首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute liver failure was induced in rats by a single intragastric dose of carbon tetrachloride. This causes hepatic centrilobular necrosis, as indicated by histological examinations, and produces a large increase in the activity of serum alanine aminotransferase. The plasma NH4+ level (mean +/- SEM) was 123 +/- 10 microM in the control group and 564 +/- 41 microM in animals with acute liver failure (each n = 5). 31P nuclear magnetic resonance (NMR) was used to monitor brain cortical high-energy phosphate compounds, Pi, and intracellular pH. 1H NMR spectroscopy was utilised to detect additional metabolites, including glutamate, glutamine, and lactate. The results show that the forebrain is capable of maintaining normal phosphorus energy metabolite ratios and intracellular pH despite the metabolic challenge by an elevated blood NH4+ level. There was a significant increase in the brain glutamine level and a concomitant decrease in the glutamate level during hyperammonaemia. The brain lactate level increased twofold in rats with acute liver failure. The results indicate that 1H NMR can be used to detect cerebral metabolic changes in this model of hyperammonaemia, and our observations are discussed in relation to compartmentation of NH4+ metabolism.  相似文献   

2.
1. Portacaval shunting in rats results in several metabolic alterations similar to those seen in patients with hepatic encephalopathy. The characteristic changes include: (a) diminution of cerebral function; (b) raised plasma ammonia and brain glutamine levels; (c) increased neutral amino acid transport across the blood-brain barrier; (d) altered brain and plasma amino acid levels; and (e) changes in brain neurotransmitter content. The aetiology of these abnormalities remains unknown. 2. To study the degree to which ammonia could be responsible, rats were made hyperammonaemic by administering 40 units of urease/kg body weight every 12 h and killing the rats 48 h after the first injection. 3. The changes observed in the urease-treated rats were: (a) whole-brain glucose use was significantly depressed, whereas the levels of high-energy phosphates remained unchanged; (b) the permeability of the blood-brain to barrier to two large neutral amino acids, tryptophan and leucine, was increased; (c) blood-brain barrier integrity was maintained, as indicated by the unchanged permeability-to-surface-area product for acetate; (d) plasma and brain amino acid concentrations were altered; and (e) dopamine, 5-hydroxytryptamine (serotonin) and noradrenaline levels in brain were unchanged, but 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-hydroxytryptamine, was elevated. 4. The depressed brain glucose use, increased tryptophan permeability-to-surface-area product, elevated brain tryptophan content and rise in the level of cerebral 5-HIAA were closely correlated with the observed rise in brain glutamine content. 5. These results suggest that many of the metabolic alterations seen in rats with portacaval shunts could be due to elevated ammonia levels. Furthermore, the synthesis or accumulation of glutamine may be closely linked to cerebral dysfunction in hyperammonaemia.  相似文献   

3.

Background

The ‘classic’ organic acidaemias (OAs) (propionic, methylmalonic and isovaleric) typically present in neonates or infants as acute metabolic decompensation with encephalopathy. This is frequently accompanied by severe hyperammonaemia and constitutes a metabolic emergency, as increased ammonia levels and accumulating toxic metabolites are associated with life-threatening neurological complications. Repeated and frequent episodes of hyperammonaemia (alongside metabolic decompensations) can result in impaired growth and intellectual disability, the severity of which increase with longer duration of hyperammonaemia. Due to the urgency required, diagnostic evaluation and initial management of patients with suspected OAs should proceed simultaneously. Paediatricians, who do not have specialist knowledge of metabolic disorders, have the challenging task of facilitating a timely diagnosis and treatment. This article outlines how the underlying pathophysiology and biochemistry of the organic acidaemias are closely linked to their clinical presentation and management, and provides practical advice for decision-making during early, acute hyperammonaemia and metabolic decompensation in neonates and infants with organic acidaemias.

Clinical management

The acute management of hyperammonaemia in organic acidaemias requires administration of intravenous calories as glucose and lipids to promote anabolism, carnitine to promote urinary excretion of urinary organic acid esters, and correction of metabolic acidosis with the substitution of bicarbonate for chloride in intravenous fluids. It may also include the administration of ammonia scavengers such as sodium benzoate or sodium phenylbutyrate. Treatment with N-carbamyl-L-glutamate can rapidly normalise ammonia levels by stimulating the first step of the urea cycle.

Conclusions

Our understanding of optimal treatment strategies for organic acidaemias is still evolving. Timely diagnosis is essential and best achieved by the early identification of hyperammonaemia and metabolic acidosis. Correcting metabolic imbalance and hyperammonaemia are critical to prevent brain damage in affected patients.
  相似文献   

4.
Activation of metabotropic glutamate receptors by injecting (S)3,5-dihydroxyphenylglycine (DHPG) in nucleus accumbens (NAcc) increases motor activity by different mechanisms in control rats and in rats with chronic liver failure due to portacaval shunt. In control rats DHPG increases extracellular dopamine in NAcc and induces locomotion by activating the 'normal' circuit: NAcc-->ventral pallidum-->medial-dorsal thalamus-->prefrontal cortex, which is not activated in portacaval shunt rats. In these rats, DHPG activates an 'alternative' circuit: NAcc-->substantia nigra pars reticulata-->ventro-medial thalamus-->prefrontal cortex, which is not activated in control rats. The reasons by which liver failure leads to activation of this 'alternative' circuit remain unclear. The aim of this work was to assess whether hyperammonaemia could be responsible for the alterations found in chronic liver failure. We injected DHPG in NAcc of control or hyperammonaemic rats and analysed, by in vivo brain microdialysis, the neurochemical responses of the 'normal' and 'alternative' circuits. In hyperammonaemic rats DHPG injection in NAcc activates both the 'normal' and 'alternative' circuits. In hyperammonaemia, activation of the 'alternative' circuit and increased motor response following metabotropic glutamate receptors activation in NAcc seem due to an increase in extracellular glutamate which activates AMPA receptors.  相似文献   

5.
Hyperammonaemia has deleterious effects on the CNS in patients with liver dysfunction. Cellular mechanisms underlying the effects of hyperammonaemia are largely unknown, although astrocytes have been the main target of interest. This study investigated how treatment with NH4Cl and lactate, which increase in the brain as a consequence of hyperammonaemia, affects cells in primary rat cultures enriched in either astrocytes or microglia. Morphological changes were studied over time using light microscopy. Release of the proinflammatory cytokines tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-6 and IL-1beta was measured using ELISA. NH4Cl was found to induce vacuole formation in both culture systems. Lactate treatment altered astrocytic appearance, resulting in increased space between individual cells. Microglia adopted a round morphology with either NH4Cl or lactate treatment. Lactate, but not NH4Cl, induced release of TNF-alpha and IL-6 in both astroglial- and microglial-enriched cultures, while IL-1beta was released only in microglial cultures. Cytokine release was higher in the microglial- than in the astroglial-enriched cultures. Additionally, the astroglial-enriched cultures containing approximately 10% microglial cells released more cytokines than cultures containing about 5% microglial cells. Taken together, our data suggest that most TNF-alpha, IL-6 and IL-1beta release comes from microglia. Thus, microglia could play an important role in the pathological process of hyperammonaemia.  相似文献   

6.
Acetate supplementation in rats increases plasma acetate and brain acetyl-CoA levels. Although acetate is used as a marker to study glial energy metabolism, the effect that acetate supplementation has on normal brain energy stores has not been quantified. To determine the effect(s) that an increase in acetyl-CoA levels has on brain energy metabolism, we measured brain nucleotide, phosphagen and glycogen levels, and quantified cardiolipin content and mitochondrial number in rats subjected to acetate supplementation. Acetate supplementation was induced with glyceryl triacetate (GTA) by oral gavage (6 g/kg body weight). Rats used for biochemical analysis were euthanized using head-focused microwave irradiation at 2, and 4 h following treatment to immediately stop metabolism. We found that acetate did not alter brain ATP, ADP, NAD, GTP levels, or the energy charge ratio [ECR, (ATP + ½ ADP)/(ATP + ADP + AMP)] when compared to controls. However, after 4 h of treatment brain phosphocreatine levels were significantly elevated with a concomitant reduction in AMP levels with no change in glycogen levels. In parallel studies where rats were treated with GTA for 28 days, we found that acetate did not alter brain glycogen and mitochondrial biogenesis as determined by measuring brain cardiolipin content, the fatty acid composition of cardiolipin and using quantitative ultra-structural analysis to determine mitochondrial density/unit area of cytoplasm in hippocampal CA3 neurons. Collectively, these data suggest that an increase in brain acetyl-CoA levels by acetate supplementation does increase brain energy stores however it has no effect on brain glycogen and neuronal mitochondrial biogenesis.  相似文献   

7.
The characterization of calcium accumulation in the brain of rats administered orally calcium chloride solution was investigated. Rats received a single oral administration of calcium (15–50 mg/100 g body weight), and they were sacrificed by bleeding-between 15 and 120 min after the administration. The administration of calcium (50 mg/100 g) produced a significant increase in serum calcium concentration and a corresponding elevation of brain calcium content, indicating that the transport of calcium into the brain is associated with the elevation of serum calcium levels. The increase in brain calcium content by calcium administration was not appreciably altered by the pretreatment with Ca2+ channel blockers (verapamil or diltiazem with the doses of 1.5 and 3.0 mg/100 g). In thyroparathyroidectomized rats, the administration of calcium (50 mg/100 g) caused a significant increase in brain calcium content, indicating that calcium-regulating hormones do not participate in the brain calcium transport. Now, brain calcium content was clearly elevated by fasting (overnight), although serum calcium level was not significantly altered. Calcium administration to fasted rats induced a further elevation of brain calcium content as compared with that of control (fasted) rats. The fasting-induced increase in brain calcium content was appreciably restored by refeeding. This restoration was also seen by the oral administration of glucose (0.4 g/100 g) to fasted rats. The present study demonstrates that serum calcium is transported to brain, and that the increased brain calcium is released promptly. The release of calcium from brain may be involved in energy metabolism, and this release may be weakened by the reduction of glucose supply into brain. The finding suggests a physiological significance of energy-dependent mechanism in the regulation of brain calcium.  相似文献   

8.
Phenylketonuria (PKU) is biochemically characterized by the accumulation of phenylalanine (Phe) and its metabolites in tissues of affected children. Neurological damage is the clinical hallmark of PKU, and Phe is considered the main neurotoxic metabolite in this disorder. However, the mechanisms of neurotoxicity are poorly known. The main objective of the present work was to measure the activities of the mitochondrial respiratory chain complexes (RCC) and succinate dehydrogenase (SDH) in brain cortex of Wistar rats subjected to chemically induced hyperphenylalaninemia (HPA). We also investigated the in vitro effect of Phe on SDH and RCC activities in the cerebral cortex of 22-day-old rats. HPA was induced by subcutaneous administration of 2.4 mol/g body weight -methylphenylalanine, a phenylalanine hydroxylase inhibitor, once a day, plus 5.2 M/g body weight phenylalanine, twice a day, from the 6th-21st postnatal day. The results showed a reduction of SDH and complex I + III activity in brain cortex of rats subjected to HPA. We also verified that Phe inhibited the in vitro activity of complexes I + III, possibly by competition with NADH. Considering the importance of SDH and RCC for the maintenance of energy supply to brain, our results suggest that energy deficit may contribute to the Phe neurotoxicity in PKU.  相似文献   

9.
Sleep has been functionally implicated in brain energy homeostasis in that it could serve to replenish brain energy stores that become depleted while awake. Sleep deprivation (SD) should therefore lower brain glycogen content. We tested this hypothesis by sleep depriving mice of three inbred strains, i.e., AKR/J (AK), DBA/2J (D2), and C57BL/6J (B6), that differ greatly in their sleep regulation. After a 6-h SD, these mice and their controls were killed by microwave irradiation, and glycogen and glucose were quantified in the cerebral cortex, brain stem, and cerebellum. After SD, both measures significantly increased by approximately 40% in the cortex of B6 mice, while glycogen significantly decreased by 20-38% in brain stem and cerebellum of AK and D2 mice. In contrast, after SD, glucose content increased in all three structures in AK mice and did not change in D2 mice. The increase in glycogen after SD in B6 mice persisted under conditions of food deprivation that, by itself, lowered cortical glycogen. Furthermore, the strains that differ most in their compensatory response to sleep loss, i.e., AK and D2, did not differ in their glycogen response. Thus glycogen content per se is an unlikely end point of sleep's functional role in brain energy homeostasis.  相似文献   

10.
Summary In the adult mammalian brain, the energy metabolism is almost entirely dependent on glucose. Furthermore, a close relationship between the energy metabolism and the functional activity could be shown. Thus, the functional activity of the brain or parts thereof can be quantified by measuring the cerebral metabolic rate for glucose. Studying in vivo the fate of a radioactive labeled analogue of glucose, the 2-deoxy-d-[1-14C]glucose, and using quantitative autoradiographic techniques, it is possible to estimate the cerebral glucose utilization of every discrete brain region. The advantage of the 2-deoxyglucose method is, that the local cerebral glucose utilization represents a metabolic encephalography (Sokoloff 1982).  相似文献   

11.
Changes in the number of Na+-K+-ATPase alpha-subunits, Na+-K+-ATPase activity and glycogen content of the crucian carp (Carassius carassius) brain were examined to elucidate relative roles of energy demand and supply in adaptation to seasonal anoxia. Fish were collected monthly around the year from the wild for immediate laboratory assays. Equilibrium dissociation constant and Hill coefficient of [3H]ouabain binding to brain homogenates were 12.87+/-2.86 nM and -1.18+/-0.07 in June and 11.93+/-2.81 nM and -1.17+/-0.06 in February (P>0.05), respectively, suggesting little changes in Na+-K+-ATPase alpha-subunit composition of the brain between summer and winter. The number of [3H]ouabain binding sites and Na-K-ATPase activity varied seasonally (P<0.001) but did not show clear connection to seasonal changes in oxygen content of the fish habitat. Six weeks' exposure of fish to anoxia in the laboratory did not affect Na+-K+-ATPase activity (P>0.05) confirming the anoxia resistance of the carp brain Na pump. Although anoxia did not suppress the Na pump, direct Q10 effect on Na+-K+-ATPase at low temperatures resulted in 10 times lower catalytic activity in winter than in summer. Brain glycogen content showed clear seasonal cycling with the peak value of 203.7+/-16.1 microM/g in February and a 15 times lower minimum (12.9+/-1.2) in July. In winter glycogen stores are 15 times larger and ATP requirements of Na+-K+-ATPase at least 10 times less than in summer. Accordingly, brain glycogen stores are sufficient to fuel brain function for about 8 min in summer and 16 h in winter, meaning about 150-fold extension of brain anoxia tolerance by seasonal changes in energy supply-demand ratio.  相似文献   

12.
The brain regulates all metabolic processes within the organism, and therefore, its energy supply is preserved even during fasting. However, the underlying mechanism is unknown. Here, it is shown, using (31)P-magnetic resonance spectroscopy that during short periods of hypoglycemia and hyperglycemia, the brain can rapidly increase its high-energy phosphate content, whereas there is no change in skeletal muscle. We investigated the key metabolites of high-energy phosphate metabolism as rapidly available energy stores by (31)P MRS in brain and skeletal muscle of 17 healthy men. Measurements were performed at baseline and during dextrose or insulin-induced hyperglycemia and hypoglycemia. During hyperglycemia, phosphocreatine (PCr) concentrations increased significantly in the brain (P = 0.013), while there was a similar trend in the hypopglycemic condition (P = 0.055). Skeletal muscle content remained constant in both conditions (P > 0.1). ANOVA analyses comparing changes from baseline to the respective glycemic plateau in brain (up to +15%) vs. muscle (up to -4%) revealed clear divergent effects in both conditions (P < 0.05). These effects were reflected by PCr/Pi ratio (P < 0.05). Total ATP concentrations revealed the observed divergency only during hyperglycemia (P = 0.018). These data suggest that the brain, in contrast to peripheral organs, can activate some specific mechanisms to modulate its energy status during variations in glucose supply. A disturbance of these mechanisms may have far-reaching implications for metabolic dysregulation associated with obesity or diabetes mellitus.  相似文献   

13.
Multiplying memory span by mental speed, we obtain the information entropy of short-term memory capacity, which is rate-limiting for cognitive functions and corresponds with EEG power spectral density. The number of EEG harmonics (n = 1, 2,, 9) is identical with memory span, and the eigenvalues of the EEG impulse response are represented by the zero-crossings up to the convolved fundamental, the P300. In analogy to quantum mechanics the brain seems to be an ideal detector simply measuring the energy of wave forms. No matter what the stimulus is and how the brain behaves, the metric of signal and memory can always be understood as a superposition of n states of different energy and their eigenvalues.  相似文献   

14.
—Rats undernourished from the first to the ninth day of life exhibited no decrease in the energy reserve (P-creatine, ATP, glucose and glycogen) of the brain, although they underwent a 41 per cent decrease in body weight. The apparent increase in the cerebral levels of glucose-6-phosphate and the decreases in hepatic glucose and lactate in the starved animals were probably a consequence of the fact that they froze faster than the control animals rather than of any essential differences in vivo. However, decreases in cerebral glutamate (11 per cent) and hepatic glutamate (33 per cent) in the undernourished animals cannot be explained on this basis. Possible explanations for this decrease in cerebral glutamate content are: a decreased supply of glutamate from the liver, a decreased synthesis of glutamate by the brain, or an increased use of glutamate as an energy source. Since levels of glutamate in the brain increase progressively during the first weeks of life, another interesting possibility is that the lower level of cerebral glutamate in undernourished rats represents a biochemical indicator of a delay in the maturation of specific morphological components which are rich in glutamate and are characteristic of the brain.  相似文献   

15.
Abstract: This is a study of the effects of chronic hypernatremic dehydration and rehydration on carbohydrate, energy, and amino acid metabolism in the brains of weanling mice. Chronic hypernatremic dehydration induced by 4 days of water deprivation and salt loading was associated with severe weight loss (no other observed clinical effects), increased brain Na+ levels, and a decreased brain water content. Changes in the concentrations of brain glucose, glycolytic and citric acid cycle metabolic intermediates, and phosphocreatine were compatible with reduced cerebral metabolic rate. In adaptation to chronic hypernatremia, there was a significant increase in the content of the measured brain amino acids. Rapid rehydration over a 4-h period with 2.5% dextrose in water returned plasma Na+ levels and brain Na+ and water contents to normal. After rehydration, metabolites were altered in a manner consistent with increased fluxes through the glycolytic pathway and citric acid cycle; the brain glycogen content almost tripled. Brain taurine and glutamine levels were not lowered by rehydration, and the total content of the measured amino acids in brain was still significantly higher than in controls. We speculate that these metabolic perturbations may relate to the development of cerebral edema and seizures or coma following rapid rehydration of humans with chronic hypernatremic dehydration.  相似文献   

16.
Chronic thiamine deprivation in the rat leads to selective neuropathological damage to pontine structures. Onset of neurological symptoms of thiamine deprivation (ataxia, loss of righting reflex) was accompanied by selective decreases (of the order of 30%) in the activity of -ketoglutarate dehydrogenase (KGDH) in lateral vestibular nucleus and hypothalamus. Enzyme activities were decreased to a lesser extent in medulla oblongata, striatum and hippocampus and were unchanged in other brain structures. No changes in KGDH occurred prior to the onset of neurological signs of thiamine deprivation. Administration of the central thiamine antagonist, pyrithiamine, results within 3 weeks in loss of righting reflex and convulsions and in more widespread neuropathological changes than those observed following thiamine deprivation. KGDH activities were found to be substantially diminished in all brain regions studied following pyrithiamine treatment with most severe changes occurring in brain regions found to be vulnerable to pyrithiamine (lateral vestibular nucleus, hypothalamus, midbrain, medullapons). In some cases, KGDH changes preceded the appearance of neurological symptoms of pyrithiamine treatment. Such decreases in KGDH may explain previous findings of region-selective changes in energy metabolism and of decreased synthesis of glucose-derived neurotransmitters (acetylcholine, GABA, glutamate) in pyrithiamine-treated rat brain. Thiamine administration to symptomatic pyrithiamine treated rats resulted in reversal of neurological signs of encephalopathy and in normalisation of defective KGDH activity in all brain regions. These findings suggest that the reversible neurological symptoms associated with Wernicke's Encephalopathy in man likely result from region-selective impairment of KGDH.  相似文献   

17.
Nucleotides concentrations (ATP, ADP, AMP) have been measured in brain and muscle of eels exposed to 101 ATA of hydrostatic pressure (HP) for 3 hr. Survival times (ST) and oxygen arterial content (CaO2) have been measured in trouts exposed to HP = 101 ATA. The results show that at HP = 101 ATA, AMP increases (P less than 0.05) and ATP decreases (-12%; NS) in muscle but are not modified in brain; ST values are similar in normoxic and hyperoxic conditions, and CaO2 are similar at 1 ATA and 101 ATA of HP. It is concluded that HP tends to decrease aerobic production of energy. This phenomenon is not due to a failure in O2 transport from ambient medium to the cell but to a possible perturbation of the aerobic cellular processes leading to energy production (Krebs cycle and/or respiratory chain coupled to oxidative phosphorylation.  相似文献   

18.
The major goal of this study was to examine the ability of several antioxidants namely, vitamin E, beta-carotene and N-acetylcysteine, to protect the brain from oxidative stress induced by lipopolysaccharide (LPS, endotoxin). LPS, a component of the bacterial wall of gram-negative bacteria, has been recognized as one of the most potent bacterial products in the induction of host inflammatory responses and tissue injury and was used in this study to mimic infections. LPS injection resulted in a significant increase in the stress indices, plasma corticosterone and glucose concentration, a significant alteration of the brain oxidative status observed as elevation of the level of malondialdehyde (MDA, index of lipid peroxidation) and reduction of reduced glutathione (GSH), and a disturbance in the brain energy metabolism presented as a reduction in the ATP/ADP ratio and an increase in the mitochondrial/cytosolic hexokinase ratio. However, the activities of brain superoxide dismutase and Na+, K+-ATPase and contents of cholesterol and phospholipids were not altered. Administration of the aforementioned antioxidants prior to LPS injection ameliorated the oxidative stress by reducing levels of MDA, restoring GSH content and normalizing the mitochondrial/cytosolic hexokinase ratio in the brain in addition to lowering levels of plasma corticosterone and glucose. In conclusion, this study showed the increased free radical generation during infections and LPS-induced stress. It also suggests that brain oxidative status and energy is disturbed.  相似文献   

19.
Abstract: The effect of energy failure on Cl-dependent l -glutamate ( l -Glu) transport was examined with an in vitro preparation. Rat brain slices were incubated in low oxygen and glucose-deprived medium (in vitro ischemia), and a synaptic membrane fraction was prepared from the slices. Cl-dependent l -[3H]Glu uptake into vesicles increased about twofold after 20 min of in vitro ischemia. The increased l -[3H]Glu uptake was inhibited by l -Glu, dl -2-amino-4-phosphonobutyrate, l -homocysteic acid, l -cystine, 4,4'-diisothiocyano-2,2'-disulfonic stilbene, and removal of Cl. Uptakes of Na+-dependent l -[3H]-Glu, [3H]GABA, and [3H]taurine were not changed by the in vitro ischemia. In vitro ischemia increased the V max value without affecting the K m value. The increased l -[3H]Glu uptake by in vitro ischemia was reduced by subsequent incubation in a normoxic glucose-containing solution. ATP content in brain slices decreased to <10% of control values by in vitro ischemia for 10 min. The decrease in ATP content was restored by subsequent incubation in normoxic glucose-containing solution. Treatment with veratrine, 2,4-dinitrophenol, carbonyl cyanide m -chlorophenylhydrazone, and NaCN in normoxic conditions increased l -[3H]Glu uptake with a concomitant decrease in ATP content in slices. These results suggest that Cl-dependent l -Glu transport activity in synaptic membranes increases in ischemia- or hypoxia-induced brain energy failures.  相似文献   

20.
Diabetes mellitus is known to impair glucose metabolism. The fundamental mechanism underlying hyperglycaemia in diabetes mellitus involves decreased utilization of glucose by the brain. However, mechanisms responsible for progressive failure of glycaemic regulation in type I (IDDM) diabetes need extensive and proper understanding. Hence the present study was initiated. Type I diabetes was induced in albino rat models with alloxan monohydrate (40 mg/Kg iv). Cerebral cortex and medulla oblongata were studied 48 h after alloxanisation. Diabetes caused an elevation in glucose, glutamate, aspartate, GABA and taurine levels and a decline in the glutamine synthetase activity. The activities of brain lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH) exhibited significant decrease during diabetes. Ammonia content increased (P < 0.01) as a function of diabetes. Na(+)-K(+) ATPase showed an elevation (P < 0.01) and Ca(++)-ATPase activity decreased (P < 0.01). Calcium content enhanced (P < 0.05) in the brain of diabetic rats. A General increase in the brain AMP, ADP and ATP was found on inducing diabetes. Impaired cerebral glucose metabolism accounts for the failure of cerebral glucose homeostasis. The impairment in the glycaemic control leads to disturbances in cerebral glutamate content (resulting in calcium overload and excitotoxic injury) and brain energy metabolism as reflected by alterations occurring in adenine nucleotide and the ATPases. The failure in the maintenance of normal energy metabolism during diabetes might affect glucose homeostasis leading to gross cerebral dysfunction during diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号