations of receptors.  相似文献   

4.
Effects of naltrexone on lipopolysaccharide-induced sepsis in rats   总被引:5,自引:0,他引:5  
Naltrexone, an opioid antagonist, has been reported to possess an anti-inflammatory effect via blockade of opioid receptor. The aim of this study is to evaluate the protective effect of naltrexone on LPS-induced septic shock in rats. Sepsis was induced by administration of LPS (10 mg/kg, i.v.) in anesthetized rats. Results demonstrated that pretreatment with naltrexone (10 mg/kg, i.v.) significantly ameliorated hypotension and bradycardia of rats 6 h after LPS administration. In isolated blood vessel, study showed that pretreatment with naltrexone significantly improved norepinephrine-induced vasoconstriction and ACh-induced vasorelaxation in aorta of endotoxemic animals. Naltrexone significantly reduced the elevation of serum glutamate-oxalacetate transaminase and glutamate-pyruvate transaminase (as index of hepatic function) induced by LPS. The infiltration of polymorphonuclear neutrophils into liver 48 h after LPS treatment in mice was also reduced by naltrexone. On the other hand, naltrexone significantly decreased the levels of plasma TNF- and inhibited overproduction of superoxide anions in aortic rings. However, naltrexone did not suppress the overproduction of NO (measured by its metabolites nitrite/nitrate in plasma) and iNOS expression in lungs induced by LPS. In in vitro study, naltrexone did not attenuate non-enzymatic iron-induced lipid peroxidation in rat brain homogenates. In conclusion, pretreatment with naltrexone significantly improved circulatory failure and hepatic dysfunction in sepsis. These effects were associated with reduction of TNF- levels and superoxide anion formation, which may be attributed to antagonism of opioid receptors.  相似文献   

5.
This study was designed to reveal the therapeutic regimen and mechanism of action underlying hypothermia treatment in combination with stem cell transplantation for ameliorating neonatal hypoxic-ischemic-like injury. Primary rat neurons were exposed to oxygen-glucose deprivation (OGD), which produced hypoxic-ischemic-like injury in vitro, then incubated at 25°C (severe hypothermia), 34°C (moderate hypothermia), and 37°C (normothermia) with or without subsequent co-culture with mesenchymal stromal cells (MSCs). Combination treatment of moderate hypothermia and MSCs significantly improved cell survival and mitochondrial activity after OGD exposure. The exposure of delta opioid human embryonic kidney cells (HEK293) to moderate hypothermia attenuated OGD-mediated cell alterations, which were much more pronounced in HEK293 cells overexpressing the delta opioid receptor. Further, the addition of delta opioid peptide to 34°C hypothermia and stem cell treatment in primary rat neurons showed synergistic neuroprotective effects against OGD which were significantly more robust than the dual combination of moderate hypothermia and MSCs, and were significantly reduced, but not completely abolished, by the opioid receptor antagonist naltrexone altogether implicating a ligand-receptor mechanism of neuroprotection. Further investigations into non-opioid therapeutic signaling pathways revealed growth factor mediation and anti-apoptotic function accompanying the observed therapeutic benefits. These results support combination therapy of hypothermia and stem cells for hypoxic-ischemic-like injury in vitro, which may have a direct impact on current clinical trials using stand-alone hypothermia or stem cells for treating neonatal encephalopathy.  相似文献   

6.
Systemically administered beta-endorphin was tested in rats for its ability to modify the hypothermia and hypermotility induced by d-amphetamine. Colonic temperature and motor activity were measured in a cold (4°C) ambient temperature in animals given IP injections of beta-endorphin (0.1, 1.0, or 3.0 mg/kg), naloxone (10 mg/kg), or morphine (30 mg/kg). The same measurements were taken in animals given beta-endorphin (1.0 mg/kg) in combination with naloxone or saline pretreatment and d-amphetamine (15 mg/kg) or saline post-treatment. Morphine alone had a biphasic effect on thermoregulation, but did not affect d-amphetamine-induced hypothermia. Activity scores were decreased by morphine, in both d-amphetamine and saline treated animals. The thermal response of rats to beta-endorphin alone was variable, depending on dosage, but all 3 dosages partially blocked the hypothermic effect of d-amphetamine. Naloxone blocked the thermal effects of both beta-endorphin and d-amphetamine. Motor activity tended to be decreased by naloxone, regardless of amphetamine treatment, but beta-endorphin tended to increase activity in amphetamine-treated animals and reduce it in saline-treated controls. In their actions on both thermoregulation and activity, naloxone and beta-endorphin appeared to interact independently with d-amphetamine, often producing effects in the same direction, but in combination, they tended to be mutually inhibitory.  相似文献   

7.
Exposure of rats to 1-15 Gy gamma radiation (60Co) induced hyperthermia, whereas 20-200 Gy induced hypothermia. Exposure either to the head or to the whole body to 10 Gy induced hyperthermia, while body-only exposure produced hypothermia. This observation indicates that radiation-induced fever is a result of a direct effect on the brain. The hyperthermia due to 10 Gy was significantly attenuated by the pre- or post-treatment with a cyclooxygenase inhibitor, indomethacin. Hyperthermia was also altered by the central administration of a mu-receptor antagonist naloxone but only at low doses of radiation. These findings suggest that radiation-induced hyperthermia may be mediated through the synthesis and release of prostaglandins in the brain and to a lesser extent to the release of endogenous opioid peptides. The release of histamine acting on H1 and H2 receptors may be involved in radiation-induced hypothermia, since both the H1 receptor antagonist, mepyramine, and H2 receptor antagonist, cimetidine, antagonized the hypothermia. The results of these studies suggest that the release of neurohumoral substances induced by exposure to ionizing radiation is dose dependent and has different consequences on physiological processes such as the regulation of body temperature. Furthermore, the antagonism of radiation-induced hyperthermia by indomethacin may have potential therapeutic implications in the treatment of fever resulting from accidental irradiations.  相似文献   

8.
Vasopressin analgesia: specificity of action and non-opioid effects   总被引:3,自引:1,他引:3  
J H Kordower  R J Bodnar 《Peptides》1984,5(4):747-756
Recent neuroanatomical and behavioral evidence has indicated that vasopressin (VP) increases pain thresholds. In the present study intracerebroventricular (ICV) administration of both arginine VP (AVP: 75-500 ng) and 1-deamino-8-D-arginine vasopressin (DDAVP: 150-500 ng) elevated tail flick latencies. Oxytocin (OXY, ICV), also elevated tail-flick latencies (150-1000 ng); however this increase was accompanied by "barrel-roll" seizure activity. VP analgesia was eliminated by pretreatment with 1-deamino-penicillamine-2(O-methyl)tyrosine-AVP (dPTyr(me)AVP: 500 ng, ICV), a VP antagonist, but not naloxone (1 or 10 micrograms, ICV), suggesting that VP modulates nonciceptive thresholds through its own binding sites. Conversely, pretreatment with naloxone (1 micrograms, ICV) but not dPTyr(me)AVP (1 microgram, ICV) attenuated the analgesic efficacy of systemic morphine (10 mg/kg), further dissociating VP and central opiate analgesic processes. Finally, systemic pretreatment with dexamethasone potentiated VP analgesia. These data support the notion that VP is a specific non-opioid pain inhibitor.  相似文献   

9.
Intracerebroventricular (ICV) administration of kyotorphin (L-Tyr-L-Arg) and cyclo (N-methyl-L-Tyr-L-Arg), its analog, produced significant dose-dependent hypothermic responses in mice at an ambient temperature of 24°C. The hypothermic action of kyotorphin was much greater than that of Met-enkephalin (Met-ENK) but less than that of cyclo NMTA. This action was slightly but not significantly reversed by intraperitoneally administered naloxone (8 mg/kg), an opioid receptor antagonist. Met-ENK utilized as a control peptide in this study also produced a dose-dependent hypothermia which was slightly antagonized by naloxone (8 mg/kg, IP). Thyrotropin releasing hormone (TRH) injected ICV produced hyperthermia dose-dependently. The hypothermia induced by kyotorphin, its cyclic analog and Met-ENK was prevented by a small dose of TRH (0.18 μg=0.5 nmol/animal) which by itself had little effect on body temperature. A TRH neuronal system in the brain may explain the mechanism of kyotorphin-induced hypothermia. However, there was little evidence of involvement of opioid receptors. The present study demonstrates a potent action of kyotorphin and its analog on thermoregulation.  相似文献   

10.
The sexual receptive and proceptive behaviors induced by opiate antagonists, naloxone and naltrexone in estrogen-primed ovariectomized rats were observed under the presence of sexually active males. The females were treated intraperitoneally with naloxone or naltrexone at doses ranging from 0.5 to 4.0 mg/kg and the sexual behavior of females was tested before and after the injection of drug. The results obtained suggest that the opiate antagonists play a role in the regulation of lordosis behavior, but not proceptive behavior in female rats.  相似文献   

11.
Raymond M. Quock 《Life sciences》1977,20(12):2005-2012
Intravenous or intracerebroventricular pretreatment with the narcotic antagonist naloxone in rabbits significantly enhanced the magnitude of the hyperthermic response to the dopaminergic agonist apomorphine. Naloxone did not potentiate the hyperthermic action of either amphetamine or lysergic acid diethylamide. Apomorphine-in induced hyperthermia was sensitive to antagonism by haloperidol, cyproheptadine and p-chlorophenylalanine. However in rabbits pretreated with any of the above antagonists, administration of naloxone five minutes prior to apomorphine challenge restored the hyperthermic effect of apomorphine. Increasing the dose of the apomorphine challenge likewise surmounted the antagonism. It was concluded from these data that naloxone exerts a potentiating influence upon apomorphine drug effect in naive rabbits as well as rabbits pretreated with antagonists of apomorphine-induced hyperthermia.  相似文献   

12.
《Journal of Physiology》1997,91(3-5):189-197
There exists a considerable controversy in the literature with regard to the effect of either opiate receptor blockade or that of morphine in different gastric and intestinal ulcer models in the rat. We performed experiments to evaluate the effects of naloxone and morphine on gastric acid secretion and gastric mucosal damage in different experimental models of gastric mucosal injury, namely in indomethacin-, HCl (0.6N)- and ethanol (96%)-models. We found that: 1) 10 mg/kg naloxone ip given twice, effectively protected gastric mucosa against indomethacin (30 mg/kg ip) and against the acid-dependent injury caused by 0.6 N HCl (1 mL ig), but not against the non acid-dependent injury caused by 96% ethanol (1 mL ig); 2) morphine (10 + 10 mg/kg ip) increased ulcers in the HCl-model, but had no effect in the two other models; 3) this ulcer-aggravating effect of morphine in the HCl-model was blocked by pretreatment of 2 mg/kg ip naloxone; and 4) both naloxone (5 + 5 and 10 + 10 mg/kg ip) significantly decreased gastric acid secretion in 1-h pylorus ligated rats. We conclude that: 1) naloxone dose-dependently protects against the indomethacin- and HCl-, but not against the ethanol-induced gastric mucosal damage; 2) morphine aggravates the HCl-induced ulcerogenesis; and 3) both opiod receptor agonist and antagonist decrease gastric acid secretion.  相似文献   

13.
C A Paronis  S G Holtzman 《Life sciences》1992,50(19):1407-1416
Chronic opioid antagonist administration increases opioid binding sites and potentiates behavioral responses to morphine. Conversely, chronic opioid agonist administration attenuates behavioral responses to morphine, though this is not necessarily accompanied by a parallel loss of binding sites. We examined the possibility that the in vivo affinity of the mu receptors might be altered as a consequence of the continuous administration of either naloxone or morphine. Rats were implanted sc with naloxone- or morphine-filled osmotic pumps; control animals were implanted with sham pumps. One week later, 24 hr after removing the osmotic pumps, cumulative dose-response curves for fentanyl analgesia were generated in the presence of 0.0, 0.03, 0.1, or 0.3 mg/kg naltrexone, using a tail-flick procedure. The analgesic ED50 (with 95% C. L.) of fentanyl in sham implanted animals, following saline pretreatment was 0.027 mg/kg (0.019, 0.039). The potency of fentanyl was decreased in rats infused with morphine, ED50 = 0.051 mg/kg (0.028, 0.093), and increased in rats that received naloxone, ED50 = 0.018 mg/kg (0.015, 0.022). The mean apparent pA2 value for naltrexone (with 95% C.L.) in the control group was 7.7 (7.5, 7.9). No differences were detected in animals that had received either naloxone or morphine for 7 days, pA2 = 7.8 (7.5, 8.1) and 7.4 (7.3, 7.6), respectively. Our results indicate that there is no change in the apparent affinity of the mu-receptor following continuous exposure to either an opioid agonist or antagonist, at a time when the analgesic potency of the agonist is decreased or increased, respectively.  相似文献   

14.
Withdrawal hypothermia can be induced in rats by injection of naltrexone 72 h after subcutaneous implantation of a morphine pellet. At 45 days after implantation the same dose of naltrexone is without effect on body temperature and the animals are normally sensitive to the hypothermic effect of acute morphine administration. This acute administration of morphine re-sensitizes the animals to naltrexone so that administration of the antagonist again causes withdrawal hypothermia. These results are consistent with the view that narcotic dependence can be reinstated in previously dependent, but not naive, animals by acute administration of the narcotic.  相似文献   

15.
The acute administration of phencyclidine (PCP) causes hypothermia in the rat. Metaphit (1-[1-(3-isothiocyanatophenyl)cyclohexyl]-piperidine) is a derivative of PCP that has been shown to irreversibly acylate PCP receptors in vitro and in vivo and can antagonize the behavioral and electrophysiological effects of PCP in the rat. The purpose of the present study was to determine whether pretreatment with metaphit can block the hypothermic effects of PCP in the rat. Metaphit or PCP (1.0 mumol/rat) were injected into the lateral ventricles of rats, and 24 hr later the subjects were challenged with PCP (20.0 mg/kg s.c.). Pretreatment with metaphit blocked PCP-induced hypothermia; however, pretreatment with PCP did not affect the subsequent hypothermic response to PCP. These results indicate that the antagonism of PCP-induced hypothermia by metaphit was a specific effect and not due to PCP receptor desensitization.  相似文献   

16.
P D Butler  R J Bodnar 《Peptides》1984,5(3):635-639
Thyrotropin releasing hormone (TRH) interacts with both opioid and non-opioid systems in mediating hypothermic, hypoactive, cataleptic, respiratory and analgesic effects. While TRH neither antagonizes opioid analgesia nor alters pain thresholds itself, it blocks neurotensin analgesia. Different forms of pain-inhibition in rats can be activated by selectively altering the parameters of shock: while analgesia induced by 20 inescapable tail-shocks is not reversed by naltrexone, exposure to 60 or 80 shocks does elicit naltrexone-reversible analgesia. The first experiment examined whether intracerebroventricular administration of TRH (0, 10, or 50 micrograms) would alter the elevations in tail-flick latencies in rats induced by 20 or 80 foot shocks and found that TRH significantly lengthened the duration and magnitude of analgesia induced by 20 and 80 foot shocks in a dose-dependent manner. The second experiment extended these findings to the writhing test, a visceral pain test. While the number and duration of writhes of vehicle-treated rats exposed to 80 foot shocks failed to differ from baseline values. TRH (50 micrograms)-treated rats exposed to 80 foot shocks displayed significant decreases in the number and duration of writhes. The third experiment indicated that the differential effects of naltrexone upon analgesia induced by 20 or 80 tail shocks were not apparent when foot shocks were employed, precluding a definitive statement that TRH may be involved in the modulation of both opioid and non-opioid forms of analgesia.  相似文献   

17.
Single doses of naloxone (0.025 to 0.5 mg/kg) or of one of four quaternary narcotic antagonists (i.e. nalorphine allobromide, nalorphine methobromide, naloxone methobromide or naltrexone methobromide, 1 to 60 mg/kg) were given s.c. to rats before morphine, 5 mg/kg i.v. In the absence of antagonists morphine reduced G.I. transit of a charcoal meal to about 15% of drug-free controls and consistently delayed nociceptive reactions (55°C hot plate) in all animals. Doses of antagonists slightly reducing morphine antinociception (centrally effective = A) and restoring G.I. transit to about 50% of drug-free rats (peripherally effective = B) were estimated. The A:B ratio, indicating peripheral selectivity, was at least 8 for any of the quaternary antagonists given 10 min before morphine, but prolonging this interval may have resulted in a lower figure (i.e. less peripheral selectivity) because of reduced A and increased B. This was definitely so for naltrexone methobromide (A:B, > 60 at 10 min, about 1 at 80 min) and was not apparent for nalorphine methobromide according to available data, which for nalorphine allobromide and to a lesser extent for naloxone methobromide showed only an increase in B at intervals longer than 10 min. Both morphine-induced antinociception and inhibition of G.I. transit were reduced by naloxone at the lower doses tested and were fully prevented at the higher. These findings indicate that, unlike naloxone, the investigated quaternary narcotic antagonists are interesting prototype drugs for selective blockade of opiate receptors outside the CNS, although certain critical aspects, possibly biological N-dealkylation to the corresponding tertiary antagonists, condition peripheral selectivity.  相似文献   

18.
We systematically paired auditory, olfactory, and social stimuli with each injection of morphine in rats. We found that, when morphine was kept constant at a low dose, the external stimuli acquired the property of a conditional stimulus (CS) to cause hyperthermia which was antagonized by naloxone. In rats in which morphine doses were regularly increased to cause morphine dependence, the CS presented during withdrawal, caused reduction in withdrawal signs (wet shakes, hypothermia, aggression) and produced hyperglycemia as well as elevation of striatal homovanillic acid. CS-induced alleviation of withdrawal hypothermia was blocked by mecamylamine, phenoxybenzamine, haloperidol, benztropine or naloxone but not by cyproheptadine or propranolol.  相似文献   

19.
We investigated the mechanism of action of methionine enkephalin (MEK) on HCl-stimulated secretin release and pancreatic exocrine secretion. Anesthetized rats with pancreatobiliary cannulas and isolated upper small intestinal loops were perfused intraduodenally with 0.01 N HCl while bile and pancreatic juice were diverted. The effect of intravenous MEK on acid-stimulated secretin release and pancreatic exocrine secretion was then studied with or without coinfusion of naloxone, an anti-somatostatin (SS) serum, or normal rabbit serum. Duodenal acid perfusate, which contains secretin-releasing peptide (SRP) activity, was collected from donor rats with or without pretreatment with MEK, MEK + naloxone, or MEK + anti-SS serum, concentrated by ultrafiltration, and neutralized. The concentrated acid perfusate (CAP), which contains SRP bioactivity, was infused intraduodenally into recipient rats. MEK increased plasma SS concentration and inhibited secretin release and pancreatic fluid and bicarbonate secretion dose-dependently. The inhibition was partially reversed by naloxone and anti-SS serum but not by normal rabbit serum. In recipient rats, CAP increased plasma secretin level and pancreatic secretion. CAP SRP bioactivity decreased when it was collected from MEK-treated donor rats; this was partially reversed by coinfusion with naloxone or anti-SS serum. These results suggest that in the rat, MEK inhibition of acid-stimulated pancreatic secretion and secretin release involves suppression of SRP activity release. Thus the MEK inhibitory effect appears to be mediated in part by endogenous SS.  相似文献   

20.
Although a central site of acute opiate action in regulating luteinizing hormone (LH) secretion has been suggested by the ability of centrally implanted opiate antagonists to increase LH levels, opiate antagonists are lipophilic and could influence the pituitary in situ. Also, the physiological significance of opiate receptor blockade with antagonists rests on the assumed, but untested, stereoselectivity of these receptors. Therefore, a lipophobic quaternized derivative of naltrexone (MRZ 2663-Naltrexone methobromide) and dextro- (+) and levo- (-) stereoisomers of naloxone were used to study the site- and stereoselectivity of gonadotropin responses to opiate antagonists in vivo. Male rats were injected intracerebroventricularly (icv) or intravenously (iv) with the quaternary or tertiary congeners of naltrexone and subcutaneously (sc) with (-) or (+)-naloxone. Rats injected icv with 20 ug of quaternary naltrexone displayed significant increases in serum luteinizing hormone (LH). The onset of the response was rapid with serum LH levels being significantly elevated 15 minutes after the injection and returning to basal levels 30 minutes later. Rats injected iv with 10 mg/kg of quaternary naltrexone failed to show significant LH responses. Rats injected either centrally or periphally with equivalent doses of tertiary naltrexone showed LH responses that were similar to those found in animals injected icv with quaternary naltrexone. As little as 0.5 mg/kg of (-)-naloxone resulted in significant elevations in serum LH that were higher than those elicited by up to 10 mg/kg of (+)-naloxone, indicating that this effect of naloxone is stereoselective. These data support the argument that opioids can acutely modulate LH secretion through actions at stereoselective opioid receptors in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号