首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate whole muscle and single muscle fiber adaptations in very old men in response to progressive resistance training (PRT). Six healthy independently living old men (82 +/- 1 yr; range 80-86 yr, 74 +/- 4 kg) resistance-trained the knee extensors (3 sets, 10 repetitions) at approximately 70% one repetition maximum 3 days/wk for 12 wk. Whole thigh muscle cross-sectional area (CSA) was assessed before and after PRT using computed tomography (CT). Muscle biopsies were obtained from the vastus lateralis before and after the PRT program. Isolated myosin heavy chain (MHC) I and IIa single muscle fibers (n = 267; 142 pre; 125 post) were studied for diameter, peak tension, shortening velocity, and power. An additional set of isolated single muscle fibers (n = 2,215; 1,202 pre; 1,013 post) was used to identify MHC distribution. One repetition maximum knee extensor strength increased (P < 0.05) 23 +/- 4 kg (56 +/- 4 to 79 +/- 7 kg; 41%). Muscle CSA increased (P < 0.05) 3 +/- 1 cm2 (120 +/- 7 to 123 +/- 7 cm2; 2.5%). Single muscle fiber contractile function and MHC distribution were unaltered with PRT. These data indicate limited muscle plasticity at the single-muscle fiber level with a resistance-training program among the very old. The minor increases in whole muscle CSA coupled with the static nature of the myocellular profile indicate that the strength gains were primarily neurological. These data contrast typical muscle responses to resistance training in young ( approximately 20 yr) and old ( approximately 70 yr) humans and indicate that the physiological regulation of muscle remodeling is adversely modified in the oldest old.  相似文献   

2.
3.
Skeletal muscle adapts differently to training with high forces or with high velocities. The effects of these disparate training protocols on the inspiratory muscles were investigated in ten healthy volunteers. Five subjects trained using high force (pressure) loads (pressure trainers) and five trained using high velocity (flow) loads (flow trainers). Pressure training entailed performing 30 maximal static inspiratory efforts against a closed airway. Flow training entailed performing 30 sets of three maximal dynamic inspiratory efforts against a minimal resistance. Training was supervised and carried out 5 days a week for 6 weeks. Inspiratory flow rates and oesophageal pressure-time curves were measured before and after training. Peak inspiratory pressures during maximal static and dynamic efforts and peak flows during the maximal dynamic efforts were calculated. The time-to-peak pressure and rate of rise in peak pressure during maximal static and dynamic manoeuvres were also calculated before and following training. Maximal static pressure increased in the pressure training group and maximal dynamic pressure increased in the flow training group. Both groups increased the rate of pressure production (dP/dt) during their respective maximal efforts. The post-training decrease in time-to-peak pressure was proportionately greater in the flow trainers than in the pressure trainers. The differences in time-to-peak pressure between the two groups were consistent with the different effects of force and velocity training on the time-to-peak tension of skeletal muscle.  相似文献   

4.
Skeletal muscle activity is invariably associated with a decline in force-generating capacity (fatigue). The build-up of metabolic by-products such as intracellular H+ and inorganic phosphate (Pi) has been shown to be one of the potential mechanisms of muscle fatigue. The use of phosphorus magnetic resonance spectroscopy is a repeatable and useful tool to study the effect of pH and Pi on force development. When maximal exercise is preceded by submaximal exercise to reduce the starting muscle pH and increase Pi, the degree of muscle fatigue correlates more strongly with H2PO4- than pH or Pi alone. However, other studies in humans have found that H2PO4- does not always correlate well with fatigue. The use of ramp exercise protocols allow repeatable and sensitive measurement of changes in muscle metabolism in response to endurance training. Chronic electrical stimulation in dogs and endurance training in humans results in reduced pH and Pi changes at the same exercise intensities. This means that the effect of pH and Pi in depressing force development is reduced, which could partially explain the increased fatigue resistance seen following endurance training.  相似文献   

5.
The response of muscle fiber type proportions and fiber areas to 15 weeks of strenuous high-intensity intermittent training was investigated in twenty-four carefully ascertained sedentary (14 women and 10 men) and 10 control (4 women and 6 men) subjects. The supervised training program consisted mainly of series of supramaximal exercise lasting 15 s to 90 s on a cycle ergometer. Proportions of muscle fiber type and areas of the fibers were determined from a biopsy of the vastus lateralis before and after the training program. No significant change was observed for any of the histochemical characteristics in the control group. Training significantly increased the proportion of type I and decreased type IIb fibers, the proportion of type IIa remained unchanged. Areas of type I and IIb fibers increased significantly with training. These results suggest that high-intensity intermittent training in humans may alter the proportion of type I and the area of type I and IIb fibers and in consequence that fiber type composition in human vastus lateralis muscle is not determined solely by genetic factors.  相似文献   

6.
The purpose of this investigation was to characterize the contractile properties of individual slow- and fast-twitch myofibers from highly trained distance runners. Muscle biopsies were obtained from the gastrocnemius of eight competitive runners (Run) and eight recreationally active individuals (Rec). Slow-twitch [myosin heavy chain (MHC) I] and fast-twitch (MHC IIa) myofibers were isolated and analyzed for diameter (microm), peak force (Po; mN), unloaded contraction velocity (Vo; fiber lengths/s), and power. Maximum oxygen uptake was higher (P<0.05) in Run (71+/-1 vs. 47+/-2 ml.kg(-1).min(-1)). Diameter of MHC I and MHC IIa fibers from Run subjects was approximately 20% greater (P<0.05) than Rec. Peak force of the MHC IIa fibers was 31% higher (P<0.05) in Run, whereas Po of MHC I fibers was not different between groups. No differences for specific tension (Po/cross-sectional area) were present between groups for either fiber type. Vo was higher (P<0.05) in MHC I (+70%) and MHC IIa (+18%) fibers from Run subjects. In vitro peak absolute power (microN.s(-1)) of both fiber types was greater (P<0.05) in Run (131 and 85% for MHC I and MHC IIa, respectively). Additionally, normalized power (W/l) of the MHC I fibers was 64% higher in Run, whereas no differences were noted for normalized power of MHC IIa fibers. These data indicate that highly trained endurance runners have elevated contraction velocity in both slow- and fast-twitch myofibers. These characteristics of the fast-twitch muscle fibers have not been previously reported in competitive endurance athletes and may contribute to the high level of running performance in these athletes.  相似文献   

7.
Mammalian skeletal muscles are composed of multinucleated cells termed slow or fast fibers according to their contractile and metabolic properties. Here, we developed a high‐sensitivity workflow to characterize the proteome of single fibers. Analysis of segments of the same fiber by traditional and unbiased proteomics methods yielded the same subtype assignment. We discovered novel subtype‐specific features, most prominently mitochondrial specialization of fiber types in substrate utilization. The fiber type‐resolved proteomes can be applied to a variety of physiological and pathological conditions and illustrate the utility of single cell type analysis for dissecting proteomic heterogeneity.  相似文献   

8.
1. Mitochondria were isolated according to their cellular location within the fibers of pooled gastrocnemius and plantaris muscle of the rat. This procedure yields two populations of mitochondria which display different biochemical properties. 2. The adaptive response of these mitochondria populations to the chronic exposure to different elevated energy demands (different modes of exercise training) was investigated. 3. The observed changes in mitochondrial protein content and cytochrome oxidase activity in the respective mitochondria population suggests that each population is capable of independent adaptations. 4. The adaptive response of each mitochondria population, furthermore, was predictable with respect to the metabolic energy demand of the exercise training workload.  相似文献   

9.
Compensatory metabolic adaptations induced in streptozotocin-diabetic rat skeletal muscle by submaximal endurance training have been investigated. The gastrocnemius muscles of sedentary streptozotocin-diabetic rats were found to have a lower than normal myoglobin content, succinate dehydrogenase activity, and capacity to oxidize pyruvate and palmitate-1-[14C]. The values of these parameters were significantly increased in the diabetic skeletal muscle by the training program, obtaining levels similar to those of normal sedentary animals.  相似文献   

10.
11.
People who are afflicted with "metabolic syndrome" exhibit multiple coronary disease risk factors such as insulin resistance, hypertension, hyperlipidemia, or obesity. Twenty-six volunteers (13 women and 13 men) with such disease risk factors (56 ± 5 years) participated in a 14-week resistance training program. Given the fact that resistance training may improve cardiometabolic parameters, the fasting total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, insulin, glucose value, homeostatic model assessment (HOMA) index, and blood pressure and body mass index (BMI) were measured before and after the training intervention. In addition, muscle biopsies from the vastus lateralis muscle of 11 of the men and 5 of the women were analyzed to determine whether changes in the muscle morphology influence the cardiometabolic parameters. Resistance training resulted in a significant increase in fasting HDL for the entire group (from 44.35 ± 9.43 to 48.57 ± 10.96 mg·dl(-1), p = 0.016). No other blood parameter changed significantly. No change was observed in the HOMA index, blood pressure, or BMI. The muscle fiber type distribution did not change, but a significant hypertrophy of muscle fibers was evident (an increase of the ellipse minor axis of 67.3 ± 16.6 to 72.1 ± 12.3 μm, p = 0.004). Moderate intensity resistance training, as was performed in our study, induces hypertrophic impulses but does not seem to have a clear positive influence on cardiometabolic risk factors. However, 2 sessions of moderate intensity resistance training per week can enhance the fasting HDL cholesterol in middle-aged subjects.  相似文献   

12.
13.
Due to the variations in morphological and architectural characteristics of fibers within a skeletal muscle, regions of a muscle may be differently affected by eccentric exercise. Although eccentric exercise may be beneficial for increasing muscle mass and can be beneficial for the treatment of tendinopathies, the non-uniform effect of eccentric exercise results in regional muscle damage and as a consequence, non-uniform changes in muscle activation. This regional muscle weakness can contribute to muscle strength imbalances and may potentially alter the load distribution on joint structures, increasing the risk of injury. In this brief review, the non-uniform effects of eccentric exercise are reviewed and their implications for training and sport are considered.  相似文献   

14.
Erythropoietic adaptations involving the oxygen dissociation curve (ODC) and erythropoietin production have been implicated in the etiology of reduced blood haemoglobin concentrations in sportspersons (known as sports anaemia). A significant increase in the half-saturation pressure indicating a right-shift in the ODC was measured in 34 male [25.8-27.4 mmHg (3.44-3.65 kPa)] and 16 female (25.8-27.7 mmHg (3.44-3.69 kPa)] trained distance runners (P less than 0.01 for both genders) after completing a standard 42-km marathon. Erythrocyte 2,3-diphosphoglycerate concentrations measured concurrently were unaltered by exercise, although consistently higher in the female compared to the male athletes (P less than 0.05). The serum erythropoietin (EPO) concentrations of 15 male triathletes (26.3 U.ml-1) were significantly lower than those of 45 male distance runners (31.6 U.ml-1; P less than 0.05). However, the mean serum EPO concentrations of male and female athletes engaged in a variety of sports were not different from those of sedentary control subjects of both sexes (26.5-35.3 U.ml-1). Furthermore, the serum EPO concentrations were unaltered after prolonged strenuous exercise in 20 male marathon runners. These data suggest that the haematological status of these endurance athletes is in fact normal and that the observed shift in the ODC, while providing a physiological advantage during exercise, has no measurable effect on the erythropoietic drive.  相似文献   

15.
16.
The purpose of this study was to compare the effects of an Olympic weightlifting (OL) and traditional weight (TW) training program on muscle coactivation around the knee joint during vertical jump tests. Twenty-six men were assigned randomly to 3 groups: the OL (n = 9), the TW (n = 9), and Control (C) groups (n = 8). The experimental groups trained 3 d · wk(-1) for 8 weeks. Electromyographic (EMG) activity from the rectus femoris and biceps femoris, sagittal kinematics, vertical stiffness, maximum height, and power were collected during the squat jump, countermovement jump (CMJ), and drop jump (DJ), before and after training. Knee muscle coactivation index (CI) was calculated for different phases of each jump by dividing the antagonist EMG activity by the agonist. Analysis of variance showed that the CI recorded during the preactivation and eccentric phases of all the jumps increased in both training groups. The OL group showed a higher stiffness and jump height adaptation than the TW group did (p < 0.05). Further, the OL showed a decrease or maintenance of the CI recorded during the propulsion phase of the CMJ and DJs, which is in contrast to the increase in the CI observed after TW training (p < 0.05). The results indicated that the altered muscle activation patterns about the knee, coupled with changes of leg stiffness, differ between the 2 programs. The OL program improves jump performance via a constant CI, whereas the TW training caused an increased CI, probably to enhance joint stability.  相似文献   

17.
18.
The diaphragm and abdominal muscles can be recruited during nonrespiratory maneuvers. With these maneuvers, transdiaphragmatic pressures are elevated to levels that could potentially provide a strength-training stimulus. To determine whether repeated forceful nonrespiratory maneuvers strengthen the diaphragm, four healthy subjects performed sit-ups and biceps curls 3-4 days/wk for 16 wk and four subjects served as controls. The maximal transdiaphragmatic pressure was measured at baseline and after 16 wk of training. Maximum static inspiratory and expiratory mouth pressures and diaphragm thickness derived from ultrasound were measured at baseline and 8 and 16 wk. After training, there were significant increases in diaphragm thickness [2.5 +/- 0.1 to 3.2 +/- 0.1 mm (mean +/- SD) (P < 0.001)], maximal transdiaphragmatic pressure [198 +/- 21 to 256 +/- 23 cmH2O (P < 0.02)], maximum static inspiratory pressure [134 +/- 22 to 171 +/- 16 cmH2O (P < 0.002)], maximum static expiratory pressure [195 +/- 20 to 267 +/- 40 cmH2O (P < 0.002)], and maximum gastric pressure [161 +/- 5 to 212 +/- 40 cmH2O (P < 0.03)]. These parameters were unchanged in the control group. We conclude that nonrespiratory maneuvers can strengthen the inspiratory and expiratory muscles in healthy individuals. Because diaphragm thickness increased with training, the increase in maximal pressures is unlikely due to a learning effect.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号