首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Erwinia amylovora is a necrogenic bacterium that causes fire blight of the Maloideae subfamily of Roseacae, such as apple and pear. It provokes necrosis in aerial parts of susceptible host plants and the typical hypersensitive reaction in non-host plants. The secreted harpin, HrpN ea, is able by itself to induce an active cell death in non-host plants. Ion flux modulations were shown to be involved early in such processes but very few data are available on the plasma membrane ion channel activities responsible for the pathogen-induced ion fluxes. We show here that HrpN ea induces cell death in non-host Arabidopsis thaliana suspension cells. We further show that two cystic fibrosis transmembrane conductance regulator modulators, glibenclamide and bromotetramisole, can regulate anion channel activities and HrpN ea-induced cell death.  相似文献   

3.
Erwinia amylovora is responsible for fire blight of apple and pear trees. Its pathogenicity depends on a type III secretion system (T3SS) mediating the translocation of effectors into the plant cell. The DspA/E effector suppresses callose deposition on apple leaves. We found that E. amylovora and Pseudomonas syringae DC3000 tts mutants or peptide flg22 do not trigger callose deposition as strongly as the dspA/E mutant on apple leaves. This suggests that, on apple leaves, callose deposition is poorly elicited by pathogen-associated molecular patterns (PAMPs) such as flg22 or other PAMPs harbored by tts mutants and is mainly elicited by injected effectors or by the T3SS itself. Callose elicitation partly depends on HrpW because an hrpW-dspA/E mutant elicits lower callose deposition than a dspA/E mutant. Furthermore, an hrpN-dspA/E mutant does not trigger callose deposition, indicating that HrpN is required to trigger this plant defense reaction. We showed that HrpN plays a general role in the translocation process. Thus, the HrpN requirement for callose deposition may be explained by its role in translocation: HrpN could be involved in the translocation of other effectors inducing callose deposition. Furthermore, HrpN may also directly contribute to the elicitation process because we showed that purified HrpN induces callose deposition.  相似文献   

4.
Erwinia amylovora is a gram-negative necrogenic bacterium causing fire blight of the Maloideae subfamily of Rosaceae such as apple and pear. It provokes progressive necrosis in aerial parts of susceptible host plants (compatible interaction) and a hypersensitive reaction (HR) when infiltrated in nonhost plants (incompatible interaction). The HrpN(ea) harpin is a type three secretion system effector secreted by E. amylovora. This protein is involved in pathogenicity and HR-eliciting capacity of E. amylovora. In the present study, we showed that, in nonhost Arabidopsis thaliana cells, purified HrpN(ea) induces cell death and H2O2 production, two nonhost resistance responses, but failed to induce such responses in host MM106 apple cells. Moreover, HrpN(ea) induced an increase in anion current in host MM106 apple cells, at the opposite of the decrease of anion current previously shown to be necessary to induce cell death in nonhost A. thaliana cells. These results suggest that HrpN(ea) induced different signaling pathways, which could account for early induced compatible or incompatible interaction development.  相似文献   

5.
The HrpN (harpin) protein of the fire blight pathogen Erwinia amylovora is an essential virulence factor secreted via the bacterial type III secretion system. HrpN also has avirulence activity when delivered to tobacco by E. amylovora and has defense elicitor activity when applied to plants as a cell-free protein extract. Here, we characterize a series of random mutations in hrpN that altered the predicted amino acid sequence of the protein. Amino acid substitutions and deletions in the highly conserved, C-terminal portion of HrpN disrupted the virulence and avirulence activities of the protein. Several of these mutations produced a dominant-negative effect on E. amylovora avirulence on tobacco. None of the mutations clearly separated the virulence and avirulence activities of HrpN. Some C-terminal mutations abolished secretion of HrpN by E. amylovora. The results indicate that the C-terminal half of HrpN is essential for its secretion by E. amylovora, for its virulence activity on apple and pear, and for its avirulence activity on tobacco. In contrast, the C-terminal half of HrpN was not required for cell-free elicitor activity. This suggests that the N-terminal and C-terminal halves of HrpN mediate cell-free elicitor activity and avirulence activity, respectively.  相似文献   

6.
7.
Dong HP  Yu H  Bao Z  Guo X  Peng J  Yao Z  Chen G  Qu S  Dong H 《Planta》2005,221(3):313-327
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.Hong-Ping Dong and Haiqin Yu contributed equally to this study and are regarded as joint first authors.  相似文献   

8.
Oh CS  Beer SV 《Plant physiology》2007,145(2):426-436
HrpN (harpin) protein is critical to the virulence of the fire blight pathogen Erwinia amylovora in host plants like apple (Malus x domestica). Moreover, exogenous treatment of Arabidopsis (Arabidopsis thaliana), a nonhost plant, with partially purified HrpN enhances growth. To address the bases of the effects of HrpN in disease, we sought a HrpN-interacting protein(s) in apple, using a yeast two-hybrid assay. A single positive clone, designated HIPM (HrpN-interacting protein from Malus), was found. HIPM, a 6.5-kD protein, interacted with HrpN in yeast and in vitro. Deletion analysis showed that the N-terminal 198 of 403 amino acids of HrpN are required for interaction with HIPM. HIPM orthologs were found in Arabidopsis (AtHIPM) and rice (Oryza sativa; OsHIPM). HrpN also interacted with AtHIPM in yeast and in vitro. In silico analyses revealed that the three plant proteins contain putative signal peptides and putative transmembrane domains. We showed that both HIPM and AtHIPM have functional signal peptides, and green fluorescent protein-tagged HIPM and AtHIPM associated, in clusters, with plasma membranes. Both HIPM and AtHIPM are expressed constitutively; however, they are expressed more strongly in apple and Arabidopsis flowers than in leaves and stems. The size of AtHIPM knockout mutant plants of Arabidopsis was slightly larger than the wild-type plants. Interestingly, the knockout mutant did not exhibit enhanced plant growth in response to treatment with HrpN. Overexpression of AtHIPM conversely resulted in smaller plants. These results indicate that AtHIPM functions as a negative regulator of plant growth and mediates enhanced growth that results from treatment with HrpN.  相似文献   

9.
The type III secretion system (T3SS) is required by plant pathogenic bacteria for the translocation of certain bacterial proteins to the cytoplasm of plant cells or secretion of some proteins to the apoplast. The T3SS of Erwinia amylovora, which causes fire blight of pear, apple and other rosaceous plants, secretes DspA/E, which is an indispensable pathogenicity factor. Several other proteins, including HrpN, a critical virulence factor, are also secreted by the T3SS. Using a CyaA reporter system, we demonstrated that DspA/E is translocated into the cells of Nicotiana tabacum'Xanthi'. To determine if other T3-secreted proteins are needed for translocation of DspA/E, we examined its translocation in several mutants of E. amylovora strain Ea321. DspA/E was translocated by both hrpW and hrpK mutants, although with some delay, indicating that these two proteins are dispensable in the translocation of DspA/E. Remarkably, translocation of DspA/E was essentially abolished in both hrpN and hrpJ mutants; however, secretion of DspA/E into medium was not affected in any of the mentioned mutants. In contrast to the more virulent strain Ea273, secretion of HrpN was abolished in a hrpJ mutant of strain Ea321. In addition, HrpN was weakly translocated into plant cytoplasm. These results suggest that HrpN plays a significant role in the translocation of DspA/E, and HrpJ affects the translocation of DspA/E by affecting secretion or stability of HrpN. Taken together, these results explain the critical importance of HrpN and HrpJ to the development of fire blight.  相似文献   

10.
Erwinia chrysanthemi 3937 (Ech3937) is a phytopathogenic bacterium with a wide host range. The pectinolytic enzymes secreted by the bacterium and the type III secretion system (T3SS) are essential for full virulence. We used the green fluorescent protein gene as a reporter to investigate the expression of dspE (a putative T3SS effector) and pelD (a major pectin-degrading enzyme) in populations of Ech3937 under different conditions. Gene expression was analyzed by measuring the fluorescence intensity of individual cells with a fluorescence-activated cell sorter. Ech3937 dspE was induced in minimal medium (MM) with only a portion of Ech3937 cells (43.03%) expressing dspE after 12 h of culture. The nutrient-rich King's medium B did not fully eliminate the expression of dspE; a small percentage of Ech3937 cells (5.55%) was able to express dspE after 12 h of culture in this medium. In all, 68.95% of Ech3937 cells expressed pelD after 12 h of culture in MM supplemented with polygalacturonic acid (PGA). However, 96.34% of Echl31 cells (an hrpL deletion mutant of Ech3937) expressed pelD after 12 h of culture in MM supplemented with PGA. In potato tubers, 6.32% of the bacterial cells expressed dspE 2 h after inoculation, whereas only 0.25% of the cells expressed pelD. However, after 24 h, the percentage of cells expressing pelD (68.48%) was approximately 3.5 times that of cells expressing dspE (19.39%). In contrast to potato tubers, similar proportion of Ech3937 cells expressing dspE (39.34%) and pelD (40.30%) were observed in Chinese cabbage 24 h after inoculation. From promoter activity and real-time quantitative results, the expression of pelD in Ech3937 was demonstrated to be downregulated by HrpL in MM supplemented with PGA.  相似文献   

11.
12.
HrpN, the hypersensitive response elicitor from Erwinia amylovora, stimulated K(+) outward rectifying currents in Arabidopsis thaliana suspension cells. It also decreased anion currents. These data demonstrate the ability of harpin to regulate different plasma membrane ion channels, putative components of signal transduction chains leading to defense responses and programmed cell death.  相似文献   

13.
Pantoea stewartii subsp. stewartii causes Stewart's wilt of sweet corn. A hypersensitive response and pathogenicity (Hrp) secretion system is needed to produce water-soaking and wilting symptoms in corn and to cause a hypersensitive response (HR) in tobacco. Sequencing of the hrp cluster revealed a putative harpin gene, hrpN. The product of this gene was overexpressed in Escherichia coli and shown to elicit the HR in tobacco and systemic resistance in radishes. The protein was designated HrpN(Pnss). Like other harpins, it was heat stable and protease sensitive, although it was three- to fourfold less active biologically than Erwinia amylovora harpin. We used antibodies to purified HrpN(Pnss) to verify that hrpN mutants could not produce harpin. This protein was secreted into the culture supernatant and was produced by strains of P. stewartii subsp. indologenes. In order to determine the importance of HrpN(Pnss) in pathogenesis on sweet corn, three hrpN::Tn5 mutants were compared with the wild-type strain with 50% effective dose, disease severity, response time, and growth rate in planta as parameters. In all tests, HrpN(Pnss) was not required for infection, growth, or virulence in corn or endophytic growth in related grasses.  相似文献   

14.
The outbreaks caused by enterohemorrhagic Escherichia coli O157:H7 on leafy greens have raised serious and immediate food safety concerns. It has been suggested that several phytopathogens aid in the persistence and proliferation of the human enteropathogens in the phyllosphere. In this work, we examined the influence of virulence mechanisms of Dickeya dadantii 3937, a broad-host-range phytopathogen, on the proliferation of the human pathogen E. coli O157:H7 EDL933 (EDL933) on postharvest lettuce by coinoculation of EDL933 with D. dadantii 3937 derivatives that have mutations in virulence-related genes. A type II secretion system (T2SS)-deficient mutant of D. dadantii 3937, A1919 (ΔoutC), lost the capability to promote the multiplication of EDL933, whereas Ech159 (ΔrpoS), a stress-responsive σ factor RpoS-deficient mutant, increased EDL933 proliferation on lettuce leaves. A spectrophotometric enzyme activity assay revealed that A1919 (ΔoutC) was completely deficient in the secretion of pectate lyases (Pels), which play a major role in plant tissue maceration. In contrast to A1919 (ΔoutC), Ech159 (ΔrpoS) showed more than 2-fold-greater Pel activity than the wild-type D. dadantii 3937. Increased expression of pelD (encodes an endo-pectate lyase) was observed in Ech159 (ΔrpoS) in planta. These results suggest that the pectinolytic activity of D. dadantii 3937 is the dominant determinant of enhanced EDL933 proliferation on the lettuce leaves. In addition, RpoS, the general stress response σ factor involved in cell survival in suboptimal conditions, plays a role in EDL933 proliferation by controlling the production of pectate lyases in D. dadantii 3937.  相似文献   

15.
16.
In order to determine a possible genomic divergence of Erwinia amylovora'fruit tree' and raspberry strains from North America, several isolates were differentiated by pulsed-field gel electrophoresis (PFGE) analysis, the size of short DNA sequence repeats (SSRs) and the nucleotide and deduced amino acid sequences of their hrpN genes. By PFGE analysis European strains are highly related, whereas strains from North America were diverse and were further distinguished by the SSR numbers from plasmid pEA29. The E. amylovora strains from Europe showed identical HrpN sequences in contrast to the American isolates from fruit trees and raspberry. Those were related to each other, but distinguishable by their HrpN patterns. The Asian pear pathogens differed in HrpN among each other and from E. amylovora. Erwinia pyrifoliae isolates and the Erwinia strains from Japan were ordered via their HrpN sequences in agreement with the PFGE patterns. For all three pathogens, dendrograms from PFGE and sequence data indicate an evolutionary diversity within the species in spite of a genetic conservation for parts of the hrpN genes suggesting a long persistence of the Asian pear pathogens in Korea and Japan as well as of fire blight in North America. Some of the divergent American E. amylovora isolates share PFGE patterns with the relatively uniform European strains.  相似文献   

17.
18.
Active defense mechanisms of plants against pathogens often include a rapid plant cell death known as the hypersensitive cell death (HCD). Hypersensitive response-assisting protein (HRAP) isolated from sweet pepper intensifies the harpinPss-mediated HCD. Here we demonstrate that constitutive expression of the hrap gene in Arabidopsis results in an enhanced disease resistance towards soft rot pathogen, E. carotovora subsp. carotovora. This resistance was due to the induction of HCD since different HCD markers viz. Athsr3, Athsr4, ion leakage, H2O2 and protein kinase were induced. One of the elicitor harpin proteins, HrpN, from Erwinia carotovora subsp. carotovora was able to induce a stronger HCD in hrap-Arabidopsis than non-transgenic controls. To elucidate the role of HrpN, we used E. carotovora subsp. carotovora defective in HrpN production. The hrpN mutant did not induce disease resistance or HCD markers in hrap-Arabidopsis. These results imply that the disease resistance of hrap-Arabidopsis against a virulent pathogen is harpin dependent.  相似文献   

19.
We have used an hrp-positive strain of the soft rot pathogen Erwinia carotovora subsp. carotovora to elucidate plant responses to this bacterial necrotroph. Purified virulence determinants, harpin (HrpN) and polygalacturonase (PehA), were used as tools to facilitate this analysis. We show that HrpN elicits lesion formation in Arabidopsis and tobacco and triggers systemic resistance in Arabidopsis. Establishment of resistance is accompanied by the expression of salicylic acid (SA)-dependent, but also jasmonate/ethylene (JA/ET)-dependent, marker genes PR1 and PDF1.2, respectively, suggesting that both SA-dependent and JA/ET-dependent defense pathways are activated. Use of pathway-specific mutants and transgenic NahG plants show that both pathways are required for the induction of resistance. Arabidopsis plants treated simultaneously with both elictors PehA, known to trigger only JA/ET-dependent defense signaling, and HrpN react with accelerated and enhanced induction of the marker genes PR1 and PDF1.2 both locally and systemically. This mutual amplification of defense gene expression involves both SA-dependent and JA/ET-dependent defense signaling. The two elicitors produced by E. carotovora subsp. carotovora also cooperate in triggering increased production of superoxide and lesion formation.  相似文献   

20.
Erwinia amylovora is the bacterium responsible for fire blight, a necrotic disease affecting plants of the rosaceous family. E. amylovora pathogenicity requires a functional type three secretion system (T3SS). We show here that E. amylovora triggers a T3SS-dependent cell death on Arabidopsis thaliana. The plants respond by inducing T3SS-dependent defense responses, including salicylic acid (SA)-independent callose deposition, activation of the SA defense pathway, reactive oxygen species (ROS) accumulation, and part of the jasmonic acid/ethylene defense pathway. Several of these reactions are similar to what is observed in host plants. We show that the cell death triggered by E. amylovora on A. thaliana could not be simply explained by the recognition of AvrRpt2 ea by the resistance gene product RPS2. We then analyzed the role of type three-secreted proteins (T3SPs) DspA/E, HrpN, and HrpW in the induction of cell death and defense reactions in A. thaliana following infection with the corresponding E. amylovora mutant strains. HrpN and DspA/E were found to play an important role in the induction of cell death, activation of defense pathways, and ROS accumulation. None of the T3SPs tested played a major role in the induction of SA-independent callose deposition. The relative importance of T3SPs in A. thaliana is correlated with their relative importance in the disease process on host plants, indicating that A. thaliana can be used as a model to study their role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号