首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mollerup J  Berchtold MW 《FEBS letters》2005,579(19):4187-4192
The heat shock protein 90 co-chaperone p23 has recently been shown to be up-regulated in cancer cells and down-regulated in atheroschlerotic plaques. We found that p23 is degraded during apoptosis induced by several stimuli, including Fas and TNFalpha-receptor activation as well as staurosporine treatment. Caspase inhibition protected p23 from degradation in several cell lines. In addition, recombinant caspase-3 and 8 cleaved p23 at Asp 142 generating a degradation product of 18 kDa as seen in apoptotic cells. Truncated p23 is further degraded in a proteasome dependent process during apoptosis. Furthermore, we found that the anti-aggregating activity of truncated p23 was reduced compared to full length p23 indicating that caspase mediated p23 degradation contributes to protein destabilisation in apoptosis.  相似文献   

2.
The 45,55,65 and 100kDa ATP-binding proteinases(ATP-BPases) of the heat-shocked (44℃ for 30 min,recovery for 12h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography.Their molecular masses,isoelectric points (pI),pH-optima and other properties were analyzed by native proteinase gels.It was shown that the 65 kDa ATP-BPase is specifically induced by heat shock and not detectable in control cells.Its N-terminal 1-9amino acid sequence was determined by Edman degradation,but no homologies to other proteins in the protein data bases were found.30 and 31kDa proteinases can be cleaved from the 45,55 and 65 kDa proteinases to which they are linked.A possible relationship of the heat-induced 65 kDa ATP-BPase with the ATP-dependent proteinases (ATP-DPases) in prokaryotes and eukaryotes is discussed.  相似文献   

3.
4.
The Goodwin model is a negative feedback oscillator which describes rather closely the putative molecular mechanism of the circadian clock of Neurospora and Drosophila. An essential feature is that one or two clock proteins are synthesized and degraded in a rhythmic fashion. When protein synthesis in N. crassa (wild-type frq+and long-period mutant frq7) was inhibited by continuous incubation with increasing concentrations of cycloheximide (CHX) the period of the circadian sporulation rhythmicity is only slightly increased. The explanation of this effect may be seen in the inhibition of protein synthesis and protein degradation. In the model, increasing inhibition of both processes led to very similar results with respect to period length. That protein degradation is, in fact, inhibited by CHX is shown by determining protein degradation in N. crassa by means of pulse chase experiments. Phase response curves (PRCs) of the N. crassa sporulation rhythm toward CHX which were reported in the literature and investigated in this paper revealed significant differences between frq+and the long period mutants frq7and csp -1 frq7. These PRCs were also convincingly simulated by the model, if a transient inhibition of protein degradation by CHX is assumed as well as a lower constitutive degradation rate of FRQ-protein in the frq7/ csp -1 frq7mutants. The lower sensitivities of frq7and csp -1 frq7towards CHX may thus be explained by a lower degradation rate of clock protein FRQ7. The phase shifting by moderate temperature pulses (from 25 to 30 degrees C) can also be simulated by the Goodwin model and shows large phase advances at about CT 16-20 as observed in experiments. In case of higher temperature pulses (from 35 to 42 or 45 degrees C=heat shock) the phase position and form of the PRC changes as protein synthesis is increasingly inhibited. It is known from earlier experiments that heat shock not only inhibits the synthesis of many proteins but also inhibits protein degradation. Taking this into account, the Goodwin model also simulates the PRCs of high temperature (heat shock) pulses.  相似文献   

5.
We investigated whether or not a 50 kDa glycoprotein might play an important role in protein synthesis-independent thermotolerance development in CHO cells. When cells were heated for 10 min at 45.5 degrees C, they became thermotolerant to a heat treatment at 45.5 degrees C administered 12 hr later. The thermotolerance ratio at 10(-3) isosurvival was 4.4. The cellular heat shock response leads to enhanced glycosylation of a 50 kDa protein. The glycosylation of proteins including a 50 kDa glycoprotein was inhibited by treatment with various concentrations of tunicamycin (0.2-2 micrograms/ml). The development of thermotolerance was not affected by treatment with tunicamycin after the initial heat treatment, although 2 micrograms/ml tunicamycin inhibited glycosylation by 95%. However, inhibiting protein synthesis with cycloheximide (10 micrograms/ml) after the initial heat treatment partially inhibited the development of thermotolerance. Nevertheless, there was no further reduction of thermotolerance development by treatment with a combination of 2 micrograms/ml tunicamycin and 10 micrograms/ml cycloheximide. These data suggest that development of thermotolerance, especially protein synthesis-independent thermotolerance, is not correlated with increased glycosylation of the 50 kDa protein.  相似文献   

6.
The influence of a mild heat shock on the fate of the insulin-receptor complex was studied in cultured fetal rat hepatocytes whose insulin glycogenic response is sensitive to heat [Zachayus and Plas (1995): J Cell Physiol 162:330–340]. After exposure from 15 min to 2 hr at 42.5°C, the amount of 125I-insulin associated with cells at 37°C was progressively decreased (by 35% after 1 hr), while the release of 125I-insulin degradation products into the medium was also inhibited (by 75%), more than expected from the decrease in insulin binding. Heat shock did not affect the insulin-induced internalization of cell surface insulin receptors but progressively suppressed the recycling at 37°C of receptors previously internalized at 42.5°C in the presence of insulin. When compared to the inhibitory effects of chloroquine on insulin degradation and insulin receptor recycling, which were immediate (within 15 min), those of heat shock developed within 1 hr of heating. The protein level of insulin receptors was not modified after heat shock and during recovery at 37°C, while that of Hsp72/73 exhibited a transitory accumulation inversely correlated with variations in insulin binding, as assayed by Western immunoblotting from whole cell extracts. Coimmunoprecipitation experiments revealed a heat shock-stimulated association of Hsp72/73 with the insulin receptor. Affinity labeling showed an interaction between 125I-insulin and Hsp72/73 in control cells, which was inhibited by heat shock. These results suggest that increased Hsp72/73 synthesis interfered with insulin degradation and prevented the recycling of the insulin receptor and its further thermal damage via a possible chaperone-like action in fetal hepatocytes submitted to heat stress. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Intraperitoneal administration of N-(L-trans-propylcarbamoyloxirane-2-carbonyl)-L-isoleucyl-L-prolin e (CA-074) to rats at a dose of 4 mg/100 g greatly inhibited cathepsin-B activity in both liver and kidney for at least 4 h. Its inhibitory effect was selective for cathepsin-B activity in the liver but not in the kidney. The effects of selective inhibition of cathepsin-B activity by CA-074 treatment, and general inhibition of cysteine proteinases by N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl-3-methylbutylamid e (E-64-c) on the degradation of fluorescein isothiocyanate (FITC)-labeled asialofetuin in liver lysosomes, were examined in vivo. Undegraded or partially degraded FITC-labeled asialofetuin and its FITC-labeled degradation products were both found in the lysosomes and were easily separated by Sephadex G-25' column chromatography. The FITC-labeled degradation products were mainly lysine with an FITC-labeled epsilon-amino group. Accumulation of undegraded or partially degraded FITC-labeled asialofetuin in the lysosomes was marked after E-64-c treatment, but slight after CA-074 treatment. Under the marked inhibition of general lysosomal cysteine-proteinase activity by E-64-c or marked selective inhibition of cathepsin-B activity by CA-074 in vitro, degradation of FITC-labeled asialofetuin by disrupted lysosomes was analyzed on the basis of measurement of FITC-labeled degradation products by Sephadex G-25 column chromatography. It was suppressed markedly but incompletely by E-64-c as well as by CA-074, but more weakly than by E-64-c. These results shows that E-64-sensitive cysteine proteinases are important in lysosomal protein degradation, but cathepsin B has only a role in part and that an E-64-resistant proteinase(s) may also be important.  相似文献   

8.
The effects of selective inhibition of cathepsins B and L on postischemic protein alterations in the brain were investigated in a rat model of middle cerebral artery occlusion (MCAO). Cathepsin B activity increased predominantly in the subcortical region of the ischemic hemisphere where the levels of collapsing mediator response protein 2, heat shock cognate 70 kDa protein, 60 kDa heat shock protein, protein disulfide isomerase A3 and albumin, were found to be significantly elevated. Postischemic treatment with Cbz-Phe-Ser(OBzl)-CHN2, cysteine protease inhibitor 1 (CP-1), reduced infarct volume, neurological deficits and cathepsin B activity as well as the amount of heat shock proteins and albumin found in the brain. Our data strongly suggests that the decrease in heat shock protein levels and the significant reduction of serum albumin leakage into the brain following acute treatment with CP-1 is indicative of less secondary ischemic damage, which ultimately, is related to less cerebral tissue loss and improved neurological recovery of the animals.  相似文献   

9.
10.
Degradation of the D1 protein of the Photosystem II (PS II) complex was studied in the Fad6/desA::Kmr mutant of a cyanobacterium Synechocystis sp. PCC 6803. The D1 protein of the mutant was degraded during solubilization of thylakoid membranes with SDS at 0°C in darkness, giving rise to the 23 kDa amino-terminal and 10 kDa carboxy-terminal fragments. Moreover, the D2 and CP43 proteins were also degraded under such conditions of solubilization. Degradation of the D2 protein generated 24, 17 and 15.5 kDa fragments, and degradation of the CP43 protein gave rise to 28, 27.5, 26 and 16 kDa fragments. The presence of Ca2+ and urea protected the D1, D2 and CP43 proteins against degradation. Degradation of the D1 protein was also inhibited by the presence of a serine protease inhibitor suggesting that the putative protease involved belonged to the serine class of proteases. The protease had the optimum activity at pH 7.5; it was active at low temperature (0°C) but a brief heating (65°C) during solubilization destroyed the activity. Interestingly, the protease was active in isolated thylakoid membranes in complete darkness, suggesting that proteolysis may be a non-ATP-dependent process. Proteolytic activity present in thylakoid membranes seemed to reside outside of the PS II complex, as demonstrated by the 2-dimensional gel electrophoresis. These results represent the first (in vitro) demonstration of strong activity of a putative ATP-independent serine-type protease that causes degradation of the D1 protein in cyanobacterial thylakoid membranes without any induction by visible or UV light, by active oxygen species or by any chemical treatments.  相似文献   

11.
Prosomes and multicatalytic proteinases were purified from rabbit erythrocyte lysates and were analysed to determine their relationship. During purification by sucrose density gradient centrifugation using low salt buffer, they sedimented at 20–26S. Upon further purification, using high salt buffer, prosomes were recovered as 20S complexes as determined by their characteristic polypeptide pattern. Interestingly, both the 26S and 20S components had protease activity. Therefore, in order to determine their relationship with the multicatalytic proteinases, which are reported to contain a similar set of polypeptides, highly pure prosomes and the multicatalytic proteinases were analysed. Both 20S prosomes and multicatalytic proteinases showed protease activity and also had identical protein subunits of molecular weight ranging from 21 kDa to 35 kDa. Among these, at least two were immunologically identical as determined by Western blot using two monoclonal antibodies prepared against duck prosomes. Furthermore, protease activities of both components were inhibited almost to the same extent by an endogenous inhibitor specific for high molecular weight proteases and calpain. These results thus establish that the 20S prosomes and multicatalytic proteinases are identical, and suggest further that proteolytic activity could be the principal function of prosomes.  相似文献   

12.
Proteinase inhibitors (PIs) from the seeds of bitter gourd (Momordica charantia L.) were identified as strong inhibitors of Helicoverpa armigera gut proteinases (HGP). Biochemical investigations showed that bitter gourd PIs (BGPIs) inhibited more than 80% HGP activity. Electrophoretic analysis revealed the presence of two major proteins (BGPI-1 and-2) and two minor proteins (BGPI-3 and-4) having inhibitory activity against both trypsin and HGP. The major isoforms BGPI-1 and BGPI-2 have molecular mass of 3.5 and 3.0 kDa, respectively. BGPIs inhibited HGP activity of larvae fed on different host plants, on artificial diet with or without added PIs and proteinases excreted in fecal matter. Degradation of BGPI-1 by HGP showed direct correlation with accumulation of BGPI-2-like peptide, which remained stable and active against high concentrations of HGP up to 3 h. Chemical inhibitors of serine proteinases offered partial protection to BGPI-1 from degradation by HGP, suggesting that trypsin and chymotrypsin like proteinases are involved in degradation of BGPI-1. In larval feeding studies, BGPIs were found to retard growth and development of two lepidopteran pests namely Helicoverpa armigera and Spodoptera litura. This is the first report showing that BGPIs mediated inhibition of insect gut proteinases directly affects fertility and fecundity of both H. armigera and S. litura. The results advocate use of BGPIs to introduce insect resistance in otherwise susceptible plants.  相似文献   

13.
Anthrax lethal toxin (LT) rapidly kills macrophages from certain mouse strains in a mechanism dependent on the breakdown of unknown protein(s) by the proteasome, formation of the Nalp1b (NLRP1b) inflammasome and subsequent activation of caspase‐1. We report that heat‐shocking LT‐sensitive macrophages rapidly protects them against cytolysis by inhibiting caspase‐1 activation without upstream effects on LT endocytosis or cleavage of the toxin's known cytosolic substrates (mitogen‐activated protein kinases). Heat shock protection against LT occurred through a mechanism independent of de novo protein synthesis, HSP90 activity, p38 activation or proteasome inhibition and was downstream of mitogen‐activated protein kinase cleavage and degradation of an unknown substrate by the proteasome. The heat shock inhibition of LT‐mediated caspase‐1 activation was not specific to the Nalp1b (NLRP1b) inflammasome, as heat shock also inhibited Nalp3 (NLRP3) inflammasome‐mediated caspase‐1 activation in macrophages. We found that heat shock induced pro‐caspase‐1 association with a large cellular complex that could prevent its activation. Additionally, while heat‐shocking recombinant caspase‐1 did not affect its activity in vitro, lysates from heat‐shocked cells completely inhibited recombinant active caspase‐1 activity. Our results suggest that heat shock inhibition of active caspase‐1 can occur independently of an inflammasome platform, through a titratable factor present within intact, functioning heat‐shocked cells.  相似文献   

14.
Thermotolerance in cultures of Chlorella zofingiensis was induced by heat shock treatment at supraoptimal temperatures (40and 45 °C for 30 min). Thermotolerance was assayed by two methods: the survival of the cells at 70 °C and the growth of diluted cultures at 35 and 45 °C. A culture without heat shock treatment was unable to grow at 45 °C. According to eletrophoretic analyses, the synthesis of proteins of 95, 73, 60, 43 and 27 kDa was induced by heat shock treatment. The large molecular weight proteins (95, 73, 60 and43 kDa) were present in non-heat treated cells, but the heat shock treatment increased their quantity in cells. The synthesis of a low molecular weight protein (27 kDa) was induced by heat shock treatment. The induced thermotolerance could be inhibited by the presence of an 80S ribosomal translation inhibitor, cycloheximide(CHI). The first 12 amino acid residues from the N-terminus of the27 kDa heat shock induced protein are Val-Glu-Trp-Try-Gly-Pro-Asn-Arg-Ala-Lys-Phe-Leu. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Heat shock (44 degrees C) applied for only 15 min induced the development of neurites in neuroblastoma cells 3-6 days later. During the first day after heat shock a transient increase in the rate of cytokinesis together with a synchronizing effect was observed, which led to waves of cytokinesis 14.5 h apart. Individual cell cycles were determined and showed a lengthening in the minimal cell cycle duration and a decrease in the cell cycle variance after shock. Two to 3 days after heat shock the proliferation rate decreased and then recovered. During the 6 days after heat shock, total protein synthesis was lower compared to the untreated cultures. The synthesis of heat shock proteins (100, 90, 84, 70, 68 kDa and some of lower MW) reached a maximum 6 h after heat shock. Parallel changes in the phosphorylation state of proteins were observed in an in vitro assay. Four proteins (100, 89, 67, and 15 kDa) increased and two proteins (97, 73 kDa) decreased their phosphorylation state significantly. Six days after heat shock two proteins (89, 55 kDa) increased their phosphorylation state; the 55-kDa phosphoprotein was identified as tubulin. The effect of heat shock on the intracellular calcium level was determined by measuring Fura 2 fluorescence. Six hours after shock, the Ca2+ level increased to a maximum (about three times the control value) and then dropped during the following days below the control values. We conclude from these results that a decrease in the calcium level may be causally involved in the differentiation process. The calcium effect is probably mediated by changes in the activity of different kinases. This assumption is compatible with the results of experiments with cyclic nucleotides when 10(-5) M cAMP and cGMP were added to in vitro assays of protein phosphorylation. They had different stimulating effects in heat-shocked, differentiating, and growing (control) cells.  相似文献   

16.
A papain-binding protein (PB-protein) was purified to homogeneity from the plasma of plaice (Pleuronectes platessa L.). PB-protein inhibited the activity of trypsin and pancreatic elastase (serine proteinases), thermolysin (a metalloproteinase) and papain (a cysteine proteinase). Presaturation of PB-protein with trypsin prevented the subsequent inhibition of thermolysin, and vice versa. Only catalytically active endopeptidases were bound by PB-protein. The catalytic activity of trypsin bound by PB-protein was inhibited by 95% against an insoluble protein substrate, but only by 38% against a low-molecular-weight synthetic substrate. The remaining activity of the bound trypsin was partially protected against further inhibition by soya-bean trypsin inhibitor. Trypsin bound by PB-protein showed a decrease of 67% in its reactivity with antibodies. The inhibitory activity of PB-protein was inactivated at pH 8.0 by methylamine (0.2M) or dithiothreitol (1 mM). The inhibition of proteinases by plaice PB-protein shows the distinctive characteristics of inhibition by human alpha 2-macroglobulin, and it is concluded that the plaice protein is a homologue of the human macroglobulin.  相似文献   

17.
The AA in experiments performed on male rats treated with 0,5 mCi/kg of cycloheximide have observed an inhibition of liver protein degradation and have suggested two mechanism: 1) cycloheximide prevents the acute proteolytic response induced in fibroblast culture by exposure to serum-deficient media and in rat livers after perfusion probably by inhibiting the lysosomal - autophagic system, without modifications in total activity of lysosome proteinases. 2) It may be that protein degradation rate and level of lysosomal proteinases reinterrelated; the latter probably being a factor controlling the overall cell protein turnover rate.  相似文献   

18.
An overall increase of 40% in nuclear-associated protein has been shown to be one of the sequellae of exposure of eukaryotic cells to elevated temperatures. Several investigators have shown that the increased protein/DNA ratios correlated well with the degree of cytotoxicity. In previous investigations, we have shown that cycloheximide, which protects the cell from the killing effects of heat, produces a dramatic reduction of the bulk nuclear-associated proteins after heating. In this investigation, we studied a previously unobserved efflux of a 26 kDa protein after heat shock and the preferential accumulation of the 70 kDa protein. The 26 kDa protein was shown not to be a member of previously described heat shock protein families. Preferential reduction of a 26 kDa protein and accumulation of a 70 kDa protein was observed in nuclei isolated from Chinese hamster ovary cells after heating at 43 degrees C. After heat treatment, the 26 kDa protein in the nucleus was decreased to a level 0.1-0.3 times the original amount in unheated cells, and the 70 kDa protein in the nucleus increased by a factor of 1.6-1.8. The normal levels of these two proteins were restored when cells were incubated at 37 degrees C following heat shock. Cells treated with heat protectors, cycloheximide and histidinol, demonstrated approximately the same redistribution in nuclear 26 and 70 kDa proteins immediately after heating as those not exposed to these drugs. On the other hand, restoration to control levels was much faster in the protector-treated cells, suggesting that "repair" of heat-induced damage is an important factor in the cells ability to survive this insult. Return to normal protein levels did not require new protein synthesis.  相似文献   

19.
20.
Recent studies suggest that sodium arsenite downregulates NF-kappaB activity by inhibiting phosphorylation and subsequent degradation of IkappaBalpha. Many effects of sodium arsenite are secondary to induction of heat shock proteins. The role of the heat shock response in arsenite-induced inhibition of NF-kappaB, however, is not known. We examined the involvement of the heat shock response in arsenite-induced inhibition of NF-kappaB activity in IL-1beta-stimulated Caco-2 cells, a human colorectal adenocarcinoma cell line with enterocytic properties. Treatment of the cells with IL-1beta resulted in increased IkappaB kinase activity, reduced levels of IkappaBalpha and increased NF-kappaB DNA binding activity. Sodium arsenite blocked all of these responses to IL-1beta without inducing changes in heat shock factor activity or heat shock protein levels. Results from additional experiments showed that the protective effect of sodium arsenite on IkappaBalpha was not influenced by the oxygen radical scavenger catalase or by inhibitors of the MAP-kinase signaling pathway. The present results suggest that sodium arsenite stabilizes IkappaBalpha and prevents NF-kappaB activation in IL-1beta-stimulated Caco-2 cells independent of the heat shock response. In addition, stabilization of IkappaBalpha by sodium arsenite does not require oxygen radical formation or activation of the MAP kinase signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号