首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pokeweed ( Phytolacca americana ) has recently received much attention because of its ability to hyperaccumulate manganese (Mn). The internal mechanism of detoxification of Mn, however, is not fully understood. In the present study, we investigated Mn accumulation, subcellular distribution, chemical speciation and detoxification through oxalate in pokeweed. The plant accumulated excess Mn in the leaves, mainly in the water-soluble fraction, and over 80% of Mn was in a water-soluble form, while accumulation of excess Mn in the cellular organelle and membrane fraction caused phytotoxicity. In addition, pokeweed has an intrinsically high oxalate content. In all experiments, there was sufficient oxalate to chelate Mn in leaf water extracts at all different levels of Mn application. Phase analysis of X-ray diffraction detected oxalate–Mn chelate complexes, and gel chromatography further confirmed the chelation of Mn by oxalate. In conclusion, pokeweed accumulates excess Mn in the soluble fraction of leaf cells, most likely in vacuoles, in which detoxification of Mn could be achieved by chelation with oxalate.  相似文献   

2.
The accumulation of osmolytes like glycinebetaine (GB) in cell is known to protect organisms against abiotic stresses via osmoregulation or osmoprotection. Transgenic plants engineered to produce GB accumulate very low concentration of GB, which might not be sufficient for osmoregulation. Therefore, other roles of GB like cellular macromolecule protection and ROS detoxification have been suggested as mechanisms responsible for abiotic stress tolerance in transgenic plants. In addition, GB influences expression of several endogenous genes in transgenic plants. The new insights gained about the mechanism of stress tolerance in GB accumulating transgenic plants are discussed.  相似文献   

3.
4.
Diabetes normally causes lipid accumulation and oxidative stress in the kidneys, which plays a critical role in the onset of diabetic nephropathy; however, the mechanism by which dysregulated fatty acid metabolism increases lipid and reactive oxygen species (ROS) formation in the diabetic kidney is not clear. As succinate is remarkably increased in the diabetic kidney, and accumulation of succinate suppresses mitochondrial fatty acid oxidation and increases ROS formation, we hypothesized that succinate might play a role in inducing lipid and ROS accumulation in the diabetic kidney. Here we demonstrate a novel mechanism by which diabetes induces lipid and ROS accumulation in the kidney of diabetic animals. We show that enhanced oxidation of dicarboxylic acids by peroxisomes leads to lipid and ROS accumulation in the kidney of diabetic mice via the metabolite succinate. Furthermore, specific suppression of peroxisomal β-oxidation improved diabetes-induced nephropathy by reducing succinate generation and attenuating lipid and ROS accumulation in the kidneys of the diabetic mice. We suggest that peroxisome-generated succinate acts as a pathological molecule inducing lipid and ROS accumulation in kidney, and that specifically targeting peroxisomal β-oxidation might be an effective strategy in treating diabetic nephropathy and related metabolic disorders.  相似文献   

5.
The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. Strains of An. gambiae with higher systemic levels of ROS survive a bacterial challenge better, whereas reduction of ROS by dietary administration of antioxidants significantly decreases survival, indicating that ROS are required to mount effective antibacterial responses. Expression of several ROS detoxification enzymes increases in the midgut and fat body after a blood meal. Furthermore, expression of several of these enzymes increases to even higher levels when mosquitoes are fed a Plasmodium berghei-infected meal, indicating that the oxidative stress after a blood meal is exacerbated by Plasmodium infection. Paradoxically, a complete lack of induction of catalase mRNA and lower catalase activity were observed in P. berghei-infected midguts. This suppression of midgut catalase expression is a specific response to ookinete midgut invasion and is expected to lead to higher local levels of hydrogen peroxide. Further reduction of catalase expression by double-stranded RNA-mediated gene silencing promoted parasite clearance by a lytic mechanism and reduced infection significantly. High mosquito mortality is often observed after P. berghei infection. Death appears to result in part from excess production of ROS, as mortality can be decreased by oral administration of uric acid, a strong antioxidant. We conclude that ROS modulate An. gambiae immunity and that the mosquito response to P. berghei involves a local reduction of detoxification of hydrogen peroxide in the midgut that contributes to limit Plasmodium infection through a lytic mechanism.  相似文献   

6.
锰毒及植物耐性机理研究进展   总被引:21,自引:0,他引:21  
任立民  刘鹏 《生态学报》2007,27(1):357-367
综述了近些年国内外关于锰毒及植物耐锰机理的研究成果,并指出了存在的问题和发展前景。锰毒是酸性土壤上限制作物产量的重要因子,国内外针对锰毒及植物耐受机制进行了相关研究,但进展较为缓慢。锰对植物的毒害效应体现在不同的细胞组织及生理生化水平上,不同植物耐受锰的机理也存在差异性,但大都集中在有机酸的螯合解毒、内部积累、外部排斥及氧化等方面。某些锰胁迫所诱导的基因也被筛选出来,并且部分生物学功能得以鉴定。此外,锰与其他营养元素间的协同或拮抗作用也得以阐述,伴随锰超富积植物-商陆在中国的发现,对锰毒及植物耐性机理的深入研究和探讨,将会对植物修复技术的开展产生理论和实践意义。  相似文献   

7.
The purpose of this study was to investigate the long-term bioaccumulation and elimination of Cd, Pb, Mn, Zn and Fe by Pinna nobilis tissues after their 90 day-transplantation period at Téboulba fishing harbor. During the transplantation period, the Cd, Pb, Mn, Zn and Fe concentrations in the different tissues of the mussels were measured before and after exposure period. Metal (Cd, Pb, Mn, Zn and Fe) accumulation in P. nobilis mussels varied depending on the analyzed tissue and the caging times. Notable differences in Cd, Pb, Mn, Zn and Fe accumulation patterns within the digestive gland, gills and muscle were found and may be due to the ability of each tissue to accumulate metals. During the depuration phase, the elimination of Cd, Pb, Mn, Zn and Fe depended on the target tissue and the metal speciation. Cd, Pb, Mn and Fe were eliminated rapidly from one organ and increased in other when compared to those of 90 day transplanted mussels. The increase of metal loads during the elimination phase is not clear and particularly what kind of processes is responsible for such response. However, it is reasonable to assume that metals increase is related to the existence of an accumulation/detoxification mechanism, which involves the transport of metals from an organ to another. The data obtained indicate that because of the significantly high quantities of Cd, Pb, Mn, Zn and Fe accumulated during the exposure phase, the transplanted mussels are suitable bioindicators for monitoring trace metals in marine ecosystem.  相似文献   

8.
To further understand the hyperaccumulation of Mn, the present study investigated the accumulation of Ca and Mn and their interaction in Mn hyperaccumulator pokeweed (Phytolacca americana Linn.). Exogenous Ca was observed to have a distinctive impact on the Mn phytotoxicity and accumulation in pokeweed, but exogenous Mn had little influence on the accumulation of Ca. Both Ca and Mn accumulated in pokeweed were detected to be mainly in the form of oxalate. Investigation with SEM and TEM found there were two kinds of crystals in the leaves, Ca oxalate crystals and Mn-containing crystals. Further detection showed that there was no inclusion of Mn inside the Ca oxalate crystals, and that other elements, such as C, O and P, were present in the Mn-containing crystals. These results suggest that Ca oxalate crystals in pokeweed have no direct effect on the detoxification of Mn. In addition, the finding of element P and O in the Mn-containing crystals indicates that excess Mn could be deposited by phosphate, which could contribute to Mn accumulation and detoxification in pokeweed.  相似文献   

9.
Hydroponically grown 12-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 150 mM NaCl alone and combined with 0.5 mM MnSO4. Salt stress resulted in disruption of ion homeostasis by Na+ influx and K+ efflux. Higher accumulation of Na+ and water imbalance under salinity caused osmotic stress, chlorosis, and growth inhibition. Salt-induced ionic toxicity and osmotic stress consequently resulted in oxidative stress by disrupting the antioxidant defense and glyoxalase systems through overproduction of reactive oxygen species (ROS) and methylglyoxal (MG), respectively. The salt-induced damage increased with the increasing duration of stress. However, exogenous application of manganese (Mn) helped the plants to partially recover from the inhibited growth and chlorosis by improving ionic and osmotic homeostasis through decreasing Na+ influx and increasing water status, respectively. Exogenous application of Mn increased ROS detoxification by increasing the content of the phenolic compounds, flavonoids, and ascorbate (AsA), and increasing the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), superoxide dismutase (SOD), and catalase (CAT) in the salt-treated seedlings. Supplemental Mn also reinforced MG detoxification by increasing the activities of glyoxalase I (Gly I) and glyoxalase II (Gly II) in the salt-affected seedlings. Thus, exogenous application of Mn conferred salt-stress tolerance through the coordinated action of ion homeostasis and the antioxidant defense and glyoxalase systems in the salt-affected seedlings.  相似文献   

10.
Polyamine biosynthesis enzymes are promising drug targets for the treatment of leishmaniasis, Chagas' disease and African sleeping sickness. Arginase, which is a metallohydrolase, is the first enzyme involved in polyamine biosynthesis and converts arginine into ornithine and urea. Ornithine is used in the polyamine pathway that is essential for cell proliferation and ROS detoxification by trypanothione. The flavonols quercetin and quercitrin have been described as antitrypanosomal and antileishmanial compounds, and their ability to inhibit arginase was tested in this work. We characterized the inhibition of recombinant arginase from Leishmania (Leishmania) amazonensis by quercetin, quercitrin and isoquercitrin. The IC(50) values for quercetin, quercitrin and isoquercitrin were estimated to be 3.8, 10 and 4.3 μM, respectively. Quercetin is a mixed inhibitor, whereas quercitrin and isoquercitrin are uncompetitive inhibitors of L. (L.) amazonensis arginase. Quercetin interacts with the substrate l-arginine and the cofactor Mn(2+) at pH 9.6, whereas quercitrin and isoquercitrin do not interact with the enzyme's cofactor or substrate. Docking analysis of these flavonols suggests that the cathecol group of the three compounds interact with Asp129, which is involved in metal bridge formation for the cofactors Mn(A)(2+) and Mn(B)(2+) in the active site of arginase. These results help to elucidate the mechanism of action of leishmanicidal flavonols and offer new perspectives for drug design against Leishmania infection based on interactions between arginase and flavones.  相似文献   

11.
12.
Role of superoxide dismutases (SODs) in controlling oxidative stress in plants   总被引:48,自引:0,他引:48  
Reactive O(2) species (ROS) are produced in both unstressed and stressed cells. Plants have well-developed defence systems against ROS, involving both limiting the formation of ROS as well as instituting its removal. Under unstressed conditions, the formation and removal of O(2) are in balance. However, the defence system, when presented with increased ROS formation under stress conditions, can be overwhelmed. Within a cell, the superoxide dismutases (SODs) constitute the first line of defence against ROS. Specialization of function among the SODs may be due to a combination of the influence of subcellular location of the enzyme and upstream sequences in the genomic sequence. The commonality of elements in the upstream sequences of Fe, Mn and Cu/Zn SODs suggests a relatively recent origin for those regulatory regions. The differences in the upstream regions of the three FeSOD genes suggest differing regulatory control which is borne out in the research literature. The finding that the upstream sequences of Mn and peroxisomal Cu/Zn SODs have three common elements suggests a common regulatory pathway. The tools are available to dissect further the molecular basis for antioxidant defence responses in plant cells. SODs are clearly among the most important of those defences, when coupled with the necessary downstream events for full detoxification of ROS.  相似文献   

13.
锰对植物毒害及植物耐锰机理研究进展   总被引:9,自引:0,他引:9  
含锰矿渣的排放造成了严重的土壤锰污染。揭示锰毒害和植物的耐锰机制对于污染土壤治理具有重要意义。研究表明, 高浓度的Mn2+能够抑制根系Ca2+、Fe2+和Mg2+等元素的吸收及活性, 引起氧化性胁迫导致氧化损伤, 使叶绿素和Rubisco含量下降、叶绿体超微结构破坏和光合速率降低。而锰超累积植物则具有多种解毒或耐性机制, 如区域化、有机酸螯合、外排作用、抗氧化作用和离子交互作用等。根系主要通过有机酸的螯合作用促进植物对Mn2+的转运解毒, 同时能够将过量的Mn2+区域化在根细胞壁中; 叶片可通过酚类物质或有机酸螯合Mn2+, 并将其区域化在叶片表皮细胞和叶肉细胞的液泡中(或通过表皮毛将Mn2+排出体外)。其中, 金属转运蛋白在植物对Mn2+的吸收、转运、累积和解毒过程中发挥着重要作用。  相似文献   

14.
含锰矿渣的排放造成了严重的土壤锰污染。揭示锰毒害和植物的耐锰机制对于污染土壤治理具有重要意义。研究表明,高浓度的Mn2+能够抑制根系Ca2+、Fe2+和Mg2+等元素的吸收及活性,引起氧化性胁迫导致氧化损伤,使叶绿素和Rubisco含量下降、叶绿体超微结构破坏和光合速率降低。而锰超累积植物则具有多种解毒或耐性机制,如区域化、有机酸螯合、外排作用、抗氧化作用和离子交互作用等。根系主要通过有机酸的螯合作用促进植物对Mn^2+的转运解毒,同时能够将过量的Mn^2+区域化在根细胞壁中;叶片可通过酚类物质或有机酸螯合Mn^2+,并将其区域化在叶片表皮细胞和叶肉细胞的液泡中(或通过表皮毛将Mn^2+排出体外)。其中,金属转运蛋白在植物对Mn^2+的吸收、转运、累积和解毒过程中发挥着重要作用。  相似文献   

15.
16.
The opportunistic human fungal pathogen Candida albicans encounters diverse environmental stresses when it is in contact with its host. When colonizing and invading human tissues, C. albicans is exposed to ROS (reactive oxygen species) and RNIs (reactive nitrogen intermediates). ROS and RNIs are generated in the first line of host defence by phagocytic cells such as macrophages and neutrophils. In order to escape these host-induced oxidative and nitrosative stresses, C. albicans has developed various detoxification mechanisms. One such mechanism is the detoxification of NO (nitric oxide) to nitrate by the flavohaemoglobin enzyme CaYhb1. Members of the haemoglobin superfamily are highly conserved and are found in archaea, eukaryotes and bacteria. Flavohaemoglobins have a dioxygenase activity [NOD (NO dioxygenase domain)] and contain three domains: a globin domain, an FAD-binding domain and an NAD(P)-binding domain. In the present paper, we examine the nitrosative stress response in three fungal models: the pathogenic yeast C. albicans, the benign budding yeast Saccharomyces cerevisiae and the benign fission yeast Schizosaccharomyces pombe. We compare their enzymatic and non-enzymatic NO and RNI detoxification mechanisms and summarize fungal responses to nitrosative stress.  相似文献   

17.
Differences in tolerance to Mn excess and amelioration by Si were evaluated in two maize varieties. Dry weight, callose accumulation, chloroplast ultrastructure, and photosynthesis parameters were used as stress indicators. Variety Kneja 605 was much more Mn-sensitive than variety Kneja 434. In Kneja 605 excess Mn caused severe chloroplast damage and enhanced carotenoid production, symptoms similar to those triggered by photoinhibiton. In Mn-tolerant Kneja 434, in contrast, a Mn-induced decrease of the carotenoid concentrations, and only slight alterations in the chloroplasts were observed. These effects were similar to light Fe-deficiency symptoms. The threshold tissue concentration for Mn-induced callose accumulation was much lower in Kneja 605 than in Kneja 434. Therefore tolerance to excess Mn in Kneja 434 was not due to more efficient exclusion but to more efficient detoxification and compartmentation of Mn. The constitutively thicker epidermal layers in Kneja 434 and the observation that Si-induced amelioration of Mn toxicity in Kneja 605 substantially increased the thickness of the epidermal layers suggest that Mn storage in non-photosynthetic tissue could be a Mn tolerance mechanism in maize.  相似文献   

18.
Potential mechanisms for the lack of Fe(II) accumulation in Mn(IV)‐con‐taining anaerobic sediments were investigated. The addition of Mn(IV) to sediments in which Fe(III) reduction was the terminal electron‐accepting process removed all the pore‐water Fe(II), completely inhibited net Fe(III) reduction, and stimulated Mn(IV) reduction. In a solution buffered at pH 7, Mn(IV) oxidized Fe(II) to amorphic Fe(III) oxide. Mn(IV) naturally present in oxic freshwater sediments also rapidly oxidized Fe(II). A pure culture of a dissimilatory FE(III)‐ and Mn(FV)‐reducing organism isolated from the sediments reduced Fe(III) to Fe(II) in the presence of Mn(IV) when ferrozine was present to trap Fe(II) before Mn(IV) oxidized it. Depth profiles of dissolved iron and manganese reported in previous studies suggest that Fe(II) diffusing up from the zone of Fe(III) reduction is consumed within the Mn(IV)‐reducing zone. These results demonstrate that preferential reduction of Mn(IV) by Fe(III)‐reducing bacteria cannot completely explain the lack of Fe(II) accumulation in anaerobic, Mn(IV)‐containing sedments, and indicate that Mn(IV) oxidation of Fe(II) is the mechanism that ultimately prevents Fe(II) accumulation.  相似文献   

19.
Human skin is a continual target for chemical toxicity, due to its constant exposure to xenobiotics. The skin possesses a number of protective antioxidant systems, including glutathione and enzymic pathways, which are capable of neutralising reactive oxygen species (ROS). In combination with certain chemicals, the presence of ROS might augment the levels of toxicity, due to photoactivation of the chemical or, alternatively, due to an oxidatively-stressed state in the skin which existed prior to exposure to the chemical. Bithionol is a phototoxic anti-parasitic compound. The mechanism of its toxicity and the possible methods of protection from its damaging effects have been explored. The capacity of keratinocytes to protect themselves from bithionol and other phototoxic chemicals has been investigated. In addition, the potential of endogenous antioxidants, such as vitamin C and E, to afford protection to the cells, has been evaluated. The intracellular glutathione stores of HaCaT keratinocytes were reduced following treatment with biothionol. Following photoactivation, both bithionol and chlorpromazine had similar effects, which suggests that glutathione is important in the detoxification pathway of these chemicals. This was confirmed by means of the visual identification of fluorescently-labelled glutathione. Endogenous antioxidants were unable to protect the HaCaT keratinocytes from bithionol toxicity or chlorpromazine phototoxicity. Amiodarone was shown to have no effect on cellular glutathione levels, which suggests that an alternative mechanism of detoxification was occurring in this case. This was supported by evidence of the protection of HaCaT cells from amiodarone phototoxicity via endogenous antioxidants. Thus, it appears that amiodarone toxicity is dependent on the levels of non-gluathione antioxidants present, whilst bithionol and chlorpromazine detoxification relies on the glutathione antioxidant system. This type of approach could indicate the likely mechanisms of phototoxicity of chemicals in vitro, with relevance to potential effects in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号