首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation of the G1 phase of the mammalian cell cycle   总被引:24,自引:0,他引:24  
In any multi-cellular organism,the balance between cell division and cell death maintains a constant cell number.Both cell division cycle and cell death are highly regulated events.Whether the cell will proceed through the cycle or not,depends upon whether the conditions required at the checkpoints during the cycle and fulfilled.In higher eucaryotic cells,such as mammalian cells,signals that arrest the cycle usually act at a G1 checkpoint.Cells that pass this restriction point are committed to complete the cycle.Regulation of the G1 phase of the cell cycle is extremely complex and involves many different families of proteins such as retinoblastoma family,cyclin dependent kinases,cyclins,and cyclin kinase inhibitors.  相似文献   

2.
Li JS  Zhu M  Tian D  Wang MX  Wang F  Li NP  Wu RL 《生理学报》2007,59(2):204-209
对糖原合酶激酶3β(glycogen synthase kinase 3β,6SK3β)在细胞增殖中的作用研究,在不同细胞系和不同刺激因素作用下得出了不同结论,本文旨在探讨GSK3β在人肺腺癌细胞系A549细胞生长中的直接作用。A549细胞瞬时转染持续激活型S9A-GSK3β以及显性负突变型KM-GSK3β两种GSK3β突变型质粒,改变GSK3β活性。24 h后,分别进行细胞计数,流式细胞术及Western blot检测。结果显示,增强GSK3β活性可导致细胞数量下降,G.期细胞百分比升高。细胞周期蛋白D1表达水平被GSK3β下调。结果提示,GSK3β可能以细胞周期蛋白D1依赖性方式引发A549细胞的G,期阻滞,从而发挥生长抑制效应。  相似文献   

3.
Boye E  Nordström K 《EMBO reports》2003,4(8):757-760
In order to multiply, both prokaryotic and eukaryotic cells go through a series of events that are collectively called the cell cycle. However, DNA replication, mitosis and cell division may also be viewed as having their own, in principle independent, cycles, which are tied together by mechanisms extrinsic to the cell cycle—the checkpoints—that maintain the order of events. We propose that our understanding of cell-cycle regulation is enhanced by viewing each event individually, as an independently regulated process. The nature of the parameters that regulate cell-cycle events is discussed and, in particular, we argue that cell mass is not such a parameter.  相似文献   

4.
5.
多胺调控细胞生长机制的研究进展   总被引:1,自引:0,他引:1  
多胺(腐胺、精脒、精胺)是真核细胞体内重要的多聚阳离子,对细胞的生长增殖发挥重要作用。快速生长的细胞内含有高浓度的多胺,降低多胺含量将抑制细胞的生长,阻滞细胞周期,而升高多胺含量则会促进细胞快速生长增殖。对多胺的调控已经成为研究细胞生长增殖调控的切入点之一。  相似文献   

6.
7.
The pattern of proliferation and growth of cortical and central metaxylem cells in a radicle and the transitional zone of a wheat embryo was studied during the final stages of embryogenesis. Cell divisions finished nearer the root tip in the central metaxylem than was the case in the cortex. After divisions ceased the cells of both tissues maintained the ability to synthesize DNA and the cells began DNA endoreduplication. The maximal levels of endoreduplication were 4C and 8C in cortical and central metaxylem cells, respectively. As a result of nonsimultaneous cessation of divisions, the metaxylem cells were two or three times longer than cortical cells. The proportion of cells with the maximal DNA content was smaller in the transitional zone than in the radicle. During the final embryonal stages cell growth rate was decreased. It was established that the transition of cells to DNA synthesis was inhibited in all sites of the radicle during the completion of embryogenesis. The cell growth was topped in proximal sites of the radicle. In the division zone the cells which had already begun DNA synthesis were able to complete it and divided. Cell growth stopped simultaneously with completion of proliferation in this zone.  相似文献   

8.
The major Smad pathways serve in regulating the expression of genes downstream of TGFbeta signals. In this study, we examined the effects of sustained Smad7 expression in cultured cells. Interestingly, Smad7 caused various mesenchymal cells, including NIH3T3 fibroblast and ST2 bone-marrow stromal cells, to undergo a marked morphological alteration into a flattened cell shape, but kept them alive for as long as 60 days. Furthermore, Smad7 arrested the proliferation of the cells even before they reached confluence. These cells became quiescent in G0/G1 phase and accumulated a hypophosphorylated form of retinoblastoma. The cytostatic effect of Smad7 was closely associated with a preceding decrease in the levels of G1 cyclins, such as cyclin D1 and cyclin E. Accordingly, ectopic cyclin E was able to overcome the Smad7-induced arrest of proliferation. These results indicate that Smad7 functions upstream of G1 cyclins and suggest a novel role for Smad7 as an antiproliferative factor. In contrast to the growth of mesenchymal cells, that of epithelial cells was little susceptible to Smad7. The present findings raise the possibility that a link between Smad7 and the G1 to S phase transition may also contribute to the cell cycle control by certain Smad7-inducing stimuli in a cell-type-dependent fashion.  相似文献   

9.
Neuroblastoma is the most common solid tumor in childhood and represents 15% of all children’s cancer deaths. We have previously demonstrated that tripartite motif 16 (TRIM16), a member of the RING B-box coiled-coil (RBCC)/tripartite totif (TRIM) protein family, has significant effects on neuroblastoma proliferation and migration in vitro and tumorigenicity in vivo. However, the mechanism by which this putative tumor suppressor influences cell proliferation and tumorigenicity was undetermined. Here we show, for the first time, TRIM16’s striking pattern of expression and dynamic localization during cell cycle progression and neuroblastoma tumor development. In a tyrosine hydroxylase MYCN (TH-MYCN) neuroblastoma mouse model, immunohistochemical staining revealed strong nuclear TRIM16 expression in differentiating ganglia cells but not in the tumor-initiating cells. Furthermore in vitro studies clearly demonstrated that during G1 cell cycle phase, TRIM16 protein expression is upregulated and shifts to the nucleus of cells. TRIM16 also plays a role in cell cycle progression through changes in Cyclin D1 and p27 expression. Importantly, using TRIM16 deletion mutants, an uncharacterized protein domain of TRIM16 was found to be required for both TRIM16’s growth inhibitory effects and its nuclear localization. Taken together, our data suggest that TRIM16 acts as a novel regulator of both neuroblastoma G1/S progression and cell differentiation.  相似文献   

10.
In this review, we consider apoptosis as a process intimately linked to the cell cycle. There are several reasons for thinking of apoptosis as a cell cycle phenomenon. First, within the organism, apoptosis is almost exclusively found in proliferating tissues. Second, artificial manipulation of the cell cycle can either prevent or potentiate apoptosis, depending on the point of arrest. Data from such studies have suggested that molecules acting late in G1 are required for apoptosis. Since passage through late G1 into S phase in mammalian cells is known to be regulated by p53 and by activation of cyclin-dependent kinases, we also examine recent studies linking these molecules to the apoptotic pathway.  相似文献   

11.
Ras proto-oncogenes are thought to be involved in both proliferation and malignant processes. We examined some growth properties of a murine embryonal carcinoma cell line (ECC), PCC4, that have been shown previously to be amplified for the c-KI-ras gene. Our results show that doubling time and plating efficiency are not significantly affected by such amplification. To examine the possible link between malignant behavior and c-Ki-ras alteration, we investigated activating mutations in this PCC4 cell line as well as in other ECC. Analysis of the in vitro amplified Ki-ras gene by PCR technology has not revealed point mutations in any of the ECC examined.  相似文献   

12.
Transforming growth factor β1 (TGFβ1) inhibits epithelial cell proliferation late in the G1 phase of the cell cycle. We examined the effect of TGFβ1 on known late G1 cell cycle regulators in an attempt to determine the molecular mechanism of growth inhibition by this physiological inhibitor. The results demonstrate the TGFβ1 inhibits the late G1 and S phase specific histone H1 kinase activity of p33cdk2. This inhibitiion is not dur to TGFβ1's effect on p33cdk2 synthesis, but rather due to its negative effect on the late G1 phosphorylation of p33cdk2. It is also shown that TGFβ1 inhibits both late G1 cyclin A and cyclin E associated histon H1 kinase activities. The inhibitor has no effects on the synthesis of cyclin E but to inhibit the synthesis of cyclin A protein in a cell cycle dependent manner. If TGFβ1 is added to cells which have progressed futher than 8 hours into G1, then it is without inhibitory effect on cyclin A synthesis. These effect on TGFβ1 on late G1 cell cycle regulators correlate well with its inhibitory effects on cellular growth and suggest that these G1 cyclin dependent kinases might serve as targets for TGFβ1-mediated growth arrest.  相似文献   

13.
The aim was to review knowledge about the interface betweenplant growth regulators and molecular checkpoints of the cell cycle. Atwhat level of biochemical regulation of the cell cycle do plant growthregulators interface? Are there different levels of interfacingdependent on the plant growth regulator involved? As a preamble totackling these questions, we overview the eukaryotic cell cycle withparticular emphasis on checkpoints that regulate the transition fromG0-G1-S-phase and G2-M. Cytokinins feature strongly as activators ofcell division in plants both in vivo and in vitro.Recent research has shown that zeatin treatment led to the up-regulationof CycD3 in Arabidopsis. This is a D-type cyclin showing stronghomology with vertebrate D cyclins which themselves are up-regulated byextracellular growth factors. Benzyladenine treatment can also shortenthe duration of S-phase through recruitment of latent origins of DNAreplication. Kinetin is involved in the phosphoregulation of the G2-Mcheckpoint; the major cyclin-dependent kinase (Cdk) at this checkpointhas recently been shown to be dephosphorylated as a result of cytokinintreatment, an effect which can also be mimicked by the fission yeastCdc25 phosphatase. Hence, a picture emerges of a cytokinin-inducedcontinuum of cell cycle activation through the up-regulation of a plantD-type cyclin at the G1 checkpoint and the phosphoregulation of the Cdkat the G2/M checkpoint. During S-phase, we argue for a link betweencytokinins and the proteins associated with replication origins.Gibberellic acid (GA) treatment induces internode elongation. Indeepwater rice, this response is mediated, at least partly, by aGA-induced up-regulation of a cyclin-Cdk at the G2-M checkpoint. Recentevidence has also linked abscisic acid to a cyclin-dependent kinaseinhibitor. These, so-called CKIs are negative regulators of Cdks whichfits with ABA's general role in growth inhibition; we await news ofethylene interactions. We highlight two instances of plant growthregulator-cell cycle interfacing during development, arguing for aninvolvement in microtubule orientation as a prerequisite to leafinitiation, and suggest a link between IAA and the activation of celldivisions in the pericycle required for lateral root initiation. A newD-type cyclin, recently discovered in Arabidopsis, may have akey role in this process. Finally, a model is presented which features ageneralised cyclin-Cdk checkpoint exhibiting various interfaces with theplant growth regulators.  相似文献   

14.
Since little is known about the function of polypeptide growth factors as regulators of multiple cell cycles, we compared the ability of FGF1, PDGF-AB and serum to induce a second round of DNA synthesis in Swiss 3T3 cells previously exposed to either FGF1, PDGF-AB or serum during the first cell cycle using [14C]- and [3H]thymidine in a double labeling system to distinguish between the first and second cell cycles. Surprisingly, we observed that cells exposed to either FGF1 or PDGF-AB in the first cell cycle were unable to synthesize DNA in response to FGF1 or PDGF-AB in the second cell cycle; yet these cells responded well to serum as a second cycle mitogen. Interestingly, while cells exposed to either FGF1 or PDGF-AB in the second cycle displayed normal receptor-mediated signaling and expressed cyclin D and E, they, like senescent fibroblasts and endothelial cells, failed to express cyclin A, and the continuous exposure of cells to either FGF1 or PDGF-AB resulted in a decrease in the kinase activity of the cyclin E/cdk2 complex. In addition, an increased association of this complex was observed with p21 CIP in an FGF1-dependent manner as well as with p27 KIP in a PDGF-AB-dependent manner. Lastly, the downregulation of p21 expression using an antisense strategy was able to partially rescue the replicative response of Swiss 3T3 cells to FGF1 in the second cycle. These data suggest that (i) FGF1 and PDGF-AB may limit their mitogenic effect to a single cell cycle, (ii) entry into the second round of replication is serum dependent and (iii) the self-limiting nature of FGF1 and PDGF-AB correlates with the accumulation of the cdk inhibitors, p21 and p27, respectively.  相似文献   

15.
目的 :观察肝细胞生长因子 (HGF)和血管内皮细胞生长因子 (VEGF)对体外培养牛冠状动脉内皮细胞(BCAEC)增殖、迁移的影响。方法 :分离和培养BCAEC ,设对照组、VEGF组、HGF组。采用四甲基偶氮唑蓝法(MTT)观察细胞增殖 ;倒置显微镜观察培养的血管内皮细胞的迁移。结果 :对照组、VEGF组、HGF组的OD值分别为 0 .2 2± 0 .0 1、0 .40± 0 .1 4、0 .44± 0 .1 5 ;VEGF组、HGF组BCAEC的增殖率分别为 81 .8%± 1 6 .9%、1 0 0 %±2 1 .1 % ;对照组BCAEC迁移不明显 ,而VEGF组和HGF组BCAEC迁移明显。结论 :VEGF、HGF能促进BCAEC增殖、迁移 ,HGF作用强度不亚于VEGF。  相似文献   

16.
《Developmental cell》2023,58(16):1462-1476.e8
  1. Download : Download high-res image (235KB)
  2. Download : Download full-size image
  相似文献   

17.
在细胞发育过程中,细胞周期起着至关重要的作用。细胞周期进程主要受细胞周期蛋白依赖性激酶(cyclin dependent kinase, CDK)、周期蛋白和内源性CDK抑制剂(cyclin-dependent kinase inhibitors,CKI)调控。其中,CDK是主要的细胞周期调节因子,可与周期蛋白结合形成周期蛋白-CDK复合物,从而使数百种底物磷酸化,调控分裂间期和有丝分裂进程。各类细胞周期蛋白的活性异常,可引起不受控制的癌细胞增殖,导致癌症的发生与发展。因此,了解CDK的活性变化情况、周期蛋白-CDK的组装以及CKI的作用,将有助于了解细胞周期进程中潜在的调控过程,为癌症与疾病的治疗和CKI治疗药物的研发提供基础。本文关注了CDK激活和灭活的关键事件,并总结了周期蛋白-CDK在特定时期及位置的调控过程,以及相关CKI治疗药物在癌症及疾病中的研究进展,最后简单阐述了细胞周期进程研究面临的问题和存在的挑战,以期为后续细胞周期进程的深入研究提供参考和思路。  相似文献   

18.
Upadhyay D  Chang W  Wei K  Gao M  Rosen GD 《FEBS letters》2007,581(2):248-252
We studied the effects of fibroblast growth factor (FGF-10) on H2O2-induced alveolar epithelial cell (AEC) G1 arrest and the role of G1 cyclins. FGF-10 prevented H2O2-induced AEC G1 arrest. FGF-10 induced 2-4-fold increase in cyclin E, cyclin A and CDKs (2,4) alone and in AEC treated with H2O2. H2O2 downregulated cyclin D1; FGF-10 blocked these effects. FGF-10 prevented H2O2-induced upregulation of CDK inhibitor, p21. SiRNAp21 blocked H2O2-induced downregulation of cyclins, CDKs and AEC G1 arrest. Accordingly, we provide first evidence that FGF-10 regulates G1 cyclins and CDKs, and prevents H2O2-induced AEC G1 arrest.  相似文献   

19.
Growth characteristics and nutrient changes in medium and cells of batch-grown sugarcane cultures were investigated over a period of 14 days. Amino acids, PO 4 3− and K+ were substantially removed from the medium during the first seven days of culture; a strong preference for uptake of organic nitrogen over inorganic nitrogen was observed. Sodium uptake increased during the time when K+ was becoming deficient in the medium. The main anions taken up were SO 4 2− and PO 4 3− . Strong acidification and a virtually total extracellular hydrolysis of sucrose in the medium during the first seven days of culture were also observed. Tapering off of the rapid growth phase was accompanied by an increase of intra-cellular sucrose and a decrease of intracellular protein. As cells went from rapid growth into stationary phase, cytoplasmic space of the cells decreased slightly in favor of vacuolar space. Overall cell volume stayed constant throughout the growth cycle, except during a short period before onset of rapid growth. Transport of the glucose analog 3-O-methyl glucose remained constant in terms of Km value but the Vmax was slightly higher in rapidly growing cells. Published with the approval of the Director as paper no. 495 in theJournal Series of the Experiment Station, Hawaiian Sugar Planters' Association  相似文献   

20.
Summary The roles of glucose and insulin in the promotion of DNA synthesis in pancreatic islet cell monolayers were assessed using a variety of in vitro conditions. Several substrates including collagen, poly-l-lysine, Matrigel, and the extracellular matrix produced by cultured bovine endothelial cells (BCEM) were compared for their ability to promote monolayer growth. Islets grown on BCEM in combination with medium RPMI 1640 supplemented with 22.2 mM glucose or 10 μg/ml insulin gave the best results as determined by new DNA synthesis. The new-form monolayers were free of contaminating, fibroblasts. These results suggest that insulin is critical to pancreatic islet growth when the cells are attached to biocompatible matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号