首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neocarzinostatin chromophore binds to deoxyribonucleic acid by intercalation   总被引:11,自引:0,他引:11  
The nonprotein chromophore of neocarzinostatin was found to share many of the characteristics of classical intercalators in its interaction with DNA. Viscosity studies with PM2 DNA indicated that the DNA helix unwinding induced by the chromophore was 0.82 times that of ethidium or 21 degrees. Electric dichroism of the chromophore--DNA complex showed that each bound chromophore molecule lengthened DNA by 3.3 A and that absorbance transitions of the chromophore at 315--385 nm were oriented approximately parallel to DNA bases, as expected for an intercalated aromatic ring. Binding to DNA induced strong hypochromicity and a pronounced red shift in the absorbance spectrum of the chromophore. Spectrophotometric titrations suggested at least two types of chromophore binding sites on DNA; one type of site was saturated at rb = 0.125 chromophore molecule/nucleotide, but binding to additional sites continued to at least rb = 0.3. These physical--chemical studies were performed at pH 4--5 in order to keep the chromophore stable, but chromophore bound to an excess of DNA at pH 7 showed a stable absorbance spectrum identical with that seen at pH 4--5, suggesting that a similar type of binding occurs at neutral pH. Chromophore which had spontaneously degraded in pH 8 buffer did not bind to DNA at all, as judged by absorbance spectroscopy. The degree of protection afforded by DNA against spontaneous chromophore degradation implied a dissociation constant of approximately 5 microM for the DNA--chromophore complex at neutral pH and physiological ionic strength. Supercoiled DNA was nearly twice as effective as relaxed DNA in protecting chromophore from degradation, providing additional evidence for intercalation at neutral pH. Comparison of absorbance, fluorescence, and dichroism spectra suggests that the naphthalene ring system is the intercalating moiety.  相似文献   

2.
3.
Extent of binding (gammap) of globular proteins to calf-thymus DNA have been measured in mole per mole of nucleotide as function of equilibrium protein concentration. We have exploited measurement of the surface tension of the protein solution in the presence and absence of DNA to calculate the binding ration (gammap). Interaction of bovine serum albumin with DNA has been studied at different pH. Interaction of bovine serum albumin with DNA has been studied at different pH, ionic strength and in presence of Ca2+. Interaction of BSA with denatured DNA has also been investigated. Binding isotherms for other globular proteins like beta-lactoglobulin, alpha-lactalbumin and lysozyme have been compared under identical physicochemical condition. It has been noted with considerable interest that globular form of protein is important to some extent in protein-DNA interaction. An attempt has been made to explain the significance of difference in binding ratios of these two biopolymers in aqueous medium for different systems in the light of electrostatic and hydrophobic effects. Values of maximum binding ration (gammap(m)) at saturated level for different systems have been also presented. The Gibb's free energy decrease (-deltaG0) of the binding of proteins to DNA has been compared more precisely for the saturation of binding sites in the DNA with the change of activity of protein in solution from zero to unity in the rational mole fraction scale.  相似文献   

4.
Nuclear factor I (NFI) or its isolated DNA-binding domain (NFI-BD) enhances initiation of adenovirus DNA replication up to 50-fold at low concentrations of the precursor terminal protein-DNA polymerase (pTP-pol) complex. Both in solution and when bound to DNA, NFI-BD can form a complex with pTP-pol. To investigate the mechanism of enhancement by NFI, we determined the stability of a functional preinitiation complex formed in vitro between pTP-pol and the origin. Challenge experiments with a distinguishable template containing an identical origin revealed that in the absence of NFI, this preinitiation complex was very sensitive to competition for pTP-pol. Addition of NFI-BD increased the half-life of the complex at least 10-fold and led to the formation of a template-committed preinitiation complex. In agreement with this, binding of pTP-pol to origin DNA in band-shift assays was enhanced by NFI. By DNase I footprinting we show that the specificity of binding as well as induction of structural changes in origin DNA by pTP-pol are increased by NFI. These results indicate that NFI, by binding and positioning pTP-pol, stabilizes the complex between pTP-pol and the core origin, and thus enhances initiation of DNA replication.  相似文献   

5.
The interaction of BamHI endonuclease with DNA has been studied crystallographically, but has not been characterized rigorously in solution. The enzyme binds in solution as a homodimer to its recognition site GGATCC. Only six base-pairs are directly recognized, but binding affinity (in the absence of the catalytic cofactor Mg(2+)) increases 5400-fold as oligonucleotide length increases from 10 to 14 bp. Binding is modulated by sequence context outside the recognition site, varying about 30-fold from the bes t (GTG or TAT) to the worst (CGG) flanking triplets. BamHI, EcoRI and EcoRV endonucleases all have different context preferences, suggesting that context affects binding by influencing the free energy levels of the complexes rather than that of the free DNA. Ethylation interference footprinting in the absence of divalent metal shows a localized and symmetrical pattern of phosphate contacts, with strong contacts at NpNpNpGGApTCC. In the presence of Mg(2+), first-order cleavage rate constants are identical in the two GGA half-sites, are the same for the two nicked intermediates and are unaffected by substrate length in the range 10-24 bp. DNA binding is strongly enhanced by mutations D94N, E111A or E113K, by binding of Ca(2+) at the active site, or by deletion of the scissile phosphate GpGATCC, indicating that a cluster of negative charges at the catalytic site contributes at least 3-4 kcal/mol of unfavorable binding free energy. This electrostatic repulsion destabilizes the enzyme-DNA complex and favors metal ion binding and progression to the transition state for cleavage.  相似文献   

6.
Binding of ethidium bromide (EB) to cells before and after HCl, pepsin and RNase treatment was investiaged by spectophotometric and fluorimetric methods. Binding isotherms, calculated with the McGheevon Hippel equation, taking EB as a non-interacting ligand, revealed the influcence of these treatments on the fluorescence characteristics of the cells which were measured by flow-through cytofluorimetry. Thus pepsin- and RNase-treated cells have a reduced intercalation capacity due to the loss of cytoplasmic RNA and RNA hydrolysis, respectively. HCl alone, or in association with pepsin, increased the equilibrium constant K considerably. Thus at low free EB concentrations the enchanced EB affinity of acid-pretreated cells generates a high fluorescence intensity, by comparison with treatments at neutral pH. This result contradicts the interpretation of high EB binding to acid pretreated cells which is commonly believed to be due to hydrolytic histone removal from potential intercalation sites. With increasing free EB concentrations the fluorescence intensities of RNase- and pepsin-treated cells culminate at the same level due to their amost identical intercalation capacities. Consequently, quantitative DNA analysis of pretreated cell suspensions with EB can only be performed if the alteration, induced by the pretreatment, has previously been studied.  相似文献   

7.
Interaction of minor groove binding ligands with long AT tracts.   总被引:2,自引:2,他引:0       下载免费PDF全文
We have used quantitative DNase I footprinting to examine the ability of distamycin and Hoechst 33258 to discriminate between different arrangements of AT residues, using synthetic DNA fragments containing multiple blocks of (A/T)6or (A/T)10in identical sequence environments. Previous studies have shown that these ligands bind less well to (A/T)4sites containing TpA steps. We find that in (A/T)6tracts distamycin shows little discrimination between the various sites, binding approximately 2-fold stronger to TAATTA than (TA)3, T3A3and GAATTC. In contrast, Hoechst 33258 binds approximately 20-fold more tightly to GAATTC and TAATTA than T3A3and (TA)3. Hydroxyl radical footprinting reveals that both ligands bind in similar locations at the centre of each AT tract. At (A/T)10sites distamycin binds with similar affinity to T5A5, (TA)5and AATT, though bands in the centre of (TA)5are protected at approximately 50-fold lower concentration than those towards the edges. Hoechst 33258 shows a similar pattern of preference, with strong binding to AATT, T5A5and the centre of (TA)5. Hydroxyl radical footprinting reveals that at low concentrations both ligands bind at the centre of (TA)5and A5T5, while at higher concentrations ligand molecules bind to each end of the (A/T)10tracts. At T5A5two ligand molecules bind at either end of the site, even at the lowest ligand concentration, consistent with the suggestion that these compounds avoid the TpA step. Similar DNase I footprinting experiments with a DNA fragment containing T n (n = 3-6) tracts reveals that both ligands bind in the order T3< T4 << T5 = T6.  相似文献   

8.
Determination of netropsin-DNA binding constants from footprinting data   总被引:9,自引:0,他引:9  
A theory for deriving drug-DNA site binding constants from footprinting data is presented. Plots of oligonucleotide concentration, as a function of drug concentration, for various cutting positions on DNA are required. It is assumed that the rate of cleavage at each nucleotide position is proportional to the concentration of enzyme at that nucleotide and to the probability that the nucleotide is not blocked by drug. The probability of a nucleotide position not being blocked is calculated by assuming a conventional binding equilibrium for each binding site with exclusions for overlapping sites. The theory has been used to evaluate individual site binding constants for the antiviral agent netropsin toward a 139 base pair restriction fragment of pBR-322 DNA. Drug binding constants, evaluated from footprinting data in the presence of calf thymus DNA and poly(dGdC) as carrier and in the absence of carrier DNA, were determined by obtaining the best fit between calculated and experimental footprinting data. Although the strong sites on the fragment were all of the type (T.A)4, the value of the binding constant was strongly sequence dependent. Sites containing the dinucleotide sequence 5'-TA-3' were found to have significantly lower binding constants than those without this sequence, suggesting that an adenine-adenine clash produces a DNA structural alteration in the minor groove which discourages netropsin binding to DNA. The errors, scope, and limitations associated with the method are presented and discussed.  相似文献   

9.
The interaction of ethidium bromide with single-stranded synthetic and natural polynucleotides at high temperatures (t = 70 degrees C) and low pH values (pH 3.0) was studied. The isotherms of adsorption of ethidium bromide on single-stranded DNA were obtained. Two modes of binding of single-stranded DNA, strong and weak, were revealed. The values of the corresponding constants of interaction of this ligand and the number of bases per one binding site were determined.  相似文献   

10.
We have investigated the conformational potentials of several DNA oligonucleotides containing sequences related to 5'-CGA in neutral pH and low pH (< 5.0) conditions. One-dimensional proton NMR spectra show that d(CGATCG), d(TCGATCGA), and d(CGATCGATCG) exhibit new sets of resonances at low pH (approximately 3.8-4.4), when compared to those from the neutral pH samples. The low pH form and the neutral pH form are in slow equilibrium. Analyses of the data suggest that these sequences under low pH conditions adopt structures distinct from B-DNA. Two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY) data from the DNA hexamer d(CGATCG) of the neutral and low pH samples were used to analyze their respective structures in solution. An iterative NOE spectral-driven refinement procedure, SPEDREF [Robinson, H., & Wang, A. H.-J. (1992) Biochemistry 31, 3524-3533], was used to show that the neutral pH structure is close to canonical B-DNA. In contrast, analysis of the low pH form using the 2D NOESY data suggests that its structure is consistent with a right-handed parallel-stranded (PS) double helix with symmetrical non-Watson-Crick (C+:C, G:G, A:A, T:T) homo base pairs. Supporting evidence for the PS helix includes the asymmetric inversion-recovery relaxation times associated with the two ends of the helix. The structure is favored by the 5'-CGA sequence in which the cytosines provide the C+:C pairing for the nucleation step and the GpA step is significantly stabilized by the interstrand G-A stacking interactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The preferred binding sites for mithramycin on four different DNA fragments have been investigated by DNAase I footprinting. Sites containing at least two contiguous GC base pairs are protected by the antibiotic, the preferred binding site consisting of the dinucleotide step GpG (or CpC). Related antibiotics chromomycin and olivomycin produce similar, but not identical footprinting patterns suggesting that they can recognize other sequences as well. All three antibiotics induce enhanced rates of enzyme cleavage at regions flanking some of their binding sites. These effects are generally observed in runs of A and T and are attributed to DNA structural variations induced in the vicinity of the ligand binding site. The reaction of dimethylsulphate with N7 of guanine was modified by the presence of mithramycin so that we cannot exclude the possibility that these antibiotics bind to DNA via the major groove.  相似文献   

12.
Summary Binding of ethidium bromide (EB) to cells before and after HCl, pepsin and RNase treatment was investigated by spectrophotometric and fluorimetric methods. Binding isotherms, calculated with the McGheevon Hippel equation, taking EB as a non-interacting ligand, revealed the influence of these treatments on the fluorescence characteristics of the cells which were measured by flow-through cytofluorimetry. Thus pepsin- and RNase-treated cells have a reduced intercalation capacity due to the loss of cytoplasmic RNA and RNA hydrolysis, respectively. HCl alone, or in association with pepsin, increased the equilibrium constant K considerably. Thus at low free EB concentrations the enhanced EB affinity of acid-pretreated cells generates a high fluorescence intensity, by comparison with treatments at neutral pH. This result contradicts the interpretation of high EB binding to acid pretreated cells which is commonly believed to be due to hydrolytic histone removal from potential intercalation sites.With increasing free EB concentrations the fluorescence intensities of RNase- and pepsin-treated cells culminate at the same level due to their almost identical intercalation capacities. Consequently, quantitative DNA analysis of pretreated cell suspensions with EB can only be performed if the alteration, induced by the pretreatment, has previously been studied.  相似文献   

13.
14.
Extrinsic Cotton effects of proflavine bound to polynucleotides   总被引:1,自引:0,他引:1  
A Blake  A R Peacocke 《Biopolymers》1967,5(4):383-397
The magnitude of the Cotton effect of proflavine which is bound to RNA or to denatured DNA depends on the ratio of bound proflavine to nucleic acid base. A statistical treatment which explains this behavior has been fitted to the experimental curves and indicates that optical activity arises through interaction between two or more bound proflavine molecules. The corresponding requirement with double helical DNA is for interaction between 3–4 proflavine molecules. Although proflavine binds to denatured DNA at pH 2.8, as shown by the shift of the proflavine spectrum, the strong binding process is absent, and to this is attributed the absence of the Cotton effect at low pH. Studies on the Cotton effects of proflavine bound to poly A and poly U at neutral pH, to poly A at acid pH and to poly (A + U) allow the generalization that a relatively rigid configuration of the binding macromolecule is required for the induction of these extrinsic Cotton effects.  相似文献   

15.
We report dichroism and equilibrium binding studies of netropsin (Net) and distamycin A3 (Dist) binding to deoxyribonucleic acid (DNA). We show that at low degrees of binding (r) to calf thymus DNA, Net induces a considerable increase in the apparent DNA length (14 A/drug molecule bound), closely analogous to the results reported earlier for Dist. In addition, we show that chicken erythrocyte DNA shows length changes similar to those of calf thymus DNA upon distamycin binding. DNA length reaches a maximum at 1 bound drug/20-30 base pairs and then decreases to its initial value by r = 0.1. This effect is not seen for two other DNAs with nearly identical A + T base pair content and may therefore arise from the details of base sequence or base modification in eukaryotic DNA. We also show that Dist binding to calf thymus DNA at low r values is positively cooperative and shows a DNA affinity which is primarily nonionic. We demonstrate that independent of the DNA to which they are bound, the Net and Dist transition moments are inclined by 43 +/- 3 degrees from the helix axis, consistent with the idea that both drugs bind inside and parallel to the DNA small groove. From dichroism measurements, we show that the conformational change induced in calf thymus DNA by Dist does not kink or bend the helix and does not substantially alter the average inclination of the bases. Finally, we outline a statistical mechanical theory for calculation of binding isotherms when binding is coupled to a DNA structural change.  相似文献   

16.
The interaction of neutral red (NR) with calf thymus DNA (CT DNA) was investigated by spectrometric (UV-vis, circular dichroism and fluorescence) and voltammetric techniques. It was shown that the interaction of NR with DNA depended on the values of R (R is defined as the ratio of the concentration of NR to that of CT DNA) and pH of the solution. NR intercalated into CT DNA base pairs at lower R value (R < 2.4) and following by NR aggregating along the helical surface of DNA at higher R value (R > 2.4) in pH 6.0 solution. Interestingly, we found that at lower R value, NR intercalated into CT DNA with its long axis perpendicular or parallel to the dyad axis of DNA in the solution of pH 6.0. While in pH 7.0 solution, NR bound with CT DNA through intercalation and electrostatic interactions. The electrochemical inactive complexes, NR-2CT DNA, 3NR-CT DNA, and NR-CT DNA were formed when NR interacted with nucleic acids in pH 6.0 and 7.2 solutions, respectively. The corresponding intrinsic binding constants for these complexes were obtained by UV-vis and fluorescence spectrometric methods, respectively. The CD spectra showed that the conformation of CT DNA was converted from right-handed B-DNA to left-handed Z-DNA due to the aggregating of NR along the surface of DNA in pH 6.0 solution, whereas a conversion from B-DNA to C-DNA was induced due to the interaction of DNA with NR in pH 7.2 solution. Finally, two binding modes of NR with CT DNA in aqueous with different values of pH were shown in the scheme.  相似文献   

17.
Isothermal titration calorimetry (ITC) profiles of berenil bound to different DNAs show that, despite the strong preference of berenil for AT-rich regions in DNA, it can bind to other DNA sequences significantly. The ITC results were used to quantify the binding of berenil, and the thermodynamic profiles were obtained using natural DNAs as well as synthetic polynucleotides. ITC binding isotherms cannot be simply described when a single set of identical binding sites is considered, except for poly[d(A-T)2]. Ultraviolet melting of DNA and differential scanning calorimetry were also used to quantify several aspects of the binding of berenil to salmon testes DNA. We present evidence for secondary binding sites for berenil in DNA, corresponding to G+C rich sites. Berenil binding to poly[d(G-C)2] is also observed. Circular dichroism experiments showed that binding to GC-rich sites involves drug intercalation. Using a molecular modeling approach we demonstrate that intercalation of berenil into CpG steps is sterically feasible.  相似文献   

18.
We investigated the mechanism and kinetic specificity of binding of peptide nucleic acid clamps (bis-PNAs) to double-stranded DNA (dsDNA). Kinetic specificity is defined as a ratio of initial rates of PNA binding to matched and mismatched targets on dsDNA. Bis-PNAs consist of two homopyrimidine PNA oligomers connected by a flexible linker. While complexing with dsDNA, they are known to form P-loops, which consist of a [PNA]2-DNA triplex and the displaced DNA strand. We report here a very strong pH-dependence, within the neutral pH range, of binding rates and kinetic specificity for a bis-PNA consisting of only C and T bases. The specificity of binding reaches a very sharp and high maximum at pH 6.9. In contrast, if all the cytosine bases in one of the two PNA oligomers within the bis-PNA are replaced by pseudoisocytosine bases (J bases), which do not require protonation to form triplexes, a weak dependence on pH of the rates and specificity of the P-loop formation is observed. A theoretical analysis of the data suggests that for (C+T)-containing bis-PNA the first, intermediate step of PNA binding to dsDNA occurs via Hoogsteen pairing between the duplex target and one oligomer of bis-PNA. After that, the strand invasion occurs via Watson-Crick pairing between the second bis-PNA oligomer and the homopurine strand of the target DNA, thus resulting in the ultimate formation of the P-loop. The data for the (C/J+T)-containing bis-PNA show that its high affinity to dsDNA at neutral pH does not seriously compromise the kinetic specificity of binding. These findings support the earlier expectation that (C/J+T)-containing PNA constructions may be advantageous for use in vivo.  相似文献   

19.
E L Fish  M J Lane  J N Vournakis 《Biochemistry》1988,27(16):6026-6032
A new method for determining the equilibrium binding constant of antitumor drugs to specific DNA sequences by quantitative DNase I footprinting is presented. The use of a short synthetic DNA oligomer to define a homogeneous population of DNA binding sites enables the calculation of the free drug concentration and the fraction of DNA sites complexed with drug in solution and is described for the first time. Since a 1:1 stoichiometry is observed for each drug-oligomer DNA complex, it becomes possible to calculate equilibrium binding constants in solution. By use of this technique, the binding affinities of the nonintercalating drugs netropsin and distamycin to the synthetic oligonucleotide d(GGTATACC)2 are determined to be Ka (25 degrees C) = 1.0 X 10(5) and 2.0 X 10(5) M-1, respectively. Quantitation of the temperature dependence associated with complex formation results in a determination of standard enthalpies of -3.75 and -8.48 kcal mol-1 for the binding of netropsin and distamycin, respectively. Calculation of other thermodynamic parameters are found to be in agreement with previous studies and indicate that the DNA binding process for these compounds is predominantly enthalpy driven. This method of quantitative DNase I footprinting is demonstrated to be a useful technique for the measurement of drug affinities to specific binding sites on DNA oligomers which are designed and synthesized expressly for this purpose. Applications of the technique to the determination of drug binding affinities at specific sites within native DNA sequences are discussed.  相似文献   

20.
Human transferrin receptor (tfR) is a covalent homodimer of 90-kDa transmembrane subunits, which transits an endocytotic pathway involving exposure to low pH. Digestion of purified tfR at neutral pH generates a soluble noncovalent dimer of 70-kDa fragment subunits containing 95% of the extracellular tfR sequence, including the transferrin binding sites. Below pH 6, the 70-kDa fragment undergoes a conformational transition, which causes reversible association of the dimers in solution. Transferrin binding prevents both the conformational transition and the self-association. We suggest that tfR clustering in acidic compartments results from self-association due to a conformational change that is sensitive to transferrin binding. This and other observations support a concentration mechanism based on interactions between ectodomains in intracellular lumina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号